51
|
Extent of pre-translational regulation for the control of nucleocytoplasmic protein localization. BMC Genomics 2016; 17:472. [PMID: 27342569 PMCID: PMC4919871 DOI: 10.1186/s12864-016-2854-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
Background Appropriate protein subcellular localization is essential for proper cellular function. Central to the regulation of protein localization are protein targeting motifs, stretches of amino acids serving as guides for protein entry in a specific cellular compartment. While the use of protein targeting motifs is modulated in a post-translational manner, mainly by protein conformational changes and post-translational modifications, the presence of these motifs in proteins can also be regulated in a pre-translational manner. Here, we investigate the extent of pre-translational regulation of the main signals controlling nucleo-cytoplasmic traffic: the nuclear localization signal (NLS) and the nuclear export signal (NES). Results Motif databases and manual curation of the literature allowed the identification of 175 experimentally validated NLSs and 120 experimentally validated NESs in human. Following mapping onto annotated transcripts, these motifs were found to be modular, most (73 % for NLS and 88 % for NES) being encoded entirely in only one exon. The presence of a majority of these motifs is regulated in an alternative manner at the transcript level (61 % for NLS and 72 % for NES) while the remaining motifs are present in all coding isoforms of their encoding gene. NLSs and NESs are pre-translationally regulated using four main mechanisms: alternative transcription/translation initiation, alternative translation termination, alternative splicing of the exon encoding the motif and frameshift, the first two being by far the most prevalent mechanisms. Quantitative analysis of the presence of these motifs using RNA-seq data indicates that inclusion of these motifs can be regulated in a tissue-specific and a combinatorial manner, can be altered in disease states in a directed way and that alternative inclusion of these motifs is often used by proteins with diverse interactors and roