51
|
Han XL, Du J, Zheng YD, Dai JJ, Lin SW, Zhang BY, Zhong FB, Lin ZG, Jiang SQ, Wei W, Fang ZY. CXCL1 Clone Evolution Induced by the HDAC Inhibitor Belinostat Might Be a Favorable Prognostic Indicator in Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5089371. [PMID: 33959656 PMCID: PMC8075662 DOI: 10.1155/2021/5089371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer due to its lack of treatment options. Patients with TNBC frequently develop resistance to chemotherapy. As epigenetic-based antineoplastic drugs, histone deacetylase inhibitors (HDACis) have achieved particular efficacy in lymphoma but are less efficacious in solid tumors, and the resistance mechanism remains poorly understood. In this study, the GSE129944 microarray dataset from the Gene Expression Omnibus database was downloaded, and fold changes at the transcriptome level of a TNBC line (MDA-MB-231) after treatment with belinostat were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to identify the critical biological processes. Construction and analysis of the protein-protein interaction (PPI) network were performed to screen candidate genes related to cancer prognosis. A total of 465 DEGs were identified, including 240 downregulated and 225 upregulated genes. The cytokine-cytokine receptor pathway was identified as being significantly changed. Furthermore, the expression of CXCL1 was implicated as a favorable factor in the overall survival of breast cancer patients. With in vitro approaches, we also showed that belinostat could induce the expression of CXCL1 in another 2 TNBC cell lines (BT-549 and HCC-1937). We speculate that belinostat-induced CXCL1 expression could be one of the results of the stress clone evolution of cells after HDACi treatment. These findings provide new insights into clone evolution during HDACi treatment, which might guide us to a novel perspective that various mutation-targeted treatments should be implemented during the whole treatment cycle.
Collapse
Affiliation(s)
- Xin-le Han
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Jun Du
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Ya-dan Zheng
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Jia-jing Dai
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Su-wen Lin
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Bing-yue Zhang
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Fu-bo Zhong
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Zhe-guang Lin
- Department of Biobank, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Shu-qi Jiang
- Department of Biobank, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Zheng-yu Fang
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
- Department of Biobank, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| |
Collapse
|
52
|
Bechelli J, Rumfield CS, Walker DH, Widen S, Khanipov K, Fang R. Subversion of Host Innate Immunity by Rickettsia australis via a Modified Autophagic Response in Macrophages. Front Immunol 2021; 12:638469. [PMID: 33912163 PMCID: PMC8071864 DOI: 10.3389/fimmu.2021.638469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
We recently reported that the in vitro and in vivo survivals of Rickettsia australis are Atg5-dependent, in association with an inhibited level of anti-rickettsial cytokine, IL-1β. In the present study, we sought to investigate how R. australis interacts with host innate immunity via an Atg5-dependent autophagic response. We found that the serum levels of IFN-γ and G-CSF in R. australis-infected Atg5flox/floxLyz-Cre mice were significantly less compared to Atg5flox/flox mice, accompanied by significantly lower rickettsial loads in tissues with inflammatory cellular infiltrations including neutrophils. R. australis infection differentially regulated a significant number of genes in bone marrow-derived macrophages (BMMs) in an Atg5-depdent fashion as determined by RNA sequencing and Ingenuity Pathway Analysis, including genes in the molecular networks of IL-1 family cytokines and PI3K-Akt-mTOR. The secretion levels of inflammatory cytokines, such as IL-1α, IL-18, TNF-α, and IL-6, by R. australis-infected Atg5flox/floxLyz-Cre BMMs were significantly greater compared to infected Atg5flox/flox BMMs. Interestingly, R. australis significantly increased the levels of phosphorylated mTOR and P70S6K at a time when the autophagic response is induced. Rapamycin treatment nearly abolished the phosphorylated mTOR and P70S6K but did not promote significant autophagic flux during R. australis infection. These results highlight that R. australis modulates an Atg5-dependent autophagic response, which is not sensitive to regulation by mTORC1 signaling in macrophages. Overall, we demonstrate that R. australis counteracts host innate immunity including IL-1β-dependent inflammatory response to support the bacterial survival via an mTORC1-resistant autophagic response in macrophages.
