51
|
Berge AH, Pugh SM, Short MIM, Kaur C, Lu Z, Lee JH, Pickard CJ, Sayari A, Forse AC. Revealing carbon capture chemistry with 17-oxygen NMR spectroscopy. Nat Commun 2022; 13:7763. [PMID: 36522319 PMCID: PMC9755136 DOI: 10.1038/s41467-022-35254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Carbon dioxide capture is essential to achieve net-zero emissions. A hurdle to the design of improved capture materials is the lack of adequate tools to characterise how CO2 adsorbs. Solid-state nuclear magnetic resonance (NMR) spectroscopy is a promising probe of CO2 capture, but it remains challenging to distinguish different adsorption products. Here we perform a comprehensive computational investigation of 22 amine-functionalised metal-organic frameworks and discover that 17O NMR is a powerful probe of CO2 capture chemistry that provides excellent differentiation of ammonium carbamate and carbamic acid species. The computational findings are supported by 17O NMR experiments on a series of CO2-loaded frameworks that clearly identify ammonium carbamate chain formation and provide evidence for a mixed carbamic acid - ammonium carbamate adsorption mode. We further find that carbamic acid formation is more prevalent in this materials class than previously believed. Finally, we show that our methods are readily applicable to other adsorbents, and find support for ammonium carbamate formation in amine-grafted silicas. Our work paves the way for investigations of carbon capture chemistry that can enable materials design.
Collapse
Affiliation(s)
- Astrid H Berge
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Suzi M Pugh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Marion I M Short
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Chanjot Kaur
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Ziheng Lu
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chris J Pickard
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
- Advanced Institute for Materials Research, Tohoku University, Aoba, Sendai, 980-8577, Japan
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Alexander C Forse
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
52
|
Marshall BD. A Cluster Based Cooperative Kinetic Model for CO 2 Adsorption on Amine Functionalized Metal–Organic Frameworks. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bennett D. Marshall
- ExxonMobil Technology and Engineering Company, Annandale, New Jersey08801, United States
| |
Collapse
|
53
|
MxCo3O4/g-C3N4 Derived from Bimetallic MOFs/g-C3N4 Composites for Styrene Epoxidation by Synergistic Photothermal Catalysis. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
54
|
Evans HA, Mullangi D, Deng Z, Wang Y, Peh SB, Wei F, Wang J, Brown CM, Zhao D, Canepa P, Cheetham AK. Aluminum formate, Al(HCOO) 3: An earth-abundant, scalable, and highly selective material for CO 2 capture. SCIENCE ADVANCES 2022; 8:eade1473. [PMID: 36322645 PMCID: PMC10942769 DOI: 10.1126/sciadv.ade1473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
A combination of gas adsorption and gas breakthrough measurements show that the metal-organic framework, Al(HCOO)3 (ALF), which can be made inexpensively from commodity chemicals, exhibits excellent CO2 adsorption capacities and outstanding CO2/N2 selectivity that enable it to remove CO2 from dried CO2-containing gas streams at elevated temperatures (323 kelvin). Notably, ALF is scalable, readily pelletized, stable to SO2 and NO, and simple to regenerate. Density functional theory calculations and in situ neutron diffraction studies reveal that the preferential adsorption of CO2 is a size-selective separation that depends on the subtle difference between the kinetic diameters of CO2 and N2. The findings are supported by additional measurements, including Fourier transform infrared spectroscopy, thermogravimetric analysis, and variable temperature powder and single-crystal x-ray diffraction.
Collapse
Affiliation(s)
- Hayden A. Evans
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Dinesh Mullangi
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Zeyu Deng
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Fengxia Wei
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Craig M. Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Pieremanuele Canepa
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Anthony K. Cheetham
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
55
|
Wang G, Krishna R, Li Y, Shi W, Hou L, Wang Y, Zhu Z. Boosting Ethane/Ethylene Separation by MOFs through the Amino‐Functionalization of Pores. Angew Chem Int Ed Engl 2022; 61:e202213015. [DOI: 10.1002/anie.202213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Gang‐Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Rajamani Krishna
- Van ‘t Hoff Institute for Molecular Sciences University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Yong‐Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Wen‐Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
56
|
Parker ST, Smith A, Forse AC, Liao WC, Brown-Altvater F, Siegelman RL, Kim EJ, Zill NA, Zhang W, Neaton JB, Reimer JA, Long JR. Evaluation of the Stability of Diamine-Appended Mg 2(dobpdc) Frameworks to Sulfur Dioxide. J Am Chem Soc 2022; 144:19849-19860. [PMID: 36265017 DOI: 10.1021/jacs.2c07498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are a promising class of CO2 adsorbents, although their stability to SO2─a trace component of industrially relevant exhaust streams─remains largely untested. Here, we investigate the impact of SO2 on the stability and CO2 capture performance of dmpn-Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-propanediamine), a candidate material for carbon capture from coal flue gas. Using SO2 breakthrough experiments and CO2 isobar measurements, we find that the material retains 91% of its CO2 capacity after saturation with a wet simulated flue gas containing representative levels of CO2 and SO2, highlighting the robustness of this framework to SO2 under realistic CO2 capture conditions. Initial SO2 cycling experiments suggest dmpn-Mg2(dobpdc) may achieve a stable operating capacity in the presence of SO2 after initial passivation. Evaluation of several other diamine-Mg2(dobpdc) variants reveals that those with primary,primary (1°,1°) diamines, including dmpn-Mg2(dobpdc), are more robust to humid SO2 than those featuring primary,secondary (1°,2°) or primary,tertiary (1°,3°) diamines. Based on the solid-state 15N NMR spectra and density functional theory calculations, we find that under humid conditions, SO2 reacts with the metal-bound primary amine in 1°,2° and 1°,3° diamine-appended Mg2(dobpdc) to form a metal-bound bisulfite species that is charge balanced by a primary ammonium cation, thereby facilitating material degradation. In contrast, humid SO2 reacts with the free end of 1°,1° diamines to form ammonium bisulfite, leaving the metal-diamine bond intact. This structure-property relationship can be used to guide further optimization of these materials for CO2 capture applications.
