51
|
Abstract
Transgenerational effects have long been expected in children from parents exposed to radiation from atomic bombs in Japan in 1945 or from the Chernobyl disaster in 1986. These effects have in fact proven hard to detect. A new large-scale study based on high-quality whole genome sequencing of father/mother/child trios in which the parental radiation dose is known now demonstrates that the rate of new mutations (50/70 per generation) is not detectably increased when comparing irradiated and non-irradiated parents. This solid data shows conclusively that transgenerational effects of irradiation from the Chernobyl disaster are absent or undetectable.
Collapse
Affiliation(s)
- Bertrand Jordan
- UMR 7268 ADÉS, Aix-Marseille, Université /EFS/CNRS ; CoReBio PACA, case 901, Parc scientifique de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|
52
|
Perez-Gelvez YNC, Camus AC, Bridger R, Wells L, Rhodes OE, Bergmann CW. Effects of chronic exposure to low levels of IR on Medaka ( Oryzias latipes): a proteomic and bioinformatic approach. Int J Radiat Biol 2021; 97:1485-1501. [PMID: 34355643 DOI: 10.1080/09553002.2021.1962570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Chronic exposure to ionizing radiation (IR) at low doses (<100 mGy) has been insufficiently studied to understand fully the risk to health. Relatively little knowledge exists regarding how species and healthy tissues respond at the protein level to chronic exposure to low doses of IR, and mass spectrometric-based profiling of protein expression is a powerful tool for studying changes in protein abundance. MATERIALS AND METHODS SDS gel electrophoresis, LC-MS/MS mass spectrometry-based approaches and bioinformatic data analytics were used to detect proteomic changes following chronic exposure to moderate/low doses of radiation in adults and normally developed Medaka fish (Oryzias latipes). RESULTS Significant variations in the abundance of proteins involved in thyroid hormone signaling and lipid metabolism were detected, which could be related to the gonadal regression phenotype observed after 21.04 mGy and 204.3 mGy/day exposure. The global proteomic change was towards overexpression of proteins in muscle and skin, while the opposite effect was observed in internal organs. CONCLUSION The present study provides information on the impacts of biologically relevant low doses of IR, which will be useful in future research for the identification of potential biomarkers of IR exposure and allow for a better assessment of radiation biosafety regulations.
Collapse
Affiliation(s)
- Yeni Natalia C Perez-Gelvez
- Carbohydrate Complex Research Center, Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Alvin C Camus
- College of Veterinary Medicine, Department of Pathology, The University of Georgia, Athens, GA, USA
| | - Robert Bridger
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Lance Wells
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Olin E Rhodes
- Savannah River Ecology Laboratory, Odum School of Ecology, The University of Georgia, Athens, GA, USA
| | - Carl W Bergmann
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| |
Collapse
|
53
|
Trost B, Loureiro LO, Scherer SW. Discovery of genomic variation across a generation. Hum Mol Genet 2021; 30:R174-R186. [PMID: 34296264 PMCID: PMC8490016 DOI: 10.1093/hmg/ddab209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
Over the past 30 years (the timespan of a generation), advances in genomics technologies have revealed tremendous and unexpected variation in the human genome and have provided increasingly accurate answers to long-standing questions of how much genetic variation exists in human populations and to what degree the DNA complement changes between parents and offspring. Tracking the characteristics of these inherited and spontaneous (or de novo) variations has been the basis of the study of human genetic disease. From genome-wide microarray and next-generation sequencing scans, we now know that each human genome contains over 3 million single nucleotide variants when compared with the ~ 3 billion base pairs in the human reference genome, along with roughly an order of magnitude more DNA—approximately 30 megabase pairs (Mb)—being ‘structurally variable’, mostly in the form of indels and copy number changes. Additional large-scale variations include balanced inversions (average of 18 Mb) and complex, difficult-to-resolve alterations. Collectively, ~1% of an individual’s genome will differ from the human reference sequence. When comparing across a generation, fewer than 100 new genetic variants are typically detected in the euchromatic portion of a child’s genome. Driven by increasingly higher-resolution and higher-throughput sequencing technologies, newer and more accurate databases of genetic variation (for instance, more comprehensive structural variation data and phasing of combinations of variants along chromosomes) of worldwide populations will emerge to underpin the next era of discovery in human molecular genetics.
