51
|
Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y, Yamauchi T, Sakurai M, O'Keefe DD, Núñez-Delicado E, Guillen P, Campistol JM, Wu CJ, Lu LF, Esteban CR, Izpisua Belmonte JC. In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation. Cell 2017; 171:1495-1507.e15. [PMID: 29224783 DOI: 10.1016/j.cell.2017.10.025] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
Current genome-editing systems generally rely on inducing DNA double-strand breaks (DSBs). This may limit their utility in clinical therapies, as unwanted mutations caused by DSBs can have deleterious effects. CRISPR/Cas9 system has recently been repurposed to enable target gene activation, allowing regulation of endogenous gene expression without creating DSBs. However, in vivo implementation of this gain-of-function system has proven difficult. Here, we report a robust system for in vivo activation of endogenous target genes through trans-epigenetic remodeling. The system relies on recruitment of Cas9 and transcriptional activation complexes to target loci by modified single guide RNAs. As proof-of-concept, we used this technology to treat mouse models of diabetes, muscular dystrophy, and acute kidney disease. Results demonstrate that CRISPR/Cas9-mediated target gene activation can be achieved in vivo, leading to measurable phenotypes and amelioration of disease symptoms. This establishes new avenues for developing targeted epigenetic therapies against human diseases. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Hsin-Kai Liao
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Toshikazu Araoka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Universidad Catolica, San Antonio de Murcia, Campus de los Jeronimos, 135, 30107 Guadalupe, Spain
| | - Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Min-Zu Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Universidad Catolica, San Antonio de Murcia, Campus de los Jeronimos, 135, 30107 Guadalupe, Spain
| | - Yinghui Sui
- Department of Pediatrics and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Takayoshi Yamauchi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Universidad Catolica, San Antonio de Murcia, Campus de los Jeronimos, 135, 30107 Guadalupe, Spain
| | - Masahiro Sakurai
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David D O'Keefe
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Estrella Núñez-Delicado
- Universidad Catolica, San Antonio de Murcia, Campus de los Jeronimos, 135, 30107 Guadalupe, Spain
| | - Pedro Guillen
- Fundacion Pedro Guillen, Clinica CEMTRO, Avenida Ventisquero de la Condesa, 42, 28035 Madrid, Spain
| | - Josep M Campistol
- Hospital Clinic of Barcelona, Carrer Villarroel, 170, 08036 Barcelona, Spain
| | - Cheng-Jang Wu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
52
|
Abstract
Many homeodomain transcription factors can bind methylated DNA
Collapse
Affiliation(s)
- Timothy R. Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Samuel A. Lambert
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|