Collapse
Affiliation(s)
- Surya T Parker
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alex Smith
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - Alexander C Forse
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Wei-Chih Liao
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Florian Brown-Altvater
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.,Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca L Siegelman
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Eugene J Kim
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Nicholas A Zill
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jeffrey B Neaton
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Physics, University of California Berkeley, Berkeley, California 94720, United States.,Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, United States
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R Long
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
57
|
Shao K, Wen H, Liang C, Xiao X, Gu X, Chen B, Qian G, Li B. Engineering Supramolecular Binding Sites in a Chemically Stable Metal‐Organic Framework for Simultaneous High C
2
H
2
Storage and Separation. Angew Chem Int Ed Engl 2022; 61:e202211523. [DOI: 10.1002/anie.202211523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Shao
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Hui‐Min Wen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Cong‐Cong Liang
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xiaoyan Xiao
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xiao‐Wen Gu
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio TX 78249-0698 USA
| | - Guodong Qian
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Bin Li
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
58
|
Hong AN, Luong D, Alghamdi M, Liao W, Zhang W, Kusumoputro E, Chen Y, Greaney PA, Cui Y, Shi J, Bu X, Fokwa BPT, Feng P. Metal‐Mediated Directional Capping of Rod‐Packing Metal–Organic Frameworks. Chemistry 2022; 28:e202201576. [DOI: 10.1002/chem.202201576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Anh N. Hong
- Department of Chemistry University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Diana Luong
- Department of Chemistry University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Mohammed Alghamdi
- Department of Physics and Astronomy University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Wei‐Cheng Liao
- Department of Physics and Astronomy University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Weiyi Zhang
- Department of Materials Science and Engineering University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Emily Kusumoputro
- Department of Chemistry University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Yichong Chen
- Department of Chemistry University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - P. Alex Greaney
- Department of Materials Science and Engineering University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Yongtao Cui
- Department of Physics and Astronomy University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Jing Shi
- Department of Physics and Astronomy University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Boniface P. T. Fokwa
- Department of Chemistry University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Pingyun Feng
- Department of Chemistry University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| |
Collapse
|
59
|
DeWitt SJA, Lively RP. MIL-101(Cr) Polymeric Fiber Adsorbents for Sub-Ambient Post-Combustion CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ryan P. Lively
- Georgia Institute of Technology, Atlanta, Georgia 30308, United States
| |
Collapse
|
60
|
Fu Y, Suo X, Yang Z, Dai S, Jiang DE. Computational Insights into Malononitrile-Based Carbanions for CO 2 Capture. J Phys Chem B 2022; 126:6979-6984. [PMID: 36047943 DOI: 10.1021/acs.jpcb.2c03082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although anionic N and O sites have been widely used in chemisorption of CO2, carbanions are much less explored for CO2 capture. Here we employ ab initio calculations and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations to examine the interaction between CO2 and the malononitrile carbanion, [CH(CN)2]-. We have explored the potential energy surface of CO2 binding by scanning the C-C distance between CO2 and the central C site of the carbanion. We find that CO2 prefers to bind to the nitrile group physically rather than to form a C-C bond via the carboxylation reaction at the sp2 C site. Moreover, the two -CN groups can attract two CO2 molecules at equal strength. The presence of an alkali metal ion enhances both physical and chemical interactions of CO2 with the malononitrile carbanion. QM/MM MD simulations further confirm the preference of physical interaction in the condensed ionic liquid phase with a phosphonium cation. Our findings suggest that ionic liquids based on the malononitrile carbanion may have a high CO2 solubility for carbon capture.
Collapse
Affiliation(s)
- Yuqing Fu
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Xian Suo
- Department of Chemistry, Joint Institute for Advanced Materials, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Department of Chemistry, Joint Institute for Advanced Materials, The University of Tennessee, Knoxville, Tennessee 37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
61
|
Dods MN, Weston SC, Long JR. Prospects for Simultaneously Capturing Carbon Dioxide and Harvesting Water from Air. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204277. [PMID: 35980944 DOI: 10.1002/adma.202204277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Mitigation of anthropogenic climate change is expected to require large-scale deployment of carbon dioxide removal strategies. Prominent among these strategies is direct air capture with sequestration (DACS), which encompasses the removal and long-term storage of atmospheric CO2 by purely engineered means. Because it does not require arable land or copious amounts of freshwater, DACS is already attractive in the context of sustainable development, but opportunities to improve its sustainability still exist. Leveraging differences in the chemistry of CO2 and water adsorption within porous solids, here, the prospect of simultaneously removing water alongside CO2 in direct air capture operations is investigated. In many cases, the co-adsorbed water can be desorbed separately from chemisorbed CO2 molecules, enabling efficient harvesting of water from air. Depending upon the material employed and process conditions, the desorbed water can be of sufficiently high purity for industrial, agricultural, or potable use and can thus improve regional water security. Additionally, the recovered water can offset a portion of the costs associated with DACS. In this Perspective, molecular- and process-level insights are combined to identify routes toward realizing this nascent yet enticing concept.
Collapse
Affiliation(s)
- Matthew N Dods
- Departments of Chemistry and Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Simon C Weston
- ExxonMobil Technology and Engineering Company, Annandale, NJ, 08801, USA
| | - Jeffrey R Long
- Departments of Chemistry and Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
62
|
Yin J, Kang Z, Fu Y, Cao W, Wang Y, Guan H, Yin Y, Chen B, Yi X, Chen W, Shao W, Zhu Y, Zheng A, Wang Q, Kong X. Molecular identification and quantification of defect sites in metal-organic frameworks with NMR probe molecules. Nat Commun 2022; 13:5112. [PMID: 36042242 PMCID: PMC9427814 DOI: 10.1038/s41467-022-32809-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023] Open
Abstract
The defects in metal-organic frameworks (MOFs) can dramatically alter their pore structure and chemical properties. However, it has been a great challenge to characterize the molecular structure of defects, especially when the defects are distributed irregularly in the lattice. In this work, we applied a characterization strategy based on solid-state nuclear magnetic resonance (NMR) to assess the chemistry of defects. This strategy takes advantage of the coordination-sensitive phosphorus probe molecules, e.g., trimethylphosphine (TMP) and trimethylphosphine oxide (TMPO), that can distinguish the subtle differences in the acidity of defects. A variety of local chemical environments have been identified in defective and ideal MOF lattices. The geometric dimension of defects can also be evaluated by using the homologs of probe molecules with different sizes. In addition, our method provides a reliable way to quantify the density of defect sites, which comes together with the molecular details of local pore environments. The comprehensive solid-state NMR strategy can be of great value for a better understanding of MOF structures and for guiding the design of MOFs with desired catalytic or adsorption properties. Defects in porous materials can alter the pore structure and chemical properties. Here authors demonstrate an approach for studying defects in metal-organic frameworks using 31P NMR and probe molecules.
Collapse
Affiliation(s)
- Jinglin Yin
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Zhengzhong Kang
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Yao Fu
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Weicheng Cao
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Yiran Wang
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Hanxi Guan
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Yu Yin
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Binbin Chen
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Wei Shao
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Yihan Zhu
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Qi Wang
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China. .,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, 310027, Hangzhou, P. R. China.
| |
Collapse
|
63
|
Ullah S, Tan K, Sensharma D, Kumar N, Mukherjee S, Bezrukov AA, Li J, Zaworotko MJ, Thonhauser T. CO
2
Capture by Hybrid Ultramicroporous TIFSIX‐3‐Ni under Humid Conditions Using Non‐Equilibrium Cycling. Angew Chem Int Ed Engl 2022; 61:e202206613. [PMID: 35737638 PMCID: PMC9539483 DOI: 10.1002/anie.202206613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 12/03/2022]
Abstract
Although pyrazine‐linked hybrid ultramicroporous materials (HUMs, pore size <7 Å) are benchmark physisorbents for trace carbon dioxide (CO2) capture under dry conditions, their affinity for water (H2O) mitigates their carbon capture performance in humid conditions. Herein, we report on the co‐adsorption of H2O and CO2 by TIFSIX‐3‐Ni—a high CO2 affinity HUM—and find that slow H2O sorption kinetics can enable CO2 uptake and release using shortened adsorption cycles with retention of ca. 90 % of dry CO2 uptake. Insight into co‐adsorption is provided by in situ infrared spectroscopy and ab initio calculations. The binding sites and sorption mechanisms reveal that both CO2 and H2O molecules occupy the same ultramicropore through favorable interactions between CO2 and H2O at low water loading. An energetically favored water network displaces CO2 molecules at higher loading. Our results offer bottom‐up design principles and insight into co‐adsorption of CO2 and H2O that is likely to be relevant across the full spectrum of carbon capture sorbents to better understand and address the challenge posed by humidity to gas capture.
Collapse
Affiliation(s)
- Saif Ullah
- Department of Physics and Center for Functional Materials Wake Forest University Winston-Salem NC 27109 USA
| | - Kui Tan
- Department of Materials Science & Engineering University of Texas at Dallas Richardson TX 75080 USA
| | - Debobroto Sensharma
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Naveen Kumar
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Soumya Mukherjee
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Andrey A. Bezrukov
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Jing Li
- Department of Chemistry and Chemical Biology Rutgers University Piscataway NJ 08854 USA
| | - Michael J. Zaworotko
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials Wake Forest University Winston-Salem NC 27109 USA
| |
Collapse
|
64
|
Martín-Fuentes C, Parreiras SO, Urgel JI, Rubio-Giménez V, Muñiz Cano B, Moreno D, Lauwaet K, Valvidares M, Valbuena MA, Gargiani P, Kuch W, Camarero J, Gallego JM, Miranda R, Martínez JI, Martí-Gastaldo C, Écija D. On-Surface Design of a 2D Cobalt-Organic Network Preserving Large Orbital Magnetic Moment. J Am Chem Soc 2022; 144:16034-16041. [PMID: 36007260 DOI: 10.1021/jacs.2c05894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of antiferromagnetic nanomaterials preserving large orbital magnetic moments is important to protect their functionalities against magnetic perturbations. Here, we exploit an archetype H6HOTP species for conductive metal-organic frameworks to design a Co-HOTP one-atom-thick metal-organic architecture on a Au(111) surface. Our multidisciplinary scanning probe microscopy, X-ray absorption spectroscopy, X-ray linear dichroism, and X-ray magnetic circular dichroism study, combined with density functional theory simulations, reveals the formation of a unique network design based on threefold Co+2 coordination with deprotonated ligands, which displays a large orbital magnetic moment with an orbital to effective spin moment ratio of 0.8, an in-plane easy axis of magnetization, and large magnetic anisotropy. Our simulations suggest an antiferromagnetic ground state, which is compatible with the experimental findings. Such a Co-HOTP metal-organic network exemplifies how on-surface chemistry can enable the design of field-robust antiferromagnetic materials.
Collapse
Affiliation(s)
- Cristina Martín-Fuentes
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Sofia O Parreiras
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - José I Urgel
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Víctor Rubio-Giménez
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain
| | - Beatriz Muñiz Cano
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Daniel Moreno
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | - Koen Lauwaet
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | | | - Miguel A Valbuena
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| | | | - Wolfgang Kuch
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Julio Camarero
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain.,Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain.,Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José I Martínez
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid, Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain
| | - David Écija
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), E-28049 Madrid, Spain
| |
Collapse
|
65
|
Shao K, Wen HM, Liang CC, Xiao X, Gu XW, Chen B, Qian G, Li B. Engineering Supramolecular Binding Sites in a Chemically Stable Metal−Organic Framework for Simultaneous High C2H2 Storage and Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Shao
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Hui-Min Wen
- Zhejiang University of Technology College of Chemical Engineering CHINA
| | - Cong-Cong Liang
- ZHEJIANG UNIVERSITY School of Materials Science and Engineering CHINA
| | - Xiaoyan Xiao
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Xiao-Wen Gu
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Banglin Chen
- University of Texas at San Antonio Department of Chemistry One UTSA Circle 78249 San Antonio UNITED STATES
| | - Guodong Qian
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Bin Li
- Zhejiang University School of Materials Science and Engineering CHINA
| |
Collapse
|
66
|
Mao H, Tang J, Day GS, Peng Y, Wang H, Xiao X, Yang Y, Jiang Y, Chen S, Halat DM, Lund A, Lv X, Zhang W, Yang C, Lin Z, Zhou HC, Pines A, Cui Y, Reimer JA. A scalable solid-state nanoporous network with atomic-level interaction design for carbon dioxide capture. SCIENCE ADVANCES 2022; 8:eabo6849. [PMID: 35921416 PMCID: PMC9348791 DOI: 10.1126/sciadv.abo6849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Carbon capture and sequestration reduces carbon dioxide emissions and is critical in accomplishing carbon neutrality targets. Here, we demonstrate new sustainable, solid-state, polyamine-appended, cyanuric acid-stabilized melamine nanoporous networks (MNNs) via dynamic combinatorial chemistry (DCC) at the kilogram scale toward effective and high-capacity carbon dioxide capture. Polyamine-appended MNNs reaction mechanisms with carbon dioxide were elucidated with double-level DCC where two-dimensional heteronuclear chemical shift correlation nuclear magnetic resonance spectroscopy was performed to demonstrate the interatomic interactions. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption. The coordination of polyamine and cyanuric acid modification endows MNNs with high adsorption capacity (1.82 millimoles per gram at 1 bar), fast adsorption time (less than 1 minute), low price, and extraordinary stability to cycling by flue gas. This work creates a general industrialization method toward carbon dioxide capture via DCC atomic-level design strategies.
Collapse
Affiliation(s)
- Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jing Tang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gregory S. Day
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yucan Peng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Haoze Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yufei Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shuo Chen
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David M. Halat
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
| | - Alicia Lund
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xudong Lv
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wenbo Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zhou Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Alexander Pines
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
67
|
Cai Y, Yong J, Chen J, Zhou Y, Gao J. Hofmann-type metal-organic frameworks with dual open nickel centers for efficient capture of CO2 from CH4 and N2. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
68
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
69
|
Pillared-layer ultramicroporous material for highly selective SO2 capture from CO2 mixtures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
70
|
Ma C, Pan W, Zhang J, Zeng X, Gong C, Xu H, Shen R, Zhu DR, Xie J. Metal-organic frameworks derived from chalcone dicarboxylic acid: new topological characters and initial catalytic properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
71
|
Cheng J, Hou W, Liu N, Yang C, Zhou J. GeFSIX‐1‐Cu
based semi‐interpenetrating network mixed matrix membranes for efficient
CO
2
separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Wen Hou
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Niu Liu
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Chen Yang
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| |
Collapse
|
72
|
Wang L, Lu Y, Ma S, Lian Z, Gu X, Li J, Li Z, Liu Q. Optimizing CO2 reduction and evolution reaction mediated by o-phenylenediamine toward high performance Li-CO2 battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
73
|
Miao P, Zhang L, Zhang J, Ma M, Du Y, Gan J, Yang J. Metal organic framework- modified monolithic column immobilized with pepsin for enantioseparation in capillary electrochromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123306. [DOI: 10.1016/j.jchromb.2022.123306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 01/19/2023]
|
74
|
Chen F, Wang J, Guo L, Huang X, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. Carbon dioxide capture in gallate-based metal-organic frameworks. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
75
|
Ullah S, Tan K, Sensharma D, Kumar N, Mukherjee S, Bezrukov AA, Li J, Zaworotko MJ, Thonhauser T. CO2 Capture by Hybrid Ultramicroporous TIFSIX‐3‐Ni under Humid Conditions Using Non‐Equilibrium Cycling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saif Ullah
- Wake Forest University Physics 2700 Reynolda Rd Apt. 1312 27106 Winston Salem UNITED STATES
| | - Kui Tan
- UTD: University of Texas at Dallas Department of Materials Science and Engineering UNITED STATES
| | | | - Naveen Kumar
- University of Limerick Department of Chemical Sciences IRELAND
| | | | | | - Jing Li
- Rutgers University: Rutgers The State University of New Jersey Department of Chemistry and Chemical Biology UNITED STATES
| | | | - Timo Thonhauser
- Wake Forest University Department of Physics and Center for Functional Materials UNITED STATES
| |
Collapse
|
76
|
Choe JH, Kim H, Kang M, Yun H, Kim SY, Lee SM, Hong CS. Functionalization of Diamine-Appended MOF-Based Adsorbents by Ring Opening of Epoxide: Long-Term Stability and CO 2 Recyclability under Humid Conditions. J Am Chem Soc 2022; 144:10309-10319. [PMID: 35657696 DOI: 10.1021/jacs.2c01488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although diamine-appended metal-organic framework (MOF) adsorbents exhibit excellent CO2 adsorption performance, a continuous decrease in long-term capacity during repeated wet cycles remains a formidable challenge for practical applications. Herein, we present the fabrication of diamine-appended Mg2(dobpdc)-alumina beads (een-MOF/Al-Si-Cx; een = N-ethylethylenediamine; x = number of carbon atoms attached to epoxide) coated with hydrophobic silanes and alkyl epoxides. The reaction of epoxides with diamines in the portal of the pore afforded sufficient hydrophobicity, hindered the penetration of water vapor into the pores, and rendered the modified diamines less volatile. een-MOF/Al-Si-C17-200 (een-MOF/Al-Si-C17-y; y = 50, 100, and 200, denoting wt % of C17 with respect to the bead, respectively), with substantial hydrophobicity, showed a significant uptake of 2.82 mmol g-1 at 40 °C and 15% CO2, relevant to flue gas concentration, and a reduced water adsorption. The modified beads maintained a high CO2 capacity for over 100 temperature-swing adsorption cycles in the presence of 5% H2O and retained CO2 separation performance in breakthrough tests under humid conditions. This result demonstrates that the epoxide coating provides a facile and effective method for developing promising adsorbents with high CO2 adsorption capacity and long-term durability, which is a required property for postcombustion applications.
Collapse
Affiliation(s)
- Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Su Min Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
77
|
Li H, Zhang L, Yang Y, Hu E, Li B, Cui Y, Yang D, Qian G. Polarized Laser Switching with Giant Contrast in MOF-Based Mixed-Matrix Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200953. [PMID: 35403835 PMCID: PMC9189632 DOI: 10.1002/advs.202200953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Indexed: 05/05/2023]
Abstract
Nonlinear optical (NLO) switch materials have attracted considerable attention in photonics. Although various materials based on complex structural transitions have been developed extensively, the studies on light-driven up-conversion laser switches are rare, which have advantages including easy operations at room temperature and high contrasts. Here, the concept of photoswitch building unit is proposed to construct a novel sandwich-like mixed-matrix membrane. Dye@metal-organic framework (MOF) crystals and spirooxazine are regarded as the laser emission and absorption units, followed by their hierarchical encapsulation into the polydimethylsiloxane carrier unit. Excited MOF microcrystals exhibit two-photon pumped lasing anisotropy, with an ultrahigh degree of linear polarization (≈99.9%). Photochromic molecules can be interconverted by the external ultraviolet stimulus, causing sharp absorption-band variations and inducing the laser emission or quenching. Such up-conversion polarized laser switch material is reported for the first time. Record-high NLO contrast (≈6.1 × 104 ) among the solid-state NLO switch materials can be obtained through simultaneously controlling the ultraviolet irradiation and the emission-detected polarization direction at room temperature.
Collapse
Affiliation(s)
- Hongjun Li
- State Key Laboratory of Silicon MaterialsCyrus Tang Center for Sensor Materials and ApplicationsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Lin Zhang
- State Key Laboratory of Silicon MaterialsCyrus Tang Center for Sensor Materials and ApplicationsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Yu Yang
- State Key Laboratory of Silicon MaterialsCyrus Tang Center for Sensor Materials and ApplicationsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Enlai Hu
- State Key Laboratory of Silicon MaterialsCyrus Tang Center for Sensor Materials and ApplicationsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Bin Li
- State Key Laboratory of Silicon MaterialsCyrus Tang Center for Sensor Materials and ApplicationsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Yuanjing Cui
- State Key Laboratory of Silicon MaterialsCyrus Tang Center for Sensor Materials and ApplicationsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Deren Yang
- State Key Laboratory of Silicon MaterialsCyrus Tang Center for Sensor Materials and ApplicationsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Guodong Qian
- State Key Laboratory of Silicon MaterialsCyrus Tang Center for Sensor Materials and ApplicationsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
78
|
Hydrogen Sulfide Capture and Removal Technologies: A Comprehensive Review of Recent Developments and Emerging Trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
79
|
Zhou S, Shekhah O, Ramírez A, Lyu P, Abou-Hamad E, Jia J, Li J, Bhatt PM, Huang Z, Jiang H, Jin T, Maurin G, Gascon J, Eddaoudi M. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature 2022; 606:706-712. [PMID: 35732759 DOI: 10.1038/s41586-022-04763-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity1. In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal2. However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes3. Here we report a mixed-linker metal-organic framework (MOF) membrane based on fumarate (fum) and mesaconate (mes) linkers, Zr-fum67-mes33-fcu-MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport of tetrahedral methane while allowing linear nitrogen to permeate. Zr-fum67-mes33-fcu-MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50 bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture.
Collapse
Affiliation(s)
- Sheng Zhou
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development (FMD3), Thuwal, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development (FMD3), Thuwal, Kingdom of Saudi Arabia
| | - Adrian Ramírez
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Advanced Catalytic Materials (ACM), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Pengbo Lyu
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Edy Abou-Hamad
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Jiangtao Jia
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development (FMD3), Thuwal, Kingdom of Saudi Arabia
| | - Jiantang Li
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development (FMD3), Thuwal, Kingdom of Saudi Arabia
| | - Prashant M Bhatt
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development (FMD3), Thuwal, Kingdom of Saudi Arabia
| | - Zhiyuan Huang
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development (FMD3), Thuwal, Kingdom of Saudi Arabia
| | - Hao Jiang
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development (FMD3), Thuwal, Kingdom of Saudi Arabia
| | - Tian Jin
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development (FMD3), Thuwal, Kingdom of Saudi Arabia
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jorge Gascon
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Advanced Catalytic Materials (ACM), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia. .,Advanced Membranes and Porous Materials (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia. .,Functional Materials Design, Discovery and Development (FMD3), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
80
|
Shi Z, Li X, Yao X, Zhang YB. MOF adsorbents capture CO 2 on an industrial scale. Sci Bull (Beijing) 2022; 67:885-887. [PMID: 36546017 DOI: 10.1016/j.scib.2022.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Zhaolin Shi
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinhao Li
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuan Yao
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
81
|
Berruyer P, Bertarello A, Björgvinsdóttir S, Lelli M, Emsley L. 1H Detected Relayed Dynamic Nuclear Polarization. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:7564-7570. [PMID: 35558821 PMCID: PMC9083189 DOI: 10.1021/acs.jpcc.2c01077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Recently, it has been shown that methods based on the dynamics of 1H nuclear hyperpolarization in magic angle spinning (MAS) NMR experiments can be used to determine mesoscale structures in complex materials. However, these methods suffer from low sensitivity, especially since they have so far only been feasible with indirect detection of 1H polarization through dilute heteronuclei such as 13C or 29Si. Here we combine relayed-DNP (R-DNP) with fast MAS using 0.7 mm diameter rotors at 21.2 T. Fast MAS enables direct 1H detection to follow hyperpolarization dynamics, leading to an acceleration in experiment times by a factor 16. Furthermore, we show that by varying the MAS rate, and consequently modulating the 1H spin diffusion rate, we can record a series of independent R-DNP curves that can be analyzed jointly to provide an accurate determination of domain sizes. This is confirmed here with measurements on microcrystalline l-histidine·HCl·H2O at MAS frequencies up to 60 kHz, where we determine a Weibull distribution of particle sizes centered on a radius of 440 ± 20 nm with an order parameter of k = 2.2.
Collapse
Affiliation(s)
- Pierrick Berruyer
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrea Bertarello
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Snædís Björgvinsdóttir
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Moreno Lelli
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Magnetic
Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
82
|
Vitillo JG, Eisaman MD, Aradóttir ES, Passarini F, Wang T, Sheehan SW. The role of carbon capture, utilization, and storage for economic pathways that limit global warming to below 1.5°C. iScience 2022; 25:104237. [PMID: 35521539 PMCID: PMC9062320 DOI: 10.1016/j.isci.2022.104237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The 2021 Intergovernmental Panel on Climate Change (IPCC) report, for the first time, stated that CO2 removal will be necessary to meet our climate goals. However, there is a cost to accomplish CO2 removal or mitigation that varies by source. Accordingly, a sensible strategy to prevent climate change begins by mitigating emission sources requiring the least energy and capital investment per ton of CO2, such as new emitters and long-term stationary sources. The production of CO2-derived products should also start by favoring processes that bring to market high-value products with sufficient margin to tolerate a higher cost of goods.
Collapse
Affiliation(s)
- Jenny G. Vitillo
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, I-22100 Como, Italy
- Corresponding author
| | - Matthew D. Eisaman
- Department of Electrical & Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Fabrizio Passarini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Tao Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, NO.38, Zheda Road, Hangzhou, 310027 Zhejiang Province, China
| | - Stafford W. Sheehan
- Air Company, 407 Johnson Avenue, Brooklyn, NY 11206, USA
- Corresponding author
| |
Collapse
|
83
|
Yang Y, Liu B, Liu Y, Chen J, Sun Y, Pan X, Xu J, Xu S, Liu Z, Tan W. DNA-Based MXFs to Enhance Radiotherapy and Stimulate Robust Antitumor Immune Responses. NANO LETTERS 2022; 22:2826-2834. [PMID: 35344667 DOI: 10.1021/acs.nanolett.1c04888] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal "X" Frameworks (MXFs) constructed from metal ions and biomacromolecules ("X components") via coordination interactions show crystalline structures and diverse functionalities. Here, a series of MXFs composed of various metal ions (e.g., Zn2+, Hf4+, Ca2+) and DNA oligodeoxynucleotides were reported. With MXF consisting of Hf4+ and CpG oligodeoxynucleotides as the example, we show that such Hf-CpG MXF can achieve high-Z elements-enhanced photon radiotherapy and further trigger robust tumor-specific immune responses, thus showing efficient tumor suppression ability. In vivo experiments showed that external beam radiotherapy applied on tumors locally injected with Hf-CpG MXF result in the thorough elimination of primary tumors, complete inhibition of tumor metastasis, and protection against tumor rechallenge by triggering robust antitumor immune responses. Our findings provide a blueprint for fabricating a variety of rationally designed MXFs with desired functions and present the strategy of stimulating whole-body systemic immune responses by only local treatment of radiotherapy.
Collapse
Affiliation(s)
- Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Chemistry, Center for Research at Bio/Nano Interface, Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Bo Liu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuan Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujia Sun
- Department of Chemistry, Center for Research at Bio/Nano Interface, Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Xiaoshu Pan
- Department of Chemistry, Center for Research at Bio/Nano Interface, Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Jun Xu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Shujuan Xu
- Department of Chemistry, Center for Research at Bio/Nano Interface, Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Chemistry, Center for Research at Bio/Nano Interface, Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
84
|
Lee JH, Hyldgaard P, Neaton JB. An Assessment of Density Functionals for Predicting CO2 Adsorption in Diamine-Functionalized Metal-Organic Frameworks. J Chem Phys 2022; 156:154113. [DOI: 10.1063/5.0084539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diamine-functionalized M2(dobpdc) (M = Mg, Mn, Fe, Co, Zn) metal-organic frameworks (MOFs) are growing class of crystalline solids currently being intensively investigated for carbon capture, as they exhibit a novel cooperative and selective CO2 absorption mechanism and a step-shaped isotherm. To understand their CO2 adsorption behavior, ab initio calculations with near-chemical accuracy are required. Here, we present DFT calculations of CO2 adsorption in m-2-m-Zn2(dobpdc) with different exchange-correlation functionals, including semilocal functionals (PBE and two revised PBE functionals), semiempirical pairwise corrections (D3 and TS), nonlocal van der Waals correlation functionals (vdW-optB88, vdW-DF1, vdW-DF2, vdW-DF2-B86R, vdW-DF-cx, and revised VV10), and a meta-GGA (SCAN). Overall, we find that revPBE+D3 and RPBE+D3 show the best balance of performance for both the lattice parameters and the CO2 binding enthalpy of m-2-m-Zn2(dobpdc). The superior performance of revPBE+D3 and RPBE+D3 is sustained for the formation enthalpy and the lattice parameters of ammonium carbamate, a primary product of the cooperative CO2 insertion in diamine-functionalized M2(dobpdc) MOFs. Moreover, we find that their performance is derived from their larger repulsive exchange contributions to the CO2 binding enthalpy than the other functionals at the relevant range of reduced density gradient value for the energetics of CO2 adsorption in the m-2-m-Zn2(dobpdc) MOF. The results of our benchmarking study can help guide the further development of versatile vdW-corrected DFT methods with predictive accuracy.
Collapse
Affiliation(s)
- Jung-Hoon Lee
- Korea Institute of Science and Technology, Korea, Republic of (South Korea)
| | - Per Hyldgaard
- Microtechnology and Nanoscience, Chalmers tekniska högskola, Sweden
| | - Jeffrey B. Neaton
- Physics, University of California Berkeley, United States of America
| |
Collapse
|
85
|
Jose R, Kancharlapalli S, Ghanty TK, Pal S, Rajaraman G. The Decisive Role of Spin States and Spin Coupling in Dictating Selective O
2
Adsorption in Chromium(II) Metal–Organic Frameworks**. Chemistry 2022; 28:e202104526. [DOI: 10.1002/chem.202104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Reshma Jose
- Department of Chemistry Indian Institute of Technology Bombay Powai, Mumbai 400076 India
| | | | - Tapan K. Ghanty
- Theoretical Chemistry Section Bhabha Atomic Research Centre Mumbai 400085 India
- Present address: Bio-Science Group Bhabha Atomic Research Centre Mumbai 400085 India
| | - Sourav Pal
- Department of Chemistry Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia 741246 India
- Department of Chemistry Ashoka University Sonepat, Haryana 131029 India
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay Powai, Mumbai 400076 India
| |
Collapse
|
86
|
Yang YL, Wang YR, Gao GK, Liu M, Miao C, Li LY, Cheng W, Zhao ZY, Chen Y, Xin Z, Li SL, Li DS, Lan YQ. Self-assembly of single metal sites embedded covalent organic frameworks into multi-dimensional nanostructures for efficient CO2 electroreduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
87
|
Wang X, Lin X, Qiu H, Xie J, Lu Z, Wang Y, Wu W. Light-mediated CO2-responsiveness of metallopolymer microgels. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
88
|
Yeganeh MS, Jusufi A, Deighton SP, Ide MS, Siskin M, Jaishankar A, Maldarelli C, Bertolini P, Natarajan B, Vreeland JL, King MA, Konicek AR. Solid with infused reactive liquid (SWIRL): A novel liquid-based separation approach for effective CO 2 capture. SCIENCE ADVANCES 2022; 8:eabm0144. [PMID: 35138903 PMCID: PMC8827647 DOI: 10.1126/sciadv.abm0144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Economical CO2 capture demands low-energy separation strategies. We use a liquid-infused surface (LIS) approach to immobilize reactive liquids, such as amines, on a textured and thermally conductive solid substrate with high surface-area to volume ratio (A/V) continuum geometry. The infused, micrometer-thick liquid retains that high A/V and directly contacts the gas phase, alleviating mass transport resistance typically encountered in mesoporous solid adsorbents. We name this LIS class "solid with infused reactive liquid" (SWIRL). SWIRL-amine requires no water dilution or costly mixing unlike the current liquid-based commercial approach. SWIRL-tetraethylenepentamine (TEPA) shows stable, high capture capacities at power plant CO2 concentrations near flue gas temperatures, preventing energy-intensive temperature swings needed for other approaches. Water vapor increases CO2 capacity of SWIRL-TEPA without compromising stability.
Collapse
Affiliation(s)
- Mohsen S. Yeganeh
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Arben Jusufi
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Shane P. Deighton
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Matthew S. Ide
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Michael Siskin
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Aditya Jaishankar
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Charles Maldarelli
- Chemical Engineering, The City College of New York, New York, NY 10031, USA
| | - Pedro Bertolini
- Chemical Engineering, The City College of New York, New York, NY 10031, USA
| | - Bharath Natarajan
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | | | - Mark A. King
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Andrew R. Konicek
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| |
Collapse
|
89
|
Wang J, Kim E, Kumar DP, Rangappa AP, Kim Y, Zhang Y, Kim TK. Highly Durable and Fully Dispersed Cobalt Diatomic Site Catalysts for CO
2
Photoreduction to CH
4. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinming Wang
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Eunhyo Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | | | | | - Yujin Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering Hubei University Wuhan 430072 China
| | - Tae Kyu Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
90
|
Lyu H, Chen OIF, Hanikel N, Hossain MI, Flaig RW, Pei X, Amin A, Doherty MD, Impastato RK, Glover TG, Moore DR, Yaghi OM. Carbon Dioxide Capture Chemistry of Amino Acid Functionalized Metal-Organic Frameworks in Humid Flue Gas. J Am Chem Soc 2022; 144:2387-2396. [PMID: 35080872 DOI: 10.1021/jacs.1c13368] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metal-organic framework-808 has been functionalized with 11 amino acids (AA) to produce a series of MOF-808-AA structures. The adsorption of CO2 under flue gas conditions revealed that glycine- and dl-lysine-functionalized MOF-808 (MOF-808-Gly and -dl-Lys) have the highest uptake capacities. Enhanced CO2 capture performance in the presence of water was observed and studied by using single-component sorption isotherms, CO2/H2O binary isotherm, and dynamic breakthrough measurements. The key to the favorable performance was uncovered by deciphering the mechanism of CO2 capture in the pores and attributed to the formation of bicarbonate as evidenced by 13C and 15N solid-state nuclear magnetic resonance spectroscopy studies. On the basis of these results, we examined the performance of MOF-808-Gly in simulated coal flue gas conditions and found that it is possible to capture and release CO2 by vacuum swing adsorption. MOF-808-Gly was cycled at least 80 times with full retention of performance. This study significantly advances our understanding of CO2 chemistry in MOFs by revealing how strongly bound amine moieties to the MOF backbone create the chemistry and environment within the pores, leading to the binding and release of CO2 under mild conditions without application of heat.
Collapse
Affiliation(s)
- Hao Lyu
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Oscar Iu-Fan Chen
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nikita Hanikel
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Mohammad I Hossain
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama 36688, United States
| | - Robinson W Flaig
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Xiaokun Pei
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ameer Amin
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Mark D Doherty
- GE Global Research, 1 Research Circle, Niskayuna, New York 12309, United States
| | - Rebekah K Impastato
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama 36688, United States
| | - T Grant Glover
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama 36688, United States
| | - David R Moore
- GE Global Research, 1 Research Circle, Niskayuna, New York 12309, United States
| | - Omar M Yaghi
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
91
|
Suo X, Yang Z, Fu Y, Do-Thanh CL, Maltsev D, Luo H, Mahurin SM, Jiang DE, Xing H, Dai S. New-Generation Carbon-Capture Ionic Liquids Regulated by Metal-Ion Coordination. CHEMSUSCHEM 2022; 15:e202102136. [PMID: 34862754 DOI: 10.1002/cssc.202102136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Development of efficient carbon capture-and-release technologies with minimal energy input is a long-term challenge in mitigating CO2 emissions, especially via CO2 chemisorption driven by engineered chemical bond construction. Herein, taking advantage of the structural diversity of ionic liquids (ILs) in tuning their physical and chemical properties, precise reaction energy regulation of CO2 chemisorption was demonstrated deploying metal-ion-amino-based ionic liquids (MAILs) as absorbents. The coordination ability of different metal sites (Cu, Zn, Co, Ni, and Mg) to amines was harnessed to achieve fine-tuning on stability constants of the metal ion-amine complexes, acting as the corresponding cations in the construction of diverse ILs coupled with CO2 -philic anions. The as-afforded MAILs exhibited efficient and controllable CO2 release behavior with great reduction in energy input and minimal sacrifice on CO2 uptake capacity. This coordination-regulated approach offers new prospects for the development of ILs-based systems and beyond towards energy-efficient carbon capture technologies.
Collapse
Affiliation(s)
- Xian Suo
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yuqing Fu
- Department of Chemistry, University of California, Riverside, California, 92521, USA
| | - Chi-Linh Do-Thanh
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Dmitry Maltsev
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Huimin Luo
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, California, 92521, USA
| | - Huabin Xing
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
92
|
Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0976-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
93
|
Ye Y, Xian S, Cui H, Tan K, Gong L, Liang B, Pham T, Pandey H, Krishna R, Lan PC, Forrest KA, Space B, Thonhauser T, Li J, Ma S. Metal-Organic Framework Based Hydrogen-Bonding Nanotrap for Efficient Acetylene Storage and Separation. J Am Chem Soc 2021; 144:1681-1689. [PMID: 34965123 DOI: 10.1021/jacs.1c10620] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The removal of carbon dioxide (CO2) from acetylene (C2H2) is a critical industrial process for manufacturing high-purity C2H2. However, it remains challenging to address the tradeoff between adsorption capacity and selectivity, on account of their similar physical properties and molecular sizes. To overcome this difficulty, here we report a novel strategy involving the regulation of a hydrogen-bonding nanotrap on the pore surface to promote the separation of C2H2/CO2 mixtures in three isostructural metal-organic frameworks (MOFs, named MIL-160, CAU-10H, and CAU-23, respectively). Among them, MIL-160, which has abundant hydrogen-bonding acceptors as nanotraps, can selectively capture acetylene molecules and demonstrates an ultrahigh C2H2 storage capacity (191 cm3 g-1, or 213 cm3 cm-3) but much less CO2 uptake (90 cm3 g-1) under ambient conditions. The C2H2 adsorption amount of MIL-160 is remarkably higher than those for the other two isostructural MOFs (86 and 119 cm3 g-1 for CAU-10H and CAU-23, respectively) under the same conditions. More importantly, both simulation and experimental breakthrough results show that MIL-160 sets a new benchmark for equimolar C2H2/CO2 separation in terms of the separation potential (Δqbreak = 5.02 mol/kg) and C2H2 productivity (6.8 mol/kg). In addition, in situ FT-IR experiments and computational modeling further reveal that the unique host-guest multiple hydrogen-bonding interaction between the nanotrap and C2H2 is the key factor for achieving the extraordinary acetylene storage capacity and superior C2H2/CO2 selectivity. This work provides a novel and powerful approach to address the tradeoff of this extremely challenging gas separation.
Collapse
Affiliation(s)
- Yingxiang Ye
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Shikai Xian
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.,Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, Guangdong 518055, People's Republic of China
| | - Hui Cui
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| | - Kui Tan
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Lingshan Gong
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Bin Liang
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Tony Pham
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Haardik Pandey
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Rajamani Krishna
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Pui Ching Lan
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Katherine A Forrest
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Brian Space
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
94
|
Lin JB, Nguyen TTT, Vaidhyanathan R, Burner J, Taylor JM, Durekova H, Akhtar F, Mah RK, Ghaffari-Nik O, Marx S, Fylstra N, Iremonger SS, Dawson KW, Sarkar P, Hovington P, Rajendran A, Woo TK, Shimizu GKH. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 2021; 374:1464-1469. [PMID: 34914501 DOI: 10.1126/science.abi7281] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jian-Bin Lin
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Tai T T Nguyen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ramanathan Vaidhyanathan
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.,Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Jake Burner
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Jared M Taylor
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.,ZoraMat Solutions Inc., Calgary, Alberta, Canada
| | - Hana Durekova
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Farid Akhtar
- Department of Materials Engineering, Luleå University of Technology, Luleå, Sweden
| | - Roger K Mah
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.,ZoraMat Solutions Inc., Calgary, Alberta, Canada
| | | | | | - Nicholas Fylstra
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Simon S Iremonger
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Karl W Dawson
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Partha Sarkar
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | - Arvind Rajendran
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Tom K Woo
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - George K H Shimizu
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.,ZoraMat Solutions Inc., Calgary, Alberta, Canada
| |
Collapse
|
95
|
Tailoring Amine-Functionalized Ti-MOFs via a Mixed Ligands Strategy for High-Efficiency CO 2 Capture. NANOMATERIALS 2021; 11:nano11123348. [PMID: 34947697 PMCID: PMC8709442 DOI: 10.3390/nano11123348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
Amine-functionalized metal-organic frameworks (MOFs) are a promising strategy for the high-efficiency capture and separation of CO2. In this work, by tuning the ratio of 1,3,5-benzenetricarboxylic acid (H3BTC) to 5-aminoisophthalic acid (5-NH2-H2IPA), we designed and synthesized a series of amine-functionalized highly stable Ti-based MOFs (named MIP-207-NH2-n, in which n represents 15%, 25%, 50%, 60%, and 100%). The structural analysis shows that the original framework of MIP-207 in the MIP-207-NH2-n (n = 15%, 25%, and 50%) MOFs remains intact when the mole ratio of ligand H3BTC to 5-NH2-H2IPA is less than 1 to 1 in the resulting MOFs. By the introduction of amino groups, MIP-207-NH2-25% demonstrates outstanding CO2 capture performance up to 3.96 and 2.91 mmol g-1, 20.7% and 43.3% higher than those of unmodified MIP-207 at 0 and 25 °C, respectively. Furthermore, the breakthrough experiment indicates that the dynamic CO2 adsorption capacity and CO2/N2 separation factors of MIP-207-NH2-25% are increased by about 25% and 15%, respectively. This work provides an additional strategy to construct amine-functionalized MOFs with the maintenance of the original MOF structure and high performance of CO2 capture and separation.