Collapse
Affiliation(s)
- Brett Trost
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Livia O Loureiro
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
54
|
Noda A, Kato K, Tamura C, Biesecker LG, Imaizumi M, Inoue Y, Henderson GE, Wilfond B, Muto K, Naito M, Kayukawa J. Ethical, legal and social implications of human genome studies in radiation research: a workshop report for studies on atomic bomb survivors at the Radiation Effects Research Foundation. JOURNAL OF RADIATION RESEARCH 2021; 62:656-661. [PMID: 34059901 PMCID: PMC8273803 DOI: 10.1093/jrr/rrab043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The Radiation Effects Research Foundation (RERF) is the primary organization in Japan dedicated to studying the health consequences of the Hiroshima and Nagasaki atomic bombings in World War II. In December 2020, RERF held a virtual international workshop on the ethical, legal and social implications (ELSI) of genome studies. In this workshop, the ELSI considerations of future human genome studies on radiation research including atomic bomb survivors and their families were discussed. Since genome sequencing (GS) is now practical and affordable, RERF now plans GS of parents/child trios to examine genetic effects of atomic bomb radiation. As such studies may engender some novel risks and benefits, ethics review and engagement with families (including consent) need to be considered. These include protection of individual privacy, use of samples from deceased prior participants, return of results to the participants, public sharing of genome data and advance science and social welfare. Specifically with regard to social welfare, the results of such studies may have implications for public and government decision-making regarding social benefits of victims and other important questions. Based on these broad-ranging discussions we have developed the following concepts to guide this work: "trust," "compromise" and "relationship building," inclusive of the concerned stakeholders, scientific aims and Japanese society at large. We conclude that in order to realize, establish and maintain these concepts, it is essential to put procedures into place to ensure the successful, consensus-based implementation of the RERF studies.
Collapse
Affiliation(s)
- Asao Noda
- Corresponding author. Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815, Japan. Tel: 011-81-82-261-3131; Fax: 81-82-263-7279;
| | - Kazuto Kato
- Department of Biomedical Ethics and Public Policy, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Chieko Tamura
- Division of Medical Information and Genetic Counseling, FMC Tokyo Clinic, Tokyo 102-0072, Japan
| | - Leslie G Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Misa Imaizumi
- Department of Clinical Studies, Radiation Effects Research Foundation, Nagasaki 850-0013, Japan
| | - Yusuke Inoue
- Department of Public Policy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Gail E Henderson
- Department of Social Medicine, and Center for Genomics and Society, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7240, USA
| | - Benjamin Wilfond
- Treuman Katz Center for Pediatric Bioethics, Seattle Children’s Hospital and Research Institute, Department of Pediatrics, Institute of Translational Health Sciences, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Kaori Muto
- Department of Public Policy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Mariko Naito
- Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Junji Kayukawa
- Department of Social System Design, Eikei University of Hiroshima, Hiroshima 730-0016, Japan
| |
Collapse
|
55
|
Rogounovitch TI, Mankovskaya SV, Fridman MV, Leonova TA, Kondratovitch VA, Konoplya NE, Yamashita S, Mitsutake N, Saenko VA. Major Oncogenic Drivers and Their Clinicopathological Correlations in Sporadic Childhood Papillary Thyroid Carcinoma in Belarus. Cancers (Basel) 2021; 13:3374. [PMID: 34282777 PMCID: PMC8268670 DOI: 10.3390/cancers13133374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Childhood papillary thyroid carcinoma (PTC) diagnosed after the Chernobyl accident in Belarus displayed a high frequency of gene rearrangements and low frequency of point mutations. Since 2001, only sporadic thyroid cancer occurs in children aged up to 14 years but its molecular characteristics have not been reported. Here, we determine the major oncogenic events in PTC from non-exposed Belarusian children and assess their clinicopathological correlations. Among the 34 tumors, 23 (67.6%) harbored one of the mutually exclusive oncogenes: 5 (14.7%) BRAFV600E, 4 (11.8%) RET/PTC1, 6 (17.6%) RET/PTC3, 2 (5.9%) rare fusion genes, and 6 (17.6%) ETV6ex4/NTRK3. No mutations in codons 12, 13, and 61 of K-, N- and H-RAS, BRAFK601E, or ETV6ex5/NTRK3 or AKAP9/BRAF were detected. Fusion genes were significantly more frequent than BRAFV600E (p = 0.002). Clinicopathologically, RET/PTC3 was associated with solid growth pattern and higher tumor aggressiveness, BRAFV600E and RET/PTC1 with classic papillary morphology and mild clinical phenotype, and ETV6ex4/NTRK3 with follicular-patterned PTC and reduced aggressiveness. The spectrum of driver mutations in sporadic childhood PTC in Belarus largely parallels that in Chernobyl PTC, yet the frequencies of some oncogenes may likely differ from those in the early-onset Chernobyl PTC; clinicopathological features correlate with the oncogene type.
Collapse
Affiliation(s)
- Tatiana I. Rogounovitch
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan; (T.I.R.); (N.M.)
| | - Svetlana V. Mankovskaya
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Mikhail V. Fridman
- Republican Centre for Thyroid Tumors, Department of Pathology, Minsk City Clinical Oncologic Dispensary, 220013 Minsk, Belarus;
| | - Tatiana A. Leonova
- Counseling-Diagnostic Department of Thyroid Diseases, Minsk City Clinical Oncologic Dispensary, 220013 Minsk, Belarus;
| | | | - Natalya E. Konoplya
- N.N.Alexandrov National Cancer Centre of Belarus, Department of Chemotherapy, 223040 Minsk, Belarus;
| | - Shunichi Yamashita
- Radiation Medical Science Center, Fukushima Medical University, Fukushima 960-1295, Japan;
- Center for Advanced Radiation Emergency Medicine, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan; (T.I.R.); (N.M.)
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Vladimir A. Saenko
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
56
|
Gendefekte durch den Tschernobyl-Unfall. Dtsch Med Wochenschr 2021. [DOI: 10.1055/a-1438-2619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|