51
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
52
|
Lu S, Mattox AK, Aitana Azurmendi P, Christodoulou I, Wright KM, Popoli M, Chen Z, Sur S, Li Y, Bonifant CL, Bettegowda C, Papadopoulos N, Zhou S, Gabelli SB, Vogelstein B, Kinzler KW. The rapid and highly parallel identification of antibodies with defined biological activities by SLISY. Nat Commun 2023; 14:17. [PMID: 36596784 PMCID: PMC9808734 DOI: 10.1038/s41467-022-35668-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
The therapeutic applications of antibodies are manifold and the emergence of SARS-CoV-2 provides a cogent example of the value of rapidly identifying biologically active antibodies. We describe an approach called SLISY (Sequencing-Linked ImmunoSorbent assaY) that in a single experiment can assess the binding specificity of millions of clones, be applied to any screen that links DNA sequence to a potential binding moiety, and requires only a single round of biopanning. We demonstrate this approach using an scFv library applied to cellular and protein targets to identify specific or broadly reacting antibodies. For a cellular target, we use paired HLA knockout cell lines to identify a panel of antibodies specific to HLA-A3. For a protein target, SLISY identifies 1279 clones that bound to the Receptor Binding Domain of the SARS-CoV-2 spike protein, with >40% of tested clones also neutralizing its interaction with ACE2 in in vitro assays. Using a multi-comparison SLISY against the Beta, Gamma, and Delta variants, we recovered clones that exhibited broad-spectrum neutralizing potential in vitro. By evaluating millions of scFvs simultaneously against multiple targets, SLISY allows the rapid identification of candidate scFvs with defined binding profiles facilitating the identification of antibodies with the desired biological activity.
Collapse
Affiliation(s)
- Steve Lu
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Austin K Mattox
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - P Aitana Azurmendi
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ilias Christodoulou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Katharine M Wright
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Maria Popoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Zan Chen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Surojit Sur
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Yana Li
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Challice L Bonifant
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
53
|
Yang Z, Wu Z, Santich BH, Liu J, Liu C, Cheung NKV. Targeting Intracellular Antigens with pMHC-Binding Antibodies: A Phage Display Approach. Methods Mol Biol 2023; 2702:327-345. [PMID: 37679628 DOI: 10.1007/978-1-0716-3381-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Antibodies that bind peptide-MHC (pMHC) complex in a manner akin to T cell receptor (TCR) have not only helped in understanding the mechanism of TCR-pMHC interactions in the context of T cell biology but also spurred considerable interest in recent years as potential cancer therapeutics. Traditional methods to generate such antibodies using hybridoma and B cell sorting technologies are sometimes inadequate, possibly due to the small contribution of peptide to the overall B cell epitope space on the surface of the pMHC complex (typical peptide MW = 1 kDa versus MHC MW = 45 kDa) and to the multiple efficiency limiting steps inherent in these methods. In this chapter we describe phage display approaches, including a cell panning strategy, for the rapid generation of such antibodies with high specificity and affinity.
Collapse
Affiliation(s)
| | - Zhihao Wu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian H Santich
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Cheng Liu
- Eureka Therapeutics, Emeryville, CA, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
54
|
Welty NE, Gill SI. Cancer Immunotherapy Beyond Checkpoint Blockade: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:563-578. [PMID: 36636439 PMCID: PMC9830230 DOI: 10.1016/j.jaccao.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022] Open
Abstract
Avoidance of immune destruction is recognized as one of the hallmarks of cancer development. Although first predicted as a potential antitumor treatment modality more than 50 years ago, the widespread clinical use of cancer immunotherapies has only recently become a reality. Cancer immunotherapy works by reactivation of a stalled pre-existing immune response or by eliciting a de novo immune response, and its toolkit comprises antibodies, vaccines, cytokines, and cell-based therapies. The treatment paradigm in some malignancies has completely changed over the past 10 to 15 years. Massive efforts in preclinical development have led to a surge of clinical trials testing innovative therapeutic approaches as monotherapy and, increasingly, in combination. Here we provide an overview of approved and emerging antitumor immune therapies, focusing on the rich landscape of therapeutic approaches beyond those that block the canonical PD-1/PD-L1 and CTLA-4 axes and placing them in the context of the latest understanding of tumor immunology.
Collapse
Key Words
- BiTE, bispecific T cell engager
- CAR, chimeric antigen receptor
- CRS, cytokine-release syndrome
- FDA, U.S. Food and Drug Administration
- HLA, human leukocyte antigen
- ICI, immune checkpoint inhibitor
- IL, interleukin
- NK, natural killer
- NSCLC, non–small cell lung cancer
- TIL, tumor-infiltrating lymphocyte
- alloHCT, allogeneic hematopoietic stem cell transplantation
- cancer
- immune therapy
- immunotherapy
- innovation
- mAb, monoclonal antibody
- treatment
Collapse
Affiliation(s)
- Nathan E. Welty
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saar I. Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Address for correspondence: Dr Saar I. Gill, Smilow Center for Translational Research, Room 8-101, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
55
|
MEK inhibition enhances presentation of targetable MHC-I tumor antigens in mutant melanomas. Proc Natl Acad Sci U S A 2022; 119:e2208900119. [PMID: 36454758 PMCID: PMC9894220 DOI: 10.1073/pnas.2208900119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Combining multiple therapeutic strategies in NRAS/BRAF mutant melanoma-namely MEK/BRAF kinase inhibitors, immune checkpoint inhibitors (ICIs), and targeted immunotherapies-may offer an improved survival benefit by overcoming limitations associated with any individual therapy. Still, optimal combination, order, and timing of administration remains under investigation. Here, we measure how MEK inhibition (MEKi) alters anti-tumor immunity by utilizing quantitative immunopeptidomics to profile changes in the peptide major histocompatibility molecules (pMHC) repertoire. These data reveal a collection of tumor antigens whose presentation levels are selectively augmented following therapy, including several epitopes present at over 1,000 copies per cell. We leveraged the tunable abundance of MEKi-modulated antigens by targeting four epitopes with pMHC-specific T cell engagers and antibody drug conjugates, enhancing cell killing in tumor cells following MEK inhibition. These results highlight drug treatment as a means to enhance immunotherapy efficacy by targeting specific upregulated pMHCs and provide a methodological framework for identifying, quantifying, and therapeutically targeting additional epitopes of interest.
Collapse
|
56
|
Allen GM, Lim WA. Rethinking cancer targeting strategies in the era of smart cell therapeutics. Nat Rev Cancer 2022; 22:693-702. [PMID: 36175644 DOI: 10.1038/s41568-022-00505-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 02/08/2023]
Abstract
In the past several decades, the development of cancer therapeutics has largely focused on precision targeting of single cancer-associated molecules. Despite great advances, such targeted therapies still show incomplete precision and the eventual development of resistance due to target heterogeneity or mutation. However, the recent development of cell-based therapies such as chimeric antigen receptor (CAR) T cells presents a revolutionary opportunity to reframe strategies for targeting cancers. Immune cells equipped with synthetic circuits are essentially living computers that can be programmed to recognize tumours based on multiple signals, including both tumour cell-intrinsic and microenvironmental. Moreover, cells can be programmed to launch broad but highly localized therapeutic responses that can limit the potential for escape while still maintaining high precision. Although these emerging smart cell engineering capabilities have yet to be fully implemented in the clinic, we argue here that they will become much more powerful when combined with machine learning analysis of genomic data, which can guide the design of therapeutic recognition programs that are the most discriminatory and actionable. The merging of cancer analytics and synthetic biology could lead to nuanced paradigms of tumour recognition, more akin to facial recognition, that have the ability to more effectively address the complex challenges of treating cancer.
Collapse
Affiliation(s)
- Greg M Allen
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cell Design Institute, University of California San Francisco, San Francisco, CA, USA
| | - Wendell A Lim
- Cell Design Institute, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
57
|
Tan Y, Cai J, Wang Z. Epsilon-caprolactone-modified polyethylenimine as a genetic vehicle for stem cell-based bispecific antibody and exosome synergistic therapy. Regen Biomater 2022; 10:rbac090. [PMID: 36683744 PMCID: PMC9847525 DOI: 10.1093/rb/rbac090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022] Open
Abstract
Bispecific antibodies (BsAb) have gained significant momentum in clinical application. However, the rapid enzymolysis and metabolism of protein drugs usually induce short circulation in vivo, and developing an efficient protein delivery system still is a bottleneck. Mesenchymal stem cells (MSCs) have become an attractive therapeutic carrier for cancers. Genetic modification enables MSCs to express and secrete specific proteins, which is essential for therapeutic efficacy. However, efficient gene transfer into MSCs is still a challenge. In this study, we applied epsilon-caprolactone-modified polyethylenimine (PEI-CL) as an efficacy carrier for plasmid transfection into MSC that served as in situ 'cell factory' for anti-CD3/CD20 BsAb preparation. Herein, the PEI-CL encapsulates the minicircle plasmid and mediates cell transfection efficiently. Thus, the anti-CD3/CD20 BsAb is secreted from MSC and recruited T cell, resulting in highly sensitive cytotoxicity in the human B-cell lymphoma. Furthermore, these stem cells produce exosomes bearing MiR-15a/MiR-16, which could negatively regulate cancer's oncogenes BCL-2 for adjuvant therapy. Meanwhile, high immunologic factors like tumor necrosis factor-α and interferon-γ are generated and enhance immunotherapy efficacy. The engineered MSCs are demonstrated as an efficient route for BsAb production, and these bioactive components contribute to synergistic therapy, which would be an innovative treatment.
Collapse
Affiliation(s)
- Yan Tan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiali Cai
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Center for Functional Biomaterials, Sun Yat-Sen University, Guangzhou 510275, China
| | | |
Collapse
|
58
|
Gerber HP, Presta LG. TCR mimic compounds for pHLA targeting with high potency modalities in oncology. Front Oncol 2022; 12:1027548. [PMID: 36338746 PMCID: PMC9635445 DOI: 10.3389/fonc.2022.1027548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
pHLA complexes represent the largest class of cell surface markers on cancer cells, making them attractive for targeted cancer therapies. Adoptive cell therapies expressing TCRs that recognize tumor specific pHLAs take advantage of the unique selectivity and avidity of TCR: pHLA interactions. More recently, additional protein binding domains binding to pHLAs, known as TCR mimics (TCRm), were developed for tumor targeting of high potency therapeutic modalities, including bispecifics, ADCs, CAR T and -NK cells. TCRm compounds take advantage of the exquisite tumor specificity of certain pHLA targets, including cell lineage commitment markers and cancer testis antigens (CTAs). To achieve meaningful anti-tumor responses, it is critical that TCRm compounds integrate both, high target binding affinities and a high degree of target specificity. In this review, we describe the most advanced approaches to achieve both criteria, including affinity- and specificity engineering of TCRs, antibodies and alternative protein scaffolds. We also discuss the status of current TCRm based therapeutics developed in the clinic, key challenges, and emerging trends to improve treatment options for cancer patients treated with TCRm based therapeutics in Oncology.
Collapse
|
59
|
Nagel R, Pataskar A, Champagne J, Agami R. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Cancer Res 2022; 82:3637-3649. [PMID: 35904353 PMCID: PMC9574376 DOI: 10.1158/0008-5472.can-22-1525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, the Netherlands
| |
Collapse
|
60
|
Poole A, Karuppiah V, Hartt A, Haidar JN, Moureau S, Dobrzycki T, Hayes C, Rowley C, Dias J, Harper S, Barnbrook K, Hock M, Coles C, Yang W, Aleksic M, Lin AB, Robinson R, Dukes JD, Liddy N, Van der Kamp M, Plowman GD, Vuidepot A, Cole DK, Whale AD, Chillakuri C. Therapeutic high affinity T cell receptor targeting a KRAS G12D cancer neoantigen. Nat Commun 2022; 13:5333. [PMID: 36088370 PMCID: PMC9464187 DOI: 10.1038/s41467-022-32811-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Neoantigens derived from somatic mutations are specific to cancer cells and are ideal targets for cancer immunotherapy. KRAS is the most frequently mutated oncogene and drives the pathogenesis of several cancers. Here we show the identification and development of an affinity-enhanced T cell receptor (TCR) that recognizes a peptide derived from the most common KRAS mutant, KRASG12D, presented in the context of HLA-A*11:01. The affinity of the engineered TCR is increased by over one million-fold yet fully able to distinguish KRASG12D over KRASWT. While crystal structures reveal few discernible differences in TCR interactions with KRASWT versus KRASG12D, thermodynamic analysis and molecular dynamics simulations reveal that TCR specificity is driven by differences in indirect electrostatic interactions. The affinity enhanced TCR, fused to a humanized anti-CD3 scFv, enables selective killing of cancer cells expressing KRASG12D. Our work thus reveals a molecular mechanism that drives TCR selectivity and describes a soluble bispecific molecule with therapeutic potential against cancers harboring a common shared neoantigen.
Collapse
Affiliation(s)
- Andrew Poole
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | | | - Annabelle Hartt
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, USA
| | - Jaafar N Haidar
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Sylvie Moureau
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Tomasz Dobrzycki
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Conor Hayes
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | | | - Jorge Dias
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Stephen Harper
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Keir Barnbrook
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Miriam Hock
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Charlotte Coles
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Wei Yang
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Milos Aleksic
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Aimee Bence Lin
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Ross Robinson
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Joe D Dukes
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Nathaniel Liddy
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Marc Van der Kamp
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, USA
| | - Gregory D Plowman
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Annelise Vuidepot
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - David K Cole
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Andrew D Whale
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA.
| | | |
Collapse
|
61
|
Velaga R, Koo KM, Mainwaring PN. Harnessing gene fusion-derived neoantigens for 'cold' breast and prostate tumor immunotherapy. Immunotherapy 2022; 14:1165-1179. [PMID: 36043380 DOI: 10.2217/imt-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Breast and prostate cancers are generally considered immunologically 'cold' tumors due to multiple mechanisms rendering them unresponsive to immune checkpoint blockade therapies. With little success in garnering positive outcomes in modern immunotherapeutic clinical trials, it is prudent to re-examine the role of immunogenic neoantigens in these cold tumors. Gene fusions are driver mutations in hormone-driven cancers that can result in alternative mutation-specific neoantigens to promote immunotherapy sensitivity. This review focuses on 1) gene fusion formation mechanisms in neoantigen generation; 2) gene fusion neoantigens in cancer immunotherapeutic strategies and associated clinical trials; and 3) challenges and opportunities in computational and liquid biopsy technologies. This review is anticipated to initiate further research into gene fusion neoantigens of cold tumors for further experimental validation.
Collapse
Affiliation(s)
- Ravi Velaga
- Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kevin M Koo
- XING Technologies Pty Ltd, Brisbane, QLD 4073, Australia.,The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
| | | |
Collapse
|
62
|
The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol 2022; 19:637-655. [PMID: 36028717 PMCID: PMC9412785 DOI: 10.1038/s41571-022-00671-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/18/2022]
Abstract
Despite being the most frequently altered oncogenic protein in solid tumours, KRAS has historically been considered ‘undruggable’ owing to a lack of pharmacologically targetable pockets within the mutant isoforms. However, improvements in drug design have culminated in the development of inhibitors that are selective for mutant KRAS in its active or inactive state. Some of these inhibitors have proven efficacy in patients with KRASG12C-mutant cancers and have become practice changing. The excitement associated with these advances has been tempered by drug resistance, which limits the depth and/or duration of responses to these agents. Improvements in our understanding of RAS signalling in cancer cells and in the tumour microenvironment suggest the potential for several novel combination therapies, which are now being explored in clinical trials. Herein, we provide an overview of the RAS pathway and review the development and current status of therapeutic strategies for targeting oncogenic RAS, as well as their potential to improve outcomes in patients with RAS-mutant malignancies. We then discuss challenges presented by resistance mechanisms and strategies by which they could potentially be overcome. The RAS oncogenes are among the most common drivers of tumour development and progression but have historically been considered undruggable. The development of direct KRAS inhibitors has changed this paradigm, although currently clinical use of these novel therapeutics is limited to a select subset of patients, and intrinsic or acquired resistance presents an inevitable challenge to cure. Herein, the authors provide an overview of the RAS pathway in cancer and review the ongoing efforts to develop effective therapeutic strategies for RAS-mutant cancers. They also discuss the current understanding of mechanisms of resistance to direct KRAS inhibitors and strategies by which they might be overcome. Owing to intrinsic and extrinsic factors, KRAS and other RAS isoforms have until recently been impervious to targeting with small-molecule inhibitors. Inhibitors of the KRASG12C variant constitute a potential breakthrough in the treatment of many cancer types, particularly non-small-cell lung cancer, for which such an agent has been approved by the FDA. Several forms of resistance to KRAS inhibitors have been defined, including primary, adaptive and acquired resistance; these resistance mechanisms are being targeted in studies that combine KRAS inhibitors with inhibitors of horizontal or vertical signalling pathways. Mutant KRAS has important effects on the tumour microenvironment, including the immunological milieu; these effects must be considered to fully understand resistance to KRAS inhibitors and when designing novel treatment strategies.
Collapse
|
63
|
Klatt MG, Dao T, Yang Z, Liu J, Mun SS, Dacek MM, Luo H, Gardner TJ, Bourne C, Peraro L, Aretz ZEH, Korontsvit T, Lau M, Kharas MG, Liu C, Scheinberg DA. A TCR mimic CAR T cell specific for NDC80 is broadly reactive with solid tumors and hematologic malignancies. Blood 2022; 140:861-874. [PMID: 35427421 PMCID: PMC9412008 DOI: 10.1182/blood.2021012882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Target identification for chimeric antigen receptor (CAR) T-cell therapies remains challenging due to the limited repertoire of tumor-specific surface proteins. Intracellular proteins presented in the context of cell surface HLA provide a wide pool of potential antigens targetable through T-cell receptor mimic antibodies. Mass spectrometry (MS) of HLA ligands from 8 hematologic and nonhematologic cancer cell lines identified a shared, non-immunogenic, HLA-A*02-restricted ligand (ALNEQIARL) derived from the kinetochore-associated NDC80 gene. CAR T cells directed against the ALNEQIARL:HLA-A*02 complex exhibited high sensitivity and specificity for recognition and killing of multiple cancer types, especially those of hematologic origin, and were efficacious in mouse models against a human leukemia and a solid tumor. In contrast, no toxicities toward resting or activated healthy leukocytes as well as hematopoietic stem cells were observed. This shows how MS can inform the design of broadly reactive therapeutic T-cell receptor mimic CAR T-cell therapies that can target multiple cancer types currently not druggable by small molecules, conventional CAR T cells, T cells, or antibodies.
Collapse
Affiliation(s)
- Martin G Klatt
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Tao Dao
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | | | | | - Sung Soo Mun
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Megan M Dacek
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Hanzhi Luo
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Thomas J Gardner
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Christopher Bourne
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
- Immunology and Microbial Pathogenesis Program and
| | - Leila Peraro
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Zita E H Aretz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, NY
| | - Tanya Korontsvit
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Michael Lau
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Michael G Kharas
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | | | - David A Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
- Pharmacology Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
64
|
Designing antibodies as therapeutics. Cell 2022; 185:2789-2805. [PMID: 35868279 DOI: 10.1016/j.cell.2022.05.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 12/25/2022]
Abstract
Antibody therapeutics are a large and rapidly expanding drug class providing major health benefits. We provide a snapshot of current antibody therapeutics including their formats, common targets, therapeutic areas, and routes of administration. Our focus is on selected emerging directions in antibody design where progress may provide a broad benefit. These topics include enhancing antibodies for cancer, antibody delivery to organs such as the brain, gastrointestinal tract, and lungs, plus antibody developability challenges including immunogenicity risk assessment and mitigation and subcutaneous delivery. Machine learning has the potential, albeit as yet largely unrealized, for a transformative future impact on antibody discovery and engineering.
Collapse
|
65
|
Lv D, Khawar MB, Liang Z, Gao Y, Sun H. Neoantigens and NK Cells: “Trick or Treat” the Cancers? Front Immunol 2022; 13:931862. [PMID: 35874694 PMCID: PMC9302773 DOI: 10.3389/fimmu.2022.931862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has become an important treatment strategy for cancer patients nowadays. Targeting cancer neoantigens presented by major histocompatibility complex (MHC) molecules, which emerge as a result of non-synonymous somatic mutations with high immunogenicity, is one of the most promising cancer immunotherapy strategies. Currently, several therapeutic options based on the personalized or shared neoantigens have been developed, including neoantigen vaccine and adoptive T-cell therapy, both of which are now being tested in clinical trials for various malignancies. The goal of this review is to outline the use of neoantigens as cancer therapy targets, with an emphasis on neoantigen identification, clinical usage of personalized neoantigen-based cancer therapy agents, and the development of off-the-shelf products based on shared neoantigens. In addition, we introduce and discuss the potential impact of the neoantigen–MHC complex on natural killer (NK) cell antitumor function, which could be a novel way to boost immune response-induced cytotoxicity against malignancies.
Collapse
Affiliation(s)
- Dan Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- School of Life Sciences, Anqing Normal University, Anqing, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zhengyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Yu Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- *Correspondence: Haibo Sun,
| |
Collapse
|
66
|
Krohn S, Boje AS, Gehlert CL, Lutz S, Darzentas N, Knecht H, Herrmann D, Brüggemann M, Scheidig AJ, Weisel K, Gramatzki M, Peipp M, Klausz K. Identification of New Antibodies Targeting Malignant Plasma Cells for Immunotherapy by Next-Generation Sequencing-Assisted Phage Display. Front Immunol 2022; 13:908093. [PMID: 35784366 PMCID: PMC9248769 DOI: 10.3389/fimmu.2022.908093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
To identify new antibodies for the treatment of plasma cell disorders including multiple myeloma (MM), a single-chain Fragment variable (scFv) antibody library was generated by immunizing mice with patient-derived malignant plasma cells. To enrich antibodies binding myeloma antigens, phage display with cellular panning was performed. After depleting the immune library with leukocytes of healthy donors, selection of antibodies was done with L-363 plasma cell line in two consecutive panning rounds. Monitoring the antibodies' enrichment throughout the panning by next-generation sequencing (NGS) identified several promising candidates. Initially, 41 unique scFv antibodies evolving from different B cell clones were selected. Nine of these antibodies strongly binding to myeloma cells and weakly binding to peripheral blood mononuclear cells (PBMC) were characterized. Using stably transfected Chinese hamster ovary cells expressing individual myeloma-associated antigens revealed that two antibodies bind CD38 and intercellular adhesion molecule-1 (ICAM-1), respectively, and 7 antibodies target yet unknown antigens. To evaluate the therapeutic potential of our new antibodies, in a first proof-of-concept study the CD38 binding scFv phage antibody was converted into a chimeric IgG1. Further analyses revealed that #5-CD38-IgG1 shared an overlapping epitope with daratumumab and isatuximab and had potent anti-myeloma activity comparable to the two clinically approved CD38 antibodies. These results indicate that by phage display and deep sequencing, new antibodies with therapeutic potential for MM immunotherapy can be identified.
Collapse
Affiliation(s)
- Steffen Krohn
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Carina Lynn Gehlert
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Sebastian Lutz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Nikos Darzentas
- Unit for Hematological Diagnostics, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Henrik Knecht
- Unit for Hematological Diagnostics, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dietrich Herrmann
- Unit for Hematological Diagnostics, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Monika Brüggemann
- Unit for Hematological Diagnostics, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Axel J. Scheidig
- Zoological Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Katja Weisel
- Department of Oncology, Hematology, Bone Marrow Transplant (BMT) with Section of Pneumology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Gramatzki
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
67
|
Xu G, Luo Y, Wang H, Wang Y, Liu B, Wei J. Therapeutic bispecific antibodies against intracellular tumor antigens. Cancer Lett 2022; 538:215699. [PMID: 35487312 DOI: 10.1016/j.canlet.2022.215699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
Bispecific antibodies (BsAbs)-based therapeutics have been identified to be one of the most promising immunotherapy strategies. However, their target repertoire is mainly restricted to cell surface antigens rather than intracellular antigens, resulting in a relatively limited scope of applications. Intracellular tumor antigens are identified to account for a large proportion of tumor antigen profiles. Recently, bsAbs that target intracellular oncoproteins have raised much attention, broadening the targeting scope of tumor antigens and improving the efficacy of traditional antibody-based therapeutics. Consequently, this review will focus on this emerging field and discuss related research advances. We introduce the classification, characteristics, and clinical applications of bsAbs, the theoretical basis for targeting intracellular antigens, delivery systems of bsAbs, and the latest preclinical and clinical advances of bsAbs targeting several intracellular oncotargets, including those of cancer-testis antigens, differentiation antigens, neoantigens, and other antigens. Moreover, we summarize the limitations of current bsAbs, and propose several potential strategies against immune escape and T cell exhaustion as well as some future perspectives.
Collapse
Affiliation(s)
- Guanghui Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Yuting Luo
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Hanbing Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Yue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
68
|
Sengupta S, Board NL, Wu F, Moskovljevic M, Douglass J, Zhang J, Reinhold BR, Duke-Cohan J, Yu J, Reed MC, Tabdili Y, Azurmendi A, Fray EJ, Zhang H, Hsiue EHC, Jenike K, Ho YC, Gabelli SB, Kinzler KW, Vogelstein B, Zhou S, Siliciano JD, Sadegh-Nasseri S, Reinherz EL, Siliciano RF. TCR-mimic bispecific antibodies to target the HIV-1 reservoir. Proc Natl Acad Sci U S A 2022; 119:e2123406119. [PMID: 35394875 PMCID: PMC9169739 DOI: 10.1073/pnas.2123406119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infection is incurable due to the persistence of the virus in a latent reservoir of resting memory CD4+ T cells. “Shock-and-kill” approaches that seek to induce HIV-1 gene expression, protein production, and subsequent targeting by the host immune system have been unsuccessful due to a lack of effective latency-reversing agents (LRAs) and kill strategies. In an effort to develop reagents that could be used to promote killing of infected cells, we constructed T cell receptor (TCR)-mimic antibodies to HIV-1 peptide-major histocompatibility complexes (pMHC). Using phage display, we panned for phages expressing antibody-like variable sequences that bound HIV-1 pMHC generated using the common HLA-A*02:01 allele. We targeted three epitopes in Gag and reverse transcriptase identified and quantified via Poisson detection mass spectrometry from cells infected in vitro with a pseudotyped HIV-1 reporter virus (NL4.3 dEnv). Sequences isolated from phages that bound these pMHC were cloned into a single-chain diabody backbone (scDb) sequence, such that one fragment is specific for an HIV-1 pMHC and the other fragment binds to CD3ε, an essential signal transduction subunit of the TCR. Thus, these antibodies utilize the sensitivity of T cell signaling as readouts for antigen processing and as agents to promote killing of infected cells. Notably, these scDbs are exquisitely sensitive and specific for the peptide portion of the pMHC. Most importantly, one scDb caused killing of infected cells presenting a naturally processed target pMHC. This work lays the foundation for a novel therapeutic killing strategy toward elimination of the HIV-1 reservoir.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Nathan L. Board
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Fengting Wu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Milica Moskovljevic
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Josephine Zhang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bruce R. Reinhold
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jonathan Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jeanna Yu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Madison C. Reed
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yasmine Tabdili
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Aitana Azurmendi
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Emily J. Fray
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Katharine Jenike
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Kenneth W. Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
- HHMI, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | - Janet D. Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Ellis L. Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Robert F. Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- HHMI, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
69
|
Douglass J. Mutation-guided therapeutics. Science 2022; 376:147. [PMID: 35389812 DOI: 10.1126/science.abo4237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Development of bispecific antibodies to target mutant peptides in cancer.
Collapse
Affiliation(s)
- Jacqueline Douglass
- Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
70
|
Hofmann MH, Gerlach D, Misale S, Petronczki M, Kraut N. Expanding the Reach of Precision Oncology by Drugging All KRAS Mutants. Cancer Discov 2022; 12:924-937. [PMID: 35046095 PMCID: PMC9394389 DOI: 10.1158/2159-8290.cd-21-1331] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
KRAS is the most frequently mutated oncogene, harboring mutations in approximately one in seven cancers. Allele-specific KRASG12C inhibitors are currently changing the treatment paradigm for patients with KRASG12C-mutated non-small cell lung cancer and colorectal cancer. The success of addressing a previously elusive KRAS allele has fueled drug discovery efforts for all KRAS mutants. Pan-KRAS drugs have the potential to address broad patient populations, including KRASG12D-, KRASG12V-, KRASG13D-, KRASG12R-, and KRASG12A-mutant or KRAS wild-type-amplified cancers, as well as cancers with acquired resistance to KRASG12C inhibitors. Here, we review actively pursued allele-specific and pan-KRAS inhibition strategies and their potential utility. SIGNIFICANCE Mutant-selective KRASG12C inhibitors target a fraction (approximately 13.6%) of all KRAS-driven cancers. A broad arsenal of KRAS drugs is needed to comprehensively conquer KRAS-driven cancers. Conceptually, we foresee two future classes of KRAS medicines: mutant-selective KRAS drugs targeting individual variant alleles and pan-KRAS therapeutics targeting a broad range of KRAS alterations.
Collapse
Affiliation(s)
- Marco H. Hofmann
- Discovery Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Daniel Gerlach
- Discovery Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Sandra Misale
- Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Mark Petronczki
- Discovery Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Norbert Kraut
- Discovery Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| |
Collapse
|
71
|
The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet 2022; 38:598-612. [PMID: 35346511 DOI: 10.1016/j.tig.2022.02.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated.
Collapse
|
72
|
Rettko NJ, Campisi J, Wells JA. Engineering Antibodies Targeting p16 MHC-Peptide Complexes. ACS Chem Biol 2022; 17:545-555. [PMID: 35212540 DOI: 10.1021/acschembio.1c00808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Senescent cells undergo a permanent cell cycle arrest and drive a host of age-related pathologies. Recent transgenic mouse models indicate that removing cells expressing the senescence marker p16Ink4a (p16) can increase median lifespan and delay the onset of many aging phenotypes. However, identifying and eliminating native human cells expressing p16 has remained a challenge. We hypothesize that senescent cells display peptides derived from p16 in major histocompatibility complex (MHC)-peptide complexes on the cell surface that could serve as targetable antigens for antibody-based biologics. Using Fab-phage display technology, we generated antibodies that bind to a p16 MHC-peptide complex from the human leukocyte antigen (HLA) allele HLA-B*35:01. When converted to single-chain Fab chimeric antigen receptor (CAR) constructs, these antibodies can recognize naturally presented p16 MHC-peptide complexes on the surface of cells and activate Jurkat cells. Furthermore, we developed antibodies against predicted p16 MHC-peptide complexes for HLA-A*02:01 that specifically recognize their respective antigen on the surface of cells. These tools establish a platform to survey the surface of senescent cells and provide a potential novel senolytic strategy.
Collapse
Affiliation(s)
- Nicholas J. Rettko
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California 94945, United States
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
73
|
Dao T, Mun S, Korontsvit T, Khan AG, Pohl MA, White T, Klatt MG, Andrew D, Lorenz IC, Scheinberg DA. A TCR mimic monoclonal antibody for the HPV-16 E7-epitope p11-19/HLA-A*02:01 complex. PLoS One 2022; 17:e0265534. [PMID: 35298559 PMCID: PMC8929633 DOI: 10.1371/journal.pone.0265534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
More effective treatments are needed for human papilloma virus (HPV)-induced cancers despite HPV virus vaccination. The oncogenic HPV protein targets are currently undruggable and intracellular and therefore there are no antibodies to these targets. Here we report the discovery of TCR mimic monoclonal antibodies (TCRm mAb) specific for the HPV E7 protein p11-19, YMLDLQPET, when presented on the cell surface in the context of HLA-A*02:01 by use of human phage display libraries. One of the mAbs, 3F8, was able to specifically mediate T cell- redirected cytotoxicity, in a bispecific T cell engager (BiTE) form. While further studies are required to assess the therapeutic potential of this approach, the study provided the proof of concept that TCRm mAb could be a therapeutic strategy for HPV-induced human cancers.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Sungsoo Mun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Abdul G. Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, United States of America
| | - Mary Ann Pohl
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, United States of America
| | - Thomas White
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, United States of America
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - David Andrew
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, United States of America
| | - Ivo C. Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, United States of America
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
74
|
Dao T, Mun SS, Molvi Z, Korontsvit T, Klatt MG, Khan AG, Nyakatura EK, Pohl MA, White TE, Balderes PJ, Lorenz IC, O'Reilly RJ, Scheinberg DA. A TCR mimic monoclonal antibody reactive with the "public" phospho-neoantigen pIRS2/HLA-A*02:01 complex. JCI Insight 2022; 7:151624. [PMID: 35260532 PMCID: PMC8983142 DOI: 10.1172/jci.insight.151624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Phosphopeptides derived from dysregulated protein phosphorylation in cancer cells can be processed and presented by MHC class I and class II molecules and, therefore, represent an untapped class of tumor-specific antigens that could be used as widely expressed “public” cancer neoantigens (NeoAgs). We generated a TCR mimic (TCRm) mAb, 6B1, specific for a phosphopeptide derived from insulin receptor substrate 2 (pIRS2) presented by HLA-A*02:01. The pIRS2 epitope’s presentation by HLA-A*02:01 was confirmed by mass spectrometry. The TCRm 6B1 specifically bound to pIRS2/HLA-A2 complex on tumor cell lines that expressed pIRS2 in the context of HLA-A*02:01. Bispecific mAbs engaging CD3 of T cells were able to kill tumor cell lines in a pIRS2- and HLA-A*02:01–restricted manner. Structure modeling shows a prerequisite for an arginine or lysine at the first position to bind mAb. Therefore, 6B1 could recognize phosphopeptides derived from various phosphorylated proteins with similar amino acid compositions. This raised the possibility that a TCRm specific for the pIRS2/HLA-A2 complex could target a range of phosphopeptides presented by HLA-A*02:01 in various tumor cells. This is the first TCRm mAb to our knowledge targeting a phosphopeptide/MHC class I complex; the potential of this class of agents for clinical applications warrants further investigation.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Sung Soo Mun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Zaki Molvi
- Immunology Program, Weill Cornell Medicine, New York, New York, USA
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Martin G Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Abdul G Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | | | - Mary Ann Pohl
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Thomas E White
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Paul J Balderes
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Richard J O'Reilly
- Immunology Program, Weill Cornell Medicine, New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
75
|
Assarzadegan N, Babaniamansour S, Shi J. Updates in the Diagnosis of Intraductal Neoplasms of the Pancreas. Front Physiol 2022; 13:856803. [PMID: 35309060 PMCID: PMC8931033 DOI: 10.3389/fphys.2022.856803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer worldwide. There are many reasons for this dismal prognosis, including the advanced stage at the time of diagnosis and the lack of effective therapeutic approaches. Intraductal papillary mucinous neoplasms (IPMNs) represent detectable and treatable precursor lesions of PDAC. Our understanding of the pathology of IPMNs has evolved over the past few decades, and new advances in diagnostic tools have emerged. The new World Health Organization (WHO) classification scheme now recognizes the previously considered variants of IPMNs, such as intraductal oncocytic papillary neoplasms (IOPNs) and intraductal tubulopapillary neoplasms (ITPNs), as distinct neoplasms. New imaging and molecular diagnostic tests are being developed to recognize these PDAC precursor lesions better. Here, we review the advances in diagnostic tools for IPMNs, IOPNs, and ITPNs, emphasizing the new (5th edition, 2019) WHO classification for pathological diagnosis, molecular markers, new laboratory tests, and imaging tools.
Collapse
|
76
|
Salek M, Förster JD, Lehmann WD, Riemer AB. Light contamination in stable isotope-labelled internal peptide standards is frequent and a potential source of false discovery and quantitation error in proteomics. Anal Bioanal Chem 2022; 414:2545-2552. [PMID: 35119480 PMCID: PMC8888373 DOI: 10.1007/s00216-022-03931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/12/2022]
Abstract
In mass spectrometry-based proteomics, heavy internal standards are used to validate target peptide detections and to calibrate peptide quantitation. Here, we report light contamination present in heavy labelled synthetic peptides of high isotopic enrichment. Application of such peptides as assay-internal standards potentially compromises the detection and quantitation especially of low abundant cellular peptides. Therefore, it is important to adopt guidelines to prevent false-positive identifications of endogenous light peptides as well as errors in their quantitation from biological samples.
Collapse
Affiliation(s)
- Mogjiborahman Salek
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| | - Jonas D Förster
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Wolf-Dieter Lehmann
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Angelika B Riemer
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
77
|
Valid-NEO: A Multi-Omics Platform for Neoantigen Detection and Quantification from Limited Clinical Samples. Cancers (Basel) 2022; 14:cancers14051243. [PMID: 35267551 PMCID: PMC8909145 DOI: 10.3390/cancers14051243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
The presentation of neoantigens on the cell membrane is the foundation for most cancer immunotherapies. Due to their extremely low abundance, analyzing neoantigens in clinical samples is technically difficult, hindering the development of neoantigen-based therapeutics for more general use in the treatment of diverse cancers worldwide. Here, we describe an integrated system, "Valid-NEO", which reveals patient-specific cancer neoantigen therapeutic targets from minute amounts of clinical samples through direct observation, without computer-based prediction, in a sensitive, rapid, and reproducible manner. The overall four-hour procedure involves mass spectrometry analysis of neoantigens purified from tumor samples through recovery of HLA molecules with HLA antibodies. Valid-NEO could be applicable to the identification and quantification of presented neoantigens in cancer patients, particularly when only limited amounts of sample are available.
Collapse
|
78
|
Okada M, Shimizu K, Fujii SI. Identification of Neoantigens in Cancer Cells as Targets for Immunotherapy. Int J Mol Sci 2022; 23:ijms23052594. [PMID: 35269735 PMCID: PMC8910406 DOI: 10.3390/ijms23052594] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical benefits of immune checkpoint blockage (ICB) therapy have been widely reported. In patients with cancer, researchers have demonstrated the clinical potential of antitumor cytotoxic T cells that can be reinvigorated or enhanced by ICB. Compared to self-antigens, neoantigens derived from tumor somatic mutations are believed to be ideal immune targets in tumors. Candidate tumor neoantigens can be identified through immunogenomic or immunopeptidomic approaches. Identification of neoantigens has revealed several points of the clinical relevance. For instance, tumor mutation burden (TMB) may be an indicator of immunotherapy. In various cancers, mutation rates accompanying neoantigen loads may be indicative of immunotherapy. Furthermore, mismatch repair-deficient tumors can be eradicated by T cells in ICB treatment. Hence, immunotherapies using vaccines or adoptive T-cell transfer targeting neoantigens are potential innovative strategies. However, significant efforts are required to identify the optimal epitopes. In this review, we summarize the recent progress in the identification of neoantigens and discussed preclinical and clinical studies based on neoantigens. We also discuss the issues remaining to be addressed before clinical applications of these new therapeutic strategies can be materialized.
Collapse
Affiliation(s)
- Masahiro Okada
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Correspondence: ; Tel.: +81-45-503-7062
| |
Collapse
|
79
|
Immunotherapy for Colorectal Cancer: Mechanisms and Predictive Biomarkers. Cancers (Basel) 2022; 14:cancers14041028. [PMID: 35205776 PMCID: PMC8869923 DOI: 10.3390/cancers14041028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Late-stage colorectal cancer treatment often involves chemotherapy and radiation that can cause dose-limiting toxicity, and therefore there is great interest in developing targeted therapies for this disease. Immunotherapy is a targeted therapy that uses peptides, cells, antibodies, viruses, or small molecules to engage or train the immune system to kill cancer. Here, we discuss the preclinical and clinical development of immunotherapy for treatment of colorectal cancer and provide an overview of predictive biomarkers for such treatments. We also consider open questions including optimal combination treatments and sensitization of colorectal cancer patients with proficient mismatch repair enzymes. Abstract Though early-stage colorectal cancer has a high 5 year survival rate of 65–92% depending on the specific stage, this probability drops to 13% after the cancer metastasizes. Frontline treatments for colorectal cancer such as chemotherapy and radiation often produce dose-limiting toxicities in patients and acquired resistance in cancer cells. Additional targeted treatments are needed to improve patient outcomes and quality of life. Immunotherapy involves treatment with peptides, cells, antibodies, viruses, or small molecules to engage or train the immune system to kill cancer cells. Preclinical and clinical investigations of immunotherapy for treatment of colorectal cancer including immune checkpoint blockade, adoptive cell therapy, monoclonal antibodies, oncolytic viruses, anti-cancer vaccines, and immune system modulators have been promising, but demonstrate limitations for patients with proficient mismatch repair enzymes. In this review, we discuss preclinical and clinical studies investigating immunotherapy for treatment of colorectal cancer and predictive biomarkers for response to these treatments. We also consider open questions including optimal combination treatments to maximize efficacy, minimize toxicity, and prevent acquired resistance and approaches to sensitize mismatch repair-proficient patients to immunotherapy.
Collapse
|
80
|
Lim SA, Zhou J, Martinko AJ, Wang YH, Filippova EV, Steri V, Wang D, Remesh SG, Liu J, Hann B, Kossiakoff AA, Evans MJ, Leung KK, Wells JA. Targeting a proteolytic neoepitope on CUB domain containing protein 1 (CDCP1) for RAS-driven cancers. J Clin Invest 2022; 132:e154604. [PMID: 35166238 PMCID: PMC8843743 DOI: 10.1172/jci154604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Extracellular proteolysis is frequently dysregulated in disease and can generate proteoforms with unique neoepitopes not found in healthy tissue. Here, we demonstrate that Abs that selectively recognize a proteolytic neoepitope on CUB domain containing protein 1 (CDCP1) could enable more effective and safer treatments for solid tumors. CDCP1 is highly overexpressed in RAS-driven cancers, and its ectodomain is cleaved by extracellular proteases. Biochemical, biophysical, and structural characterization revealed that the 2 cleaved fragments of CDCP1 remain tightly associated with minimal proteolysis-induced conformational change. Using differential phage display, we generated recombinant Abs that are exquisitely selective to cleaved CDCP1 with no detectable binding to the uncleaved form. These Abs potently targeted cleaved CDCP1-expressing cancer cells as an Ab-drug conjugate, an Ab-radionuclide conjugate, and a bispecific T cell engager. In a syngeneic pancreatic tumor model, these cleaved-specific Abs showed tumor-specific localization and antitumor activity with superior safety profiles compared with a pan-CDCP1 approach. Targeting proteolytic neoepitopes could provide an orthogonal "AND" gate for improving the therapeutic index.
Collapse
Affiliation(s)
| | - Jie Zhou
- Department of Pharmaceutical Chemistry
| | | | - Yung-Hua Wang
- Department of Radiology and Biomedical Imaging, and
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Ekaterina V. Filippova
- Department of Biochemistry and Molecular Biology, and
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Preclinical Therapeutics Core, UCSF, San Francisco, California, USA
| | - Donghui Wang
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Preclinical Therapeutics Core, UCSF, San Francisco, California, USA
| | | | - Jia Liu
- Department of Pharmaceutical Chemistry
| | - Byron Hann
- Preclinical Therapeutics Core, UCSF, San Francisco, California, USA
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, and
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| | - Michael J. Evans
- Department of Radiology and Biomedical Imaging, and
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | | | - James A. Wells
- Department of Pharmaceutical Chemistry
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| |
Collapse
|
81
|
Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, Chen S, Pan L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target Ther 2022; 7:39. [PMID: 35132063 PMCID: PMC8821599 DOI: 10.1038/s41392-021-00868-x] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies constitute a promising class of targeted anticancer agents that enhance natural immune system functions to suppress cancer cell activity and eliminate cancer cells. The successful application of IgG monoclonal antibodies has inspired the development of various types of therapeutic antibodies, such as antibody fragments, bispecific antibodies, and antibody derivatives (e.g., antibody-drug conjugates and immunocytokines). The miniaturization and multifunctionalization of antibodies are flexible and viable strategies for diagnosing or treating malignant tumors in a complex tumor environment. In this review, we summarize antibodies of various molecular types, antibody applications in cancer therapy, and details of clinical study advances. We also discuss the rationale and mechanism of action of various antibody formats, including antibody-drug conjugates, antibody-oligonucleotide conjugates, bispecific/multispecific antibodies, immunocytokines, antibody fragments, and scaffold proteins. With advances in modern biotechnology, well-designed novel antibodies are finally paving the way for successful treatments of various cancers, including precise tumor immunotherapy, in the clinic.
Collapse
Affiliation(s)
- Shijie Jin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yanping Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiao Liang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xinyu Gu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiangtao Ning
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yingchun Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Department of Precision Medicine on Tumor Therapeutics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China.
| | - Liqiang Pan
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
- Key Laboratory of Pancreatic Disease of Zhejiang Province, 310003, Hangzhou, China.
| |
Collapse
|
82
|
Bonaventura P, Alcazer V, Mutez V, Tonon L, Martin J, Chuvin N, Michel E, Boulos RE, Estornes Y, Valladeau-Guilemond J, Viari A, Wang Q, Caux C, Depil S. Identification of shared tumor epitopes from endogenous retroviruses inducing high-avidity cytotoxic T cells for cancer immunotherapy. SCIENCE ADVANCES 2022; 8:eabj3671. [PMID: 35080970 PMCID: PMC8791462 DOI: 10.1126/sciadv.abj3671] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/30/2021] [Indexed: 05/05/2023]
Abstract
Human endogenous retroviruses (HERVs) represent 8% of the human genome. HERV products may represent tumor antigens relevant for cancer immunotherapy. We developed a bioinformatic approach to identify shared CD8+ T cell epitopes derived from cancer-associated HERVs in solid tumors. Six candidates among the most commonly shared HLA-A2 epitopes with evidence of translation were selected for immunological evaluation. In vitro priming assays confirmed the immunogenicity of these epitopes, which induced high-avidity CD8+ T cell clones. These T cells specifically recognize and kill HLA-A2+ tumor cells presenting HERV epitopes on HLA molecules, as demonstrated by mass spectrometry. Furthermore, epitope-specific CD8+ T cells were identified by dextramer staining among tumor-infiltrating lymphocytes from HLA-A2+ patients with breast cancer. Last, we showed that HERV-specific T cells lyse patient-derived organoids. These shared virus-like epitopes are of major interest for the development of cancer vaccines or T cell-based immunotherapies, especially in tumors with low/intermediate mutational burden.
Collapse
Affiliation(s)
- Paola Bonaventura
- Centre de Recherche en Cancérologie de Lyon (CRCL), UMR INSERM U1052 CNRS 5286, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Vincent Alcazer
- Centre de Recherche en Cancérologie de Lyon (CRCL), UMR INSERM U1052 CNRS 5286, Lyon, France
| | | | - Laurie Tonon
- Synergie Lyon Cancer, Plateforme de bioinformatique « Gilles Thomas », Lyon, France
| | - Juliette Martin
- CNRS-Institut de Biologie et Chimie des Protéines UMR 5086, Lyon, France
| | | | | | | | | | | | - Alain Viari
- Synergie Lyon Cancer, Plateforme de bioinformatique « Gilles Thomas », Lyon, France
| | | | - Christophe Caux
- Centre de Recherche en Cancérologie de Lyon (CRCL), UMR INSERM U1052 CNRS 5286, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon (CRCL), UMR INSERM U1052 CNRS 5286, Lyon, France
- Centre Léon Bérard, Lyon, France
- ErVaccine Technologies, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
83
|
Zhang A, Piechocka-Trocha A, Li X, Walker BD. A Leucine Zipper Dimerization Strategy to Generate Soluble T Cell Receptors Using the Escherichia coli Expression System. Cells 2022; 11:cells11030312. [PMID: 35159122 PMCID: PMC8834513 DOI: 10.3390/cells11030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
T cell-mediated adaptive immunity plays a key role in immunological surveillance and host control of infectious diseases. A better understanding of T cell receptor (TCR) recognition of pathogen-derived epitopes or cancer-associated neoantigens is the basis for developing T cell-based vaccines and immunotherapies. Studies on the interaction between soluble TCR α:β heterodimers and peptide-bound major histocompatibility complexes (pMHCs) inform underlying mechanisms driving TCR recognition, but not every isolated TCR can be prepared in soluble form for structural and functional studies using conventional methods. Here, taking a challenging HIV-specific TCR as a model, we designed a general leucine zipper (LZ) dimerization strategy for soluble TCR preparation using the Escherichia coli expression system. We report details of TCR construction, inclusion body expression and purification, and protein refolding and purification. Measurements of binding affinity between the TCR and its specific pMHC using surface plasmon resonance (SPR) verify its activity. We conclude that this is a feasible approach to produce challenging TCRs in soluble form, needed for studies related to T cell recognition.
Collapse
Affiliation(s)
- Angela Zhang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; (A.Z.); (A.P.-T.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; (A.Z.); (A.P.-T.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Xiaolong Li
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; (A.Z.); (A.P.-T.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Correspondence: (X.L.); (B.D.W.)
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; (A.Z.); (A.P.-T.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Institute for Medical Engineering and Science (IMES) and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence: (X.L.); (B.D.W.)
| |
Collapse
|
84
|
Pediatric glioblastoma: mechanisms of immune evasion and potential therapeutic opportunities. Cancer Immunol Immunother 2022; 71:1813-1822. [PMID: 35020009 DOI: 10.1007/s00262-021-03131-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Pediatric glioblastoma is relatively rare compared with its adult counterpart but is associated with a similarly grim prognosis. Available data indicate that pediatric glioblastomas are molecularly distinct from adult tumors, and relatively little is known about the pediatric glioblastoma tumor microenvironment (TME). Cancer immunotherapy has emerged as a new pillar of cancer treatment and is revolutionizing the care of patients with many advanced solid tumors, including melanoma, non-small cell lung cancer, head and neck cancer, and renal cell carcinoma. Unfortunately, attempts to treat adult glioblastoma with current immunotherapies have had limited success to date. Nevertheless, the immune milieu in pediatric glioblastoma is distinct from that found in adult tumors, and evidence suggests that pediatric tumors are less immunosuppressive. As a result, immunotherapies should be specifically evaluated in the pediatric context. The purpose of this review is to explore known and emerging mechanisms of immune evasion in pediatric glioblastoma and highlight potential opportunities for implementing immunotherapy in the treatment of these devastating pediatric brain tumors.
Collapse
|
85
|
Tumor immunity: a novel dimension for PROTACs to conquer cancer? Acta Pharmacol Sin 2022; 43:2171-2172. [PMID: 34983932 PMCID: PMC9343653 DOI: 10.1038/s41401-021-00829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/21/2021] [Indexed: 11/08/2022] Open
|
86
|
Xie Y, Xie F, Zhang L, Zhou X, Huang J, Wang F, Jin J, Zhang L, Zeng L, Zhou F. Targeted Anti-Tumor Immunotherapy Using Tumor Infiltrating Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101672. [PMID: 34658167 PMCID: PMC8596143 DOI: 10.1002/advs.202101672] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Indexed: 05/08/2023]
Abstract
In the tumor microenvironment, T cells, B cells, and many other cells play important and distinct roles in anti-tumor immunotherapy. Although the immune checkpoint blockade and adoptive cell transfer can elicit durable clinical responses, only a few patients benefit from these therapies. Increased understanding of tumor-infiltrating immune cells can provide novel therapies and drugs that induce a highly specific anti-tumor immune response to certain groups of patients. Herein, the recent research progress on tumor-infiltrating B cells and T cells, including CD8+ T cells, CD4+ T cells, and exhausted T cells and their role in anti-tumor immunity, is summarized. Moreover, several anti-tumor therapy approaches are discussed based on different immune cells and their prospects for future applications in cancer treatment.
Collapse
Affiliation(s)
- Yifan Xie
- School of MedicineZhejiang University City CollegeHangzhou310015China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Lei Zhang
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Wenzhou Medical UniversityRui'an325200China
| | - Xiaoxue Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Jun Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Fangwei Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Jin Jin
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Linghui Zeng
- School of MedicineZhejiang University City CollegeHangzhou310015China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
87
|
Yarmarkovich M, Marshall QF, Warrington JM, Premaratne R, Farrel A, Groff D, Li W, di Marco M, Runbeck E, Truong H, Toor JS, Tripathi S, Nguyen S, Shen H, Noel T, Church NL, Weiner A, Kendsersky N, Martinez D, Weisberg R, Christie M, Eisenlohr L, Bosse KR, Dimitrov DS, Stevanovic S, Sgourakis NG, Kiefel BR, Maris JM. Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature 2021; 599:477-484. [PMID: 34732890 PMCID: PMC8599005 DOI: 10.1038/s41586-021-04061-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
The majority of oncogenic drivers are intracellular proteins, thus constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient to generate responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins that are essential for tumourigenesis and focus on targeting the unmutated peptide QYNPIRTTF, discovered on HLA-A*24:02, which is derived from the neuroblastoma dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (CARs) using a counter-panning strategy with predicted potentially cross-reactive peptides. We further hypothesized that peptide-centric CARs could recognize peptides on additional HLA allotypes when presented in a similar manner. Informed by computational modelling, we showed that PHOX2B peptide-centric CARs also recognize QYNPIRTTF presented by HLA-A*23:01 and the highly divergent HLA-B*14:02. Finally, we demonstrated potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that peptide-centric CARs have the potential to vastly expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and widen the population of patients who would benefit from such therapy by breaking conventional HLA restriction.
Collapse
Affiliation(s)
- Mark Yarmarkovich
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Quinlen F Marshall
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Warrington
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Alvin Farrel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David Groff
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wei Li
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Erin Runbeck
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hau Truong
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jugmohit S Toor
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Son Nguyen
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Helena Shen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiffany Noel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Amber Weiner
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nathan Kendsersky
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dan Martinez
- Department of Pathology and Lab Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rebecca Weisberg
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Molly Christie
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laurence Eisenlohr
- Department of Pathology and Lab Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Nikolaos G Sgourakis
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
88
|
Ayukawa S, Kamoshita N, Nakayama J, Teramoto R, Pishesha N, Ohba K, Sato N, Kozawa K, Abe H, Semba K, Goda N, Fujita Y, Maruyama T. Epithelial cells remove precancerous cells by cell competition via MHC class I-LILRB3 interaction. Nat Immunol 2021; 22:1391-1402. [PMID: 34686865 DOI: 10.1038/s41590-021-01045-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/13/2021] [Indexed: 02/04/2023]
Abstract
Epithelial cells have an ability termed 'cell competition', which is an immune surveillance-like function that extrudes precancerous cells from the epithelial layer, leading to apoptosis and clearance. However, it remains unclear how epithelial cells recognize and extrude transformed cells. Here, we discovered that a PirB family protein, leukocyte immunoglobulin-like receptor B3 (LILRB3), which is expressed on non-transformed epithelial cells, recognizes major histocompatibility complex class I (MHC class I) that is highly expressed on transformed cells. MHC class I interaction with LILRB3 expressed on normal epithelial cells triggers an SHP2-ROCK2 pathway that generates a mechanical force to extrude transformed cells. Removal of transformed cells occurs independently of natural killer (NK) cell or CD8+ cytotoxic T cell-mediated activity. This is a new mechanism in that the immunological ligand-receptor system generates a mechanical force in non-immune epithelial cells to extrude precancerous cells in the same epithelial layer.
Collapse
Affiliation(s)
- Shiyu Ayukawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Nagisa Kamoshita
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryohei Teramoto
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Novalia Pishesha
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Kenji Ohba
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Nanami Sato
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Hokkaido, Japan
| | - Kei Kozawa
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Hokkaido, Japan
| | - Hikari Abe
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Hokkaido, Japan.,Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Maruyama
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan.
| |
Collapse
|
89
|
Duan Z, Ho M. Targeting the cancer neoantigens p53 and KRAS with TCR mimic antibodies. Antib Ther 2021; 4:208-211. [PMID: 34661061 DOI: 10.1093/abt/tbab021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhijian Duan
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell Ho
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
90
|
Choi J, Goulding SP, Conn BP, McGann CD, Dietze JL, Kohler J, Lenkala D, Boudot A, Rothenberg DA, Turcott PJ, Srouji JR, Foley KC, Rooney MS, van Buuren MM, Gaynor RB, Abelin JG, Addona TA, Juneja VR. Systematic discovery and validation of T cell targets directed against oncogenic KRAS mutations. CELL REPORTS METHODS 2021; 1:100084. [PMID: 35474673 PMCID: PMC9017224 DOI: 10.1016/j.crmeth.2021.100084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022]
Abstract
Oncogenic mutations in KRAS can be recognized by T cells on specific class I human leukocyte antigen (HLA-I) molecules, leading to tumor control. To date, the discovery of T cell targets from KRAS mutations has relied on occasional T cell responses in patient samples or the use of transgenic mice. To overcome these limitations, we have developed a systematic target discovery and validation pipeline. We evaluate the presentation of mutant KRAS peptides on individual HLA-I molecules using targeted mass spectrometry and identify 13 unpublished KRASG12C/D/R/V mutation/HLA-I pairs and nine previously described pairs. We assess immunogenicity, generating T cell responses to nearly all targets. Using cytotoxicity assays, we demonstrate that KRAS-specific T cells and T cell receptors specifically recognize endogenous KRAS mutations. The discovery and validation of T cell targets from KRAS mutations demonstrate the potential for this pipeline to aid the development of immunotherapies for important cancer targets.
Collapse
Affiliation(s)
- Jaewon Choi
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Scott P. Goulding
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Brandon P. Conn
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | | | - Jared L. Dietze
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Jessica Kohler
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Divya Lenkala
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Antoine Boudot
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | | | - Paul J. Turcott
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - John R. Srouji
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Kendra C. Foley
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Michael S. Rooney
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | | | - Richard B. Gaynor
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | | | - Terri A. Addona
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Vikram R. Juneja
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| |
Collapse
|
91
|
Absolute quantification of tumor antigens using embedded MHC-I isotopologue calibrants. Proc Natl Acad Sci U S A 2021; 118:2111173118. [PMID: 34497125 PMCID: PMC8449407 DOI: 10.1073/pnas.2111173118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 01/16/2023] Open
Abstract
Absolute quantification measurements (copies per cell) of peptide major histocompatibility complex (pMHC) antigens are necessary to inform targeted immunotherapy drug design; however, existing methods for absolute quantification have critical limitations. Here, we present a platform termed SureQuant-IsoMHC, utilizing a series of pMHC isotopologues and internal standard-triggered targeted mass spectrometry to generate an embedded multipoint calibration curve to determine endogenous pMHC concentrations for a panel of 18 tumor antigens. We apply SureQuant-IsoMHC to measure changes in expression of our target panel in a melanoma cell line treated with a MEK inhibitor and translate this approach to estimate antigen concentrations in melanoma tumor biopsies.
Collapse
|
92
|
Wang Q. Building Personalized Cancer Therapeutics through Multi-Omics Assays and Bacteriophage-Eukaryotic Cell Interactions. Int J Mol Sci 2021; 22:ijms22189712. [PMID: 34575870 PMCID: PMC8468737 DOI: 10.3390/ijms22189712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteriophage-eukaryotic cell interaction provides the biological foundation of Phage Display technology, which has been widely adopted in studies involving protein-protein and protein-peptide interactions, and it provides a direct link between the proteins and the DNA encoding them. Phage display has also facilitated the development of new therapeutic agents targeting personalized cancer mutations. Proteins encoded by mutant genes in cancers can be processed and presented on the tumor cell surface by human leukocyte antigen (HLA) molecules, and such mutant peptides are called Neoantigens. Neoantigens are naturally existing tumor markers presented on the cell surface. In clinical settings, the T-cell recognition of neoantigens is the foundation of cancer immunotherapeutics. This year, we utilized phage display to successfully develop the 1st antibody-based neoantigen targeting approach for next-generation personalized cancer therapeutics. In this article, we discussed the strategies for identifying neoantigens, followed by using phage display to create personalized cancer therapeutics-a complete pipeline for personalized cancer treatment.
Collapse
Affiliation(s)
- Qing Wang
- Complete Omics Inc., 1448 S. Rolling Rd, Baltimore, MD 21227, USA
| |
Collapse
|
93
|
Wang S, Chen K, Lei Q, Ma P, Yuan AQ, Zhao Y, Jiang Y, Fang H, Xing S, Fang Y, Jiang N, Miao H, Zhang M, Sun S, Yu Z, Tao W, Zhu Q, Nie Y, Li N. The state of the art of bispecific antibodies for treating human malignancies. EMBO Mol Med 2021; 13:e14291. [PMID: 34431224 PMCID: PMC8422067 DOI: 10.15252/emmm.202114291] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022] Open
Abstract
Bispecific antibodies (bsAb) that target two independent epitopes or antigens have been extensively explored in translational and clinical studies since they were first developed in the 1960s. Many bsAbs are being tested in clinical trials for treating a variety of diseases, mostly cancer. Here, we provide an overview of various types of bsAbs in clinical studies and discuss their targets, safety profiles, and efficacy. We also highlight the current challenges, potential solutions, and future directions of bsAb development for cancer treatment.
Collapse
Affiliation(s)
- Shuhang Wang
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kun Chen
- NHC Key Laboratory of Pulmonary Immunological Diseases is supported by the non‐profit Central Research Institute fund of Chinese Academy of Medical Sciences (2019PT320003)Guizhou Provincial People’s HospitalGuiyangChina
| | - Qi Lei
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Peiwen Ma
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | | | - Yong Zhao
- Nanjing Umab‐biopharma Co., LtdNanjingChina
| | | | - Hong Fang
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shujun Xing
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuan Fang
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Jiang
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huilei Miao
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Minghui Zhang
- Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Shujun Sun
- Queen Mary SchoolNanchang UniversityNanchangChina
| | | | - Wei Tao
- China Pharmaceutical UniversityNanjingChina
| | - Qi Zhu
- China Pharmaceutical UniversityNanjingChina
| | - Yingjie Nie
- NHC Key Laboratory of Pulmonary Immunological Diseases is supported by the non‐profit Central Research Institute fund of Chinese Academy of Medical Sciences (2019PT320003)Guizhou Provincial People’s HospitalGuiyangChina
| | - Ning Li
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
94
|
Chasov V, Zaripov M, Mirgayazova R, Khadiullina R, Zmievskaya E, Ganeeva I, Valiullina A, Rizvanov A, Bulatov E. Promising New Tools for Targeting p53 Mutant Cancers: Humoral and Cell-Based Immunotherapies. Front Immunol 2021; 12:707734. [PMID: 34484205 PMCID: PMC8411701 DOI: 10.3389/fimmu.2021.707734] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription factor and oncosuppressor protein p53 is considered as one of the most promising molecular targets that remains a high-hanging fruit in cancer therapy. TP53 gene encoding the p53 protein is known to be the most frequently mutated gene in human cancers. The loss of transcriptional functions caused by mutations in p53 protein leads to deactivation of intrinsic tumor suppressive responses associated with wild-type (WT) p53 and acquisition of new pro-oncogenic properties such as enhanced cell proliferation, metastasis and chemoresistance. Hotspot mutations of p53 are often immunogenic and elicit intratumoral T cell responses to mutant p53 neoantigens, thus suggesting this protein as an attractive candidate for targeted anti-cancer immunotherapies. In this review we discuss the possible use of p53 antigens as molecular targets in immunotherapy, including the application of T cell receptor mimic (TCRm) monoclonal antibodies (mAbs) as a novel powerful approach.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Mikhail Zaripov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Regina Mirgayazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Raniya Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Aigul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
95
|
Antonarelli G, Giugliano F, Corti C, Repetto M, Tarantino P, Curigliano G. Research and Clinical Landscape of Bispecific Antibodies for the Treatment of Solid Malignancies. Pharmaceuticals (Basel) 2021; 14:884. [PMID: 34577584 PMCID: PMC8468026 DOI: 10.3390/ph14090884] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Solid tumors adopt multiple mechanisms to grow, evade immune responses, and to withstand therapeutic approaches. A major breakthrough in the armamentarium of anti-cancer agents has been the introduction of monoclonal antibodies (mAbs), able to inhibit aberrantly activated pathways and/or to unleash antigen (Ag)-specific immune responses. Nonetheless, mAb-mediated targeted pressure often fails due to escape mechanisms, mainly Ag loss/downregulation, ultimately providing therapy resistance. Hence, in order to target multiple Ag at the same time, and to facilitate cancer-immune cells interactions, bispecific antibodies (bsAbs) have been developed and are being tested in clinical trials, yielding variable safety/efficacy results based on target selection and their structure. While in hematologic cancers the bsAb blinatumomab recently reached the Food and Drug Administration (FDA)-approval for B Cell Acute Lymphoblastic Leukemia, bsAbs use in solid tumors faces considerable challenges, such as target Ag selection, biodistribution, and the presence of an immune-suppressive tumor microenvironment (TME). This review will focus on the state-of-the art, the design, and the exploitation of bsAbs against solid malignancies, delineating their mechanisms of action, major pitfalls, and future directions.
Collapse
Affiliation(s)
- Gabriele Antonarelli
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Federica Giugliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Chiara Corti
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Matteo Repetto
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Paolo Tarantino
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (G.A.); (F.G.); (C.C.); (M.R.); (P.T.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| |
Collapse
|
96
|
Verdon DJ, Jenkins MR. Identification and Targeting of Mutant Peptide Neoantigens in Cancer Immunotherapy. Cancers (Basel) 2021; 13:4245. [PMID: 34439399 PMCID: PMC8391927 DOI: 10.3390/cancers13164245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
In recent decades, adoptive cell transfer and checkpoint blockade therapies have revolutionized immunotherapeutic approaches to cancer treatment. Advances in whole exome/genome sequencing and bioinformatic detection of tumour-specific genetic variations and the amino acid sequence alterations they induce have revealed that T cell mediated anti-tumour immunity is substantially directed at mutated peptide sequences, and the identification and therapeutic targeting of patient-specific mutated peptide antigens now represents an exciting and rapidly progressing frontier of personalized medicine in the treatment of cancer. This review outlines the historical identification and validation of mutated peptide neoantigens as a target of the immune system, and the technical development of bioinformatic and experimental strategies for detecting, confirming and prioritizing both patient-specific or "private" and frequently occurring, shared "public" neoantigenic targets. Further, we examine the range of therapeutic modalities that have demonstrated preclinical and clinical anti-tumour efficacy through specifically targeting neoantigens, including adoptive T cell transfer, checkpoint blockade and neoantigen vaccination.
Collapse
Affiliation(s)
- Daniel J. Verdon
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Misty R. Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
97
|
Sun Q, Melino G, Amelio I, Jiang J, Wang Y, Shi Y. Recent advances in cancer immunotherapy. Discov Oncol 2021; 12:27. [PMID: 35201440 PMCID: PMC8777500 DOI: 10.1007/s12672-021-00422-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy represents a major advance in the cure of cancer following the dramatic advancements in the development and refinement of chemotherapies and radiotherapies. In the recent decades, together with the development of early diagnostic techniques, immunotherapy has significantly contributed to improving the survival of cancer patients. The immune-checkpoint blockade agents have been proven effective in a significant fraction of standard therapy refractory patients. Importantly, recent advances are providing alternative immunotherapeutic tools that could help overcome their limitations. In this mini review, we provide an overview on the main steps of the discovery of classic immune-checkpoint blockade agents and summarise the most recent development of novel immunotherapeutic strategies, such as tumour antigens, bispecific antibodies and TCR-engineered T cells.
Collapse
Affiliation(s)
- Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
- DZNE German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jingting Jiang
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yufang Shi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| |
Collapse
|
98
|
Zhao X, Pan X, Wang Y, Zhang Y. Targeting neoantigens for cancer immunotherapy. Biomark Res 2021; 9:61. [PMID: 34321091 PMCID: PMC8317330 DOI: 10.1186/s40364-021-00315-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Neoantigens, a type of tumor-specific antigens derived from non-synonymous mutations, have recently been characterized as attractive targets for cancer immunotherapy. Owing to the development of next-generation sequencing and utilization of machine-learning algorithms, it has become feasible to computationally predict neoantigens by depicting genetic alterations, aberrant post-transcriptional mRNA processing and abnormal mRNA translation events within tumor tissues. Consequently, neoantigen-based therapies such as cancer vaccines have been widely tested in clinical trials and have demonstrated promising safety and efficacy, opening a new era for cancer immunotherapy. We systematically summarize recent advances in the identification of both personalized and public neoantigens, neoantigen formulations and neoantigen-based clinical trials in this review. Moreover, we discuss future techniques and strategies for neoantigen-based cancer treatment either as a monotherapy or as a combination therapy with radiotherapy, chemotherapy or immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xuan Zhao
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 450052, Zhengzhou, China
| | - Xiaoxin Pan
- Shenzhen NeoCura Biotechnology Corporation, 518055, Shenzhen, China
| | - Yi Wang
- Shenzhen NeoCura Biotechnology Corporation, 518055, Shenzhen, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 450052, Zhengzhou, China. .,School of Life Sciences, Zhengzhou University, 450052, Zhengzhou, China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, 450052, Zhengzhou, China.
| |
Collapse
|
99
|
Nguyen TB, Lane DP, Verma CS. Can Glycosylation Mask the Detection of MHC Expressing p53 Peptides by T Cell Receptors? Biomolecules 2021; 11:biom11071056. [PMID: 34356680 PMCID: PMC8301869 DOI: 10.3390/biom11071056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Proteins of the major histocompatibility complex (MHC) class I, or human leukocyte antigen (HLA) in humans interact with endogenous peptides and present them to T cell receptors (TCR), which in turn tune the immune system to recognize and discriminate between self and foreign (non-self) peptides. Of especial importance are peptides derived from tumor-associated antigens. T cells recognizing these peptides are found in cancer patients, but not in cancer-free individuals. What stimulates this recognition, which is vital for the success of checkpoint based therapy? A peptide derived from the protein p53 (residues 161–169 or p161) was reported to show this behavior. T cells recognizing this unmodified peptide could be further stimulated in vitro to create effective cancer killing CTLs (cytotoxic T lymphocytes). We hypothesize that the underlying difference may arise from post-translational glycosylation of p161 in normal individuals, likely masking it against recognition by TCR. Defects in glycosylation in cancer cells may allow the presentation of the native peptide. We investigate the structural consequences of such peptide glycosylation by investigating the associated structural dynamics.
Collapse
Affiliation(s)
- Thanh Binh Nguyen
- Division of Biomolecular Structure to Mechanism, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore;
| | - David P. Lane
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore;
| | - Chandra S. Verma
- Division of Biomolecular Structure to Mechanism, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore;
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Correspondence: ; Tel.: +65-6478-8273; Fax: +65-6478-9048
| |
Collapse
|
100
|
Chaput L, Jordheim LP. [Current landscape of biomarker development for immune checkpoint inhibitors targeting PD-1/PD-L1 pathway in oncology]. Therapie 2021; 76:597-615. [PMID: 34332787 DOI: 10.1016/j.therap.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022]
Abstract
The immune checkpoints inhibitors targeting PD-1 or PD-L1 represent a new paradigm in the cancer treatment strategy. However, some populations of patients do not benefit from these agents. The identification of predictive biomarkers appears as an essential step for the treatment pathway, to guarantee the access to an evidence-based medicine accounting for the potential toxicity profile, the cost for the healthcare system and the clinical benefit eventually provided by these new drugs. In this review, we propose, based on scientific literature and industrial communications, an overview of the current landscape of predictive biomarkers related to PD-1 or PD-L1 inhibitors efficacy, validated or under development, their evidence level, and limits accounting for identified or potential confounding factors. Our paper shows that, despite the important amount of work performed in this field, there is not yet a validated and efficient solution for the prediction of the activity and/or the toxicity of anti-PD-1 and anti-PD-L1 antibodies.
Collapse
Affiliation(s)
- Lisa Chaput
- Université Lyon, université Claude-Bernard Lyon 1, faculté de pharmacie de Lyon, ISPB, 69008 Lyon, France
| | - Lars Petter Jordheim
- Université Lyon, université Claude-Bernard Lyon 1, faculté de pharmacie de Lyon, ISPB, 69008 Lyon, France; Université Lyon, université Claude-Bernard Lyon 1, INSERM 1052, CNRS 5286, centre Léon-Bérard, centre de recherche en cancérologie de Lyon, 69008 Lyon, France.
| |
Collapse
|