Collapse
|
96
|
Liu RS, Xu S, Hao GP, Lu AH. Recent Advances of Porous Solids for Ultradilute CO2 Capture. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
97
|
Shi Q, Liu B, Li J, Wang X, Wang L. Catalysis in Single Crystalline Materials: From Discrete Molecules to Metal-Organic Frameworks. Chem Asian J 2021; 16:3544-3557. [PMID: 34545994 DOI: 10.1002/asia.202100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Indexed: 11/11/2022]
Abstract
Catalysis is one of the key techniques for people's modern life. It has created numerous essential chemicals such as biomedicines, agricultural chemicals and unique materials. Heterogeneous catalysis is the new emerging method with reusable catalysts. Among heterogenous catalysis patterns developed so far, single crystalline catalysis has become the promising one owing to its high catalytic density and selectivity resulted by the inherent porosity, orderliness of the lattices and permeability. These crystalline catalysts could be used in various reactions such as photo-dimerization, Diels-Alder reaction, CO2 transformation and so on. In this review, we highlighted the reported works about the single crystalline catalysts. Both discrete small molecules and metal-organic frameworks (MOFs) have been used to prepare single crystals for catalysis. For discrete molecules based crystalline catalysts, coordinated and covalent molecules have been used. There were more catalytic modes in crystalline MOF catalysts. Three patterns were identified in this review: single crystalline MOFs i) without catalytic sites, ii) with inherent catalytic features and iii) with introducing catalytic units by post synthetic modification. Based on these examples, this review committed to provide the inspirations for the further design and application of single crystalline materials.
Collapse
Affiliation(s)
- Qiang Shi
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Bing Liu
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Jing Li
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Xuping Wang
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Leyong Wang
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250014, P. R. China.,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
98
|
Schell J, Yang K, Glaser R. Computational Investigation of the Thermochemistry of the CO 2 Capture Reaction by Ethylamine, Propylamine, and Butylamine in Aqueous Solution Considering the Full Conformational Space via Boltzmann Statistics. J Phys Chem A 2021; 125:9578-9593. [PMID: 34714081 DOI: 10.1021/acs.jpca.1c06294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rubisco is the enzyme responsible for CO2 fixation in nature, and it is activated by CO2 addition to the amine group of its lysine 201 side chain. We are designing rubisco-based biomimetic systems for reversible CO2 capture from ambient air. The oligopeptide biomimetic capture systems are employed in aqueous solution. To provide a solid foundation for the experimental solution-phase studies of the CO2 capture reaction, we report here the results of computational studies of the thermodynamics of CO2 capture by small alkylamines in aqueous solution. We studied CO2 addition to methyl-, ethyl-, propyl-, and butylamine with the consideration of the full conformational space for the amine and the corresponding carbamic acids and with the application of an accurate solvation model for the potential energy surface analyses. The reaction energies of the carbamylation reactions were determined based on just the most stable structures (MSS) and based on the ensemble energies computed with the Boltzmann distribution (BD), and it is found that ΔGBD ≈ ΔGMSS. The effect of the proper accounting for the molecular translational entropies in solution with the Wertz approach are much more significant, and the free energy of the capture reactions ΔWGBD is more negative by 2.9 kcal/mol. Further accounting for volume effects in solution results in our best estimates for the reaction energies of the carbamylation reactions of ΔWABD = -5.4 kcal/mol. The overall difference is ΔGBD - ΔWABD = 2.4 kcal/mol for butylamine carbamylation. The full conformational space analyses inform about the conformational isomerizations of carbamic acids, and we determined the relevant rotational profiles and their transition-state structures. Our detailed studies emphasize that, more generally, solution-phase reaction energies should be evaluated with the Helmholtz free energy and can be affected substantially by solution effects on translational entropies.
Collapse
Affiliation(s)
- Joseph Schell
- Department of Chemistry, Missouri University of Science & Technology, Rolla, Missouri 65409, United States.,Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kaidi Yang
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Rainer Glaser
- Department of Chemistry, Missouri University of Science & Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
99
|
Wang J, Kim E, Kumar DP, Rangappa AP, Kim Y, Zhang Y, Kim TK. Highly Durable and Fully Dispersed Cobalt Diatomic Site Catalysts for CO 2 Photoreduction to CH 4. Angew Chem Int Ed Engl 2021; 61:e202113044. [PMID: 34750936 DOI: 10.1002/anie.202113044] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Indexed: 11/07/2022]
Abstract
Dual-atom-site catalysts (DACs) have emerged as a new frontier in heterogeneous catalysis because the synergistic effect between adjacent metal atoms can promote their catalytic activity while maintaining the advantages of single-atom-site catalysts, such as almost 100 % atomic efficiency and excellent hydrocarbon selectivity. In this study, cobalt-based atom site catalysts with a Co2 -N coordination structure were synthesized and used for photodriven CO2 reduction. The resulting CoDAC containing 3.5 % Co atoms demonstrated a superior atom ratio for CO2 reduction catalytic performance, with 65.0 % CH4 selectivity, which far exceeds that of cobalt-based single-atom-site catalysts (CoSACs). The intrinsic reason for the superior activity of CoDACs is the excellent adsorption strength of CO2 and CO* intermediates at dimeric Co active sites.
Collapse
Affiliation(s)
- Jinming Wang
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunhyo Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | | | | | - Yujin Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430072, China
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
100
|
Arcudi F, Đorđević L, Nagasing B, Stupp SI, Weiss EA. Quantum Dot-Sensitized Photoreduction of CO 2 in Water with Turnover Number > 80,000. J Am Chem Soc 2021; 143:18131-18138. [PMID: 34664969 DOI: 10.1021/jacs.1c06961] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Climate change and global energy demands motivate the search for sustainable transformations of carbon dioxide (CO2) to storable liquid fuels. Photocatalysis is a pathway for direct conversion of CO2 to CO, one step within light-powered reaction networks that could, if efficient enough, transform the solar energy conversion landscape. To date, the best performing photocatalytic CO2 reduction systems operate in nonaqueous solvents, but technologically viable solar fuels networks will likely operate in water. Here we demonstrate catalytic photoreduction of CO2 to CO in pure water at pH 6-7 with an unprecedented combination of performance parameters: turnover number (TON(CO)) = 72,484-84,101, quantum yield (QY) = 0.96-3.39%, and selectivity (SCO) > 99%, using CuInS2 colloidal quantum dots (QDs) as photosensitizers and a Co-porphyrin catalyst. At higher catalyst concentration, the system reaches QY = 3.53-5.23%. The performance of the QD-driven system greatly exceeds that of the benchmark aqueous system (926 turnovers with a quantum yield of 0.81% and selectivity of 82%), due primarily to (i) electrostatic attraction of the QD to the catalyst, which promotes fast multielectron delivery and colocalization of protons, CO2, and catalyst at the source of photoelectrons, and (ii) termination of the QD's ligand shell with free amines, which capture CO2 as carbamic acid that serves as a reservoir for CO2, effectively increasing its solubility in water, and lowers the onset potential for catalytic CO2 reduction by the Co-porphyrin. The breakthrough efficiency achieved in this work represents a nonincremental step in the realization of reaction networks for direct solar-to-fuel conversion.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States
| | - Benjamin Nagasing
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|