Collapse
Affiliation(s)
- Jeremy Bechelli
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Biological Sciences, Sam Houston State University, Huntsville, TX, United States
| | - Claire S Rumfield
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Steven Widen
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
53
|
Liang XM, Qin Q, Liu BN, Li XQ, Zeng LL, Wang J, Kong LP, Zhong DS, Sun LL. Targeting DNA-PK overcomes acquired resistance to third-generation EGFR-TKI osimertinib in non-small-cell lung cancer. Acta Pharmacol Sin 2021; 42:648-654. [PMID: 33414509 DOI: 10.1038/s41401-020-00577-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022] Open
Abstract
The third-generation of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), represented by osimertinib, has achieved remarkable clinical outcomes in the treatment of non-small-cell lung cancer (NSCLC) with EGFR mutation. However, resistance eventually emerges in most patients and the underlying molecular mechanisms remain to be fully understood. In this study, we generated an osimertinib-acquired resistant lung cancer model from a NSCLC cell line H1975 harboring EGFR L858R and T790M mutations. We found that the capacity of DNA damage repair was compromised in the osimertinib resistant cells, evidenced by increased levels of γH2AX and higher intensity of the comet tail after withdrawal from cisplatin. Pharmacological inhibiting the activity or genetic knockdown the expression of DNA-PK, a key kinase in DNA damage response (DDR), sensitized the resistant cells to osimertinib. Combination of osimertinib with the DNA-PK inhibitor, PI-103, or NU7441, synergistically suppressed the proliferation of the resistant cells. Mechanistically, we revealed that DNA-PK inhibitor in combination with osimertinib resulted in prolonged DNA damage and cell cycle arrest. These findings shed new light on the mechanisms of osimertinib resistance in the aspect of DNA repair, and provide a rationale for targeting DNA-PK as a therapeutic strategy to overcome osimertinib-acquired resistance in NSCLC.
Collapse
|
54
|
Zhu Z, Song H, Xu J. CDKN2A Deletion in Melanoma Excludes T Cell Infiltration by Repressing Chemokine Expression in a Cell Cycle-Dependent Manner. Front Oncol 2021; 11:641077. [PMID: 33842347 PMCID: PMC8027313 DOI: 10.3389/fonc.2021.641077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/01/2021] [Indexed: 12/28/2022] Open
Abstract
T-cell-mediated immune response is the prerequisite for T-cell-based immunotherapy. However, the limitation of T-cell infiltration in solid tumors restricted the therapeutic effect of T-cell-based immunotherapy. The present study screened the molecular and genetic features of The Cancer Genome Atlas (TCGA)-skin cutaneous melanoma (SKCM) cohort, revealing that T-cell infiltration negatively correlated with genome copy number alteration. The analysis of the TCGA-SKCM cohort indicated that the copy number of CDKN2A was significantly decreased in patients with low T-cell infiltration. The results were validated in the other two melanoma cohorts (DFCI, Science 2015, and TGEN, Genome Res 2017). Besides, the immunohistochemistry analysis of CDKN2A and CD8 expression in 5 melanoma in situ and 15 invasive melanoma patients also showed that CD8 expression was decreased in the patients with low CDKN2A expression and there was a positive correlation between CDKN2A and CD8 expression in these patients. Interestingly, the CDKN2A deletion group and the group with low expression of T-cell markers shared similar gene and pathway alteration as compared with the normal CDKN2A group and the group with high expression of T-cell markers, especially the chemokine pathway. Further mechanistic study indicated that CDKN2A enhanced T cell recruitment and chemokine expression possibly through modulating MAPK and NF-κB signaling pathways in a cell cycle–dependent manner. Finally, we also found that CDKN2A deletion negatively correlated with the expression of T-cell markers in many other cancer types. In conclusion, CDKN2A deletion could inhibit T cell infiltration by inhibiting chemokine expression in a cell cycle dependent manner.
Collapse
Affiliation(s)
- Zhen Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hao Song
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
55
|
Seita A, Nakaoka H, Okura R, Wakamoto Y. Intrinsic growth heterogeneity of mouse leukemia cells underlies differential susceptibility to a growth-inhibiting anticancer drug. PLoS One 2021; 16:e0236534. [PMID: 33524064 PMCID: PMC7850478 DOI: 10.1371/journal.pone.0236534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/14/2021] [Indexed: 11/18/2022] Open
Abstract
Cancer cell populations consist of phenotypically heterogeneous cells. Growing evidence suggests that pre-existing phenotypic differences among cancer cells correlate with differential susceptibility to anticancer drugs and eventually lead to a relapse. Such phenotypic differences can arise not only externally driven by the environmental heterogeneity around individual cells but also internally by the intrinsic fluctuation of cells. However, the quantitative characteristics of intrinsic phenotypic heterogeneity emerging even under constant environments and their relevance to drug susceptibility remain elusive. Here we employed a microfluidic device, mammalian mother machine, for studying the intrinsic heterogeneity of growth dynamics of mouse lymphocytic leukemia cells (L1210) across tens of generations. The generation time of this cancer cell line had a distribution with a long tail and a heritability across generations. We determined that a minority of cell lineages exist in a slow-cycling state for multiple generations. These slow-cycling cell lineages had a higher chance of survival than the fast-cycling lineages under continuous exposure to the anticancer drug Mitomycin C. This result suggests that heritable heterogeneity in cancer cells’ growth in a population influences their susceptibility to anticancer drugs.
Collapse
Affiliation(s)
- Akihisa Seita
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Nakaoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (HN); (YW)
| | - Reiko Okura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Wakamoto
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
- * E-mail: (HN); (YW)
| |
Collapse
|
56
|
Fujisawa F, Kunimasa K, Kano-Fujiwara R, Sato Y, Kusama H, Nishio M, Matsui S, Yoshinami T, Kittaka N, Nakamura H, Nagata S, Honma K, Yagi T, Nakayama T, Tamaki Y, Imamura F. STK11 loss drives rapid progression in a breast cancer patient resulting in pulmonary tumor thrombotic microangiopathy. Breast Cancer 2021; 28:765-771. [PMID: 33389615 DOI: 10.1007/s12282-020-01200-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022]
Abstract
We experienced a case of breast cancer in which liver metastases spread rapidly and the patient died of pulmonary tumor thrombotic microangiopathy (PTTM). PTTM is a fatal cancer-associated respiratory complication disease. To reveal genetic alterations of the clinical course, we performed next generation sequencing of the serial specimens using the Ion AmpliSeqTM Comprehensive Cancer Panel and RNA sequencing for transcriptomic data, followed by gene set analysis. The analysis revealed an oncogenic TP53 R213* mutation in all specimens and STK11 loss in tissues sampled after disease progression. Immunohistochemistry with an anti-STK11 antibody confirmed no STK11 expression in the samples after progression. Transcriptome analysis showed a significant downregulation of proteins associated with apoptosis in the specimens with STK11 loss. STK11 loss may have triggered the rapid progression of PTTM from a comprehensive genomic analysis.
Collapse
Affiliation(s)
- Fumie Fujisawa
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka, 541-8567, Japan.
| | - Rieko Kano-Fujiwara
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | | | - Hiroki Kusama
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Minako Nishio
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Saki Matsui
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Tetsuhiro Yoshinami
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Nobuyoshi Kittaka
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Harumi Nakamura
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, Osaka, Japan
| | - Shigenori Nagata
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Toshinari Yagi
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Takahiro Nakayama
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Yasuhiro Tamaki
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Fumio Imamura
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
57
|
Risdon EN, Chau CH, Price DK, Sartor O, Figg WD. PARP Inhibitors and Prostate Cancer: To Infinity and Beyond BRCA. Oncologist 2021; 26:e115-e129. [PMID: 32790034 PMCID: PMC7794174 DOI: 10.1634/theoncologist.2020-0697] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
The U.S. Food and Drug Administration recently approved two poly-adenosine diphosphate-ribose polymerase (PARP) inhibitors, olaparib and rucaparib, for treatment of biomarker-positive metastatic castrate resistant prostate cancer. The benefits of PARP inhibition have been well characterized in patients who have BRCA1 and BRCA2 mutations in several forms of cancer. BRCA1 and BRCA2 occupy key roles in DNA damage repair, which is comprised of several different pathways with numerous participants. Patients with mutations in other key genes within the DNA damage repair pathway may also respond to treatment with PARP inhibitors, and identification of these alterations could significantly increase the percentage of patients that may benefit from PARP inhibition. This review focuses on the potential for synthetically lethal interactions between PARP inhibitors and non-BRCA DNA damage repair genes. IMPLICATIONS FOR PRACTICE: The treatment potential of PARP inhibition has been well characterized in patients with BRCA1 and BRCA2 mutations, but there is compelling evidence for expanding the use of PARP inhibitors to mutations of other non-BRCA DNA damage repair (DDR) genes. This could increase the percentage of patients that may benefit from treatment with PARP inhibitors alone or in combination with other therapies. Understanding the significance of PARP inhibitor-sensitizing alterations in other common non-BRCA DDR genes will help guide clinical decisions to provide targeted treatment options to a wider population of patients.
Collapse
Affiliation(s)
- Emily N. Risdon
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Cindy H. Chau
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Douglas K. Price
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | | | - William D. Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
58
|
Zhao Y, Song Y, Zhao R, Zhao M, Huang Q. Gene Panel of Persister Cells as a Prognostic Indicator for Tumor Repopulation After Radiation. Front Oncol 2020; 10:607727. [PMID: 33330109 PMCID: PMC7714959 DOI: 10.3389/fonc.2020.607727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor repopulation during cycles of radiotherapy limits the radio-response in ensuing cycles and causes failure of treatment. It is thus of vital importance to unveil the mechanisms underlying tumor repopulating cells. Increasing evidence suggests that a subpopulation of drug-tolerant persister cancer cells (DTPs) could survive the cytotoxic treatment and resume to propagate. Whether these persister cells contribute to development of radio-resistance remains elusive. Based on the genetic profiling of DTPs by integrating datasets from Gene Expression Omnibus database, this study aimed to provide novel insights into tumor-repopulation mediated radio-resistance and identify predictive biomarkers for radio-response in clinic. A prognostic risk index, grounded on four persister genes (LYNX1, SYNPO, GADD45B, and PDLIM1), was constructed in non-small-cell lung cancer patients from The Cancer Genome Atlas Program (TCGA) using stepwise Cox regression analysis. Weighted gene co-expression network analysis further confirmed the interaction among persister-gene based risk score, radio-response and overall survival time. In addition, the predictive role of risk index was validated in vitro and in other types of TCGA patients. Gene set enrichment analysis was performed to decipher the possible biological signaling, which indicated that two forces behind persister cells, stress response and survival adaptation, might fuel the tumor repopulation after radiation. Targeting these persister cells may represent a new prognostic and therapeutic approach to enhance radio-response and prevent radio-resistance induced by tumor repopulation.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanwei Song
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruyi Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghui Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
59
|
Zhou J, Zhou XA, Zhang N, Wang J. Evolving insights: how DNA repair pathways impact cancer evolution. Cancer Biol Med 2020; 17:805-827. [PMID: 33299637 PMCID: PMC7721097 DOI: 10.20892/j.issn.2095-3941.2020.0177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Viewing cancer as a large, evolving population of heterogeneous cells is a common perspective. Because genomic instability is one of the fundamental features of cancer, this intrinsic tendency of genomic variation leads to striking intratumor heterogeneity and functions during the process of cancer formation, development, metastasis, and relapse. With the increased mutation rate and abundant diversity of the gene pool, this heterogeneity leads to cancer evolution, which is the major obstacle in the clinical treatment of cancer. Cells rely on the integrity of DNA repair machineries to maintain genomic stability, but these machineries often do not function properly in cancer cells. The deficiency of DNA repair could contribute to the generation of cancer genomic instability, and ultimately promote cancer evolution. With the rapid advance of new technologies, such as single-cell sequencing in recent years, we have the opportunity to better understand the specific processes and mechanisms of cancer evolution, and its relationship with DNA repair. Here, we review recent findings on how DNA repair affects cancer evolution, and discuss how these mechanisms provide the basis for critical clinical challenges and therapeutic applications.
Collapse
Affiliation(s)
- Jiadong Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Albert Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ning Zhang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Jiadong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
60
|
Abstract
Therapeutic resistance continues to be an indominable foe in our ambition for curative cancer treatment. Recent insights into the molecular determinants of acquired treatment resistance in the clinical and experimental setting have challenged the widely held view of sequential genetic evolution as the primary cause of resistance and brought into sharp focus a range of non-genetic adaptive mechanisms. Notably, the genetic landscape of the tumour and the non-genetic mechanisms used to escape therapy are frequently linked. Remarkably, whereas some oncogenic mutations allow the cancer cells to rapidly adapt their transcriptional and/or metabolic programme to meet and survive the therapeutic pressure, other oncogenic drivers convey an inherent cellular plasticity to the cancer cell enabling lineage switching and/or the evasion of anticancer immunosurveillance. The prevalence and diverse array of non-genetic resistance mechanisms pose a new challenge to the field that requires innovative strategies to monitor and counteract these adaptive processes. In this Perspective we discuss the key principles of non-genetic therapy resistance in cancer. We provide a perspective on the emerging data from clinical studies and sophisticated cancer models that have studied various non-genetic resistance pathways and highlight promising therapeutic avenues that may be used to negate and/or counteract the non-genetic adaptive pathways.
Collapse
Affiliation(s)
- Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
- Center for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia.
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
- Center for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
61
|
Blackstone NW, Gutterman JU. Can natural selection and druggable targets synergize? Of nutrient scarcity, cancer, and the evolution of cooperation. Bioessays 2020; 43:e2000160. [PMID: 33165962 DOI: 10.1002/bies.202000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023]
Abstract
Since the dawn of molecular biology, cancer therapy has focused on druggable targets. Despite some remarkable successes, cell-level evolution remains a potent antagonist to this approach. We suggest that a deeper understanding of the breakdown of cooperation can synergize the evolutionary and druggable-targets approaches. Complexity requires cooperation, whether between cells of different species (symbiosis) or between cells of the same organism (multicellularity). Both forms of cooperation may be associated with nutrient scarcity, which in turn may be associated with a chemiosmotic metabolism. A variety of examples from modern organisms supports these generalities. Indeed, mammalian cancers-unicellular, glycolytic, and fast-replicating-parallel these examples. Nutrient scarcity, chemiosmosis, and associated signaling may favor cooperation, while under conditions of nutrient abundance a fermentative metabolism may signal the breakdown of cooperation. Manipulating this metabolic milieu may potentiate the effects of targeted therapeutics. Specific opportunities are discussed in this regard, including avicins, a novel plant product.
Collapse
Affiliation(s)
- Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jordan U Gutterman
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
62
|
Gerosa L, Chidley C, Fröhlich F, Sanchez G, Lim SK, Muhlich J, Chen JY, Vallabhaneni S, Baker GJ, Schapiro D, Atanasova MI, Chylek LA, Shi T, Yi L, Nicora CD, Claas A, Ng TSC, Kohler RH, Lauffenburger DA, Weissleder R, Miller MA, Qian WJ, Wiley HS, Sorger PK. Receptor-Driven ERK Pulses Reconfigure MAPK Signaling and Enable Persistence of Drug-Adapted BRAF-Mutant Melanoma Cells. Cell Syst 2020; 11:478-494.e9. [PMID: 33113355 DOI: 10.1016/j.cels.2020.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/21/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
Targeted inhibition of oncogenic pathways can be highly effective in halting the rapid growth of tumors but often leads to the emergence of slowly dividing persister cells, which constitute a reservoir for the selection of drug-resistant clones. In BRAFV600E melanomas, RAF and MEK inhibitors efficiently block oncogenic signaling, but persister cells emerge. Here, we show that persister cells escape drug-induced cell-cycle arrest via brief, sporadic ERK pulses generated by transmembrane receptors and growth factors operating in an autocrine/paracrine manner. Quantitative proteomics and computational modeling show that ERK pulsing is enabled by rewiring of mitogen-activated protein kinase (MAPK) signaling: from an oncogenic BRAFV600E monomer-driven configuration that is drug sensitive to a receptor-driven configuration that involves Ras-GTP and RAF dimers and is highly resistant to RAF and MEK inhibitors. Altogether, this work shows that pulsatile MAPK activation by factors in the microenvironment generates a persistent population of melanoma cells that rewires MAPK signaling to sustain non-genetic drug resistance.
Collapse
Affiliation(s)
- Luca Gerosa
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Chidley
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Fabian Fröhlich
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela Sanchez
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sang Kyun Lim
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jia-Yun Chen
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sreeram Vallabhaneni
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory J Baker
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Denis Schapiro
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mariya I Atanasova
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lily A Chylek
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Lian Yi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Allison Claas
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Thomas S C Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
63
|
Walen KH. Near-Dead Cells to Special Tetraploidy to First Cells to Cancer Diagnostic Morphology: Unlikely Therapy-Gain from For-Profit Industrial Goliath. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/jct.2020.117036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
64
|
Abstract
This review explores the incessant evolutionary interaction and co-development between immune system evolution and somatic evolution, to put it into context with the short, over 60-year, detailed human study of this extraordinary protective system. Over millions of years, the evolutionary development of the immune system in most species has been continuously shaped by environmental interactions between microbes, and aberrant somatic cells, including malignant cells. Not only has evolution occurred in somatic cells to adapt to environmental pressures for survival purposes, but the immune system and its function has been successively shaped by those same evolving somatic cells and microorganisms through continuous adaptive symbiotic processes of progressive simultaneous immunological and somatic change to provide what we observe today. Indeed, the immune system as an environmental influence has also shaped somatic and microbial evolution. Although the immune system is tuned to primarily controlling microbiological challenges for combatting infection, it can also remove damaged and aberrant cells, including cancer cells to induce long-term cures. Our knowledge of how this occurs is just emerging. Here we consider the connections between immunity, infection and cancer, by searching back in time hundreds of millions of years to when multi-cellular organisms first began. We are gradually appreciating that the immune system has evolved into a truly brilliant and efficient protective mechanism, the importance of which we are just beginning to now comprehend. Understanding these aspects will likely lead to more effective cancer and other therapies.
Collapse
Affiliation(s)
- Brendon J Coventry
- Discipline of Surgery, Royal Adelaide Hospital, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Unit, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute of Evolutionary Medicine, The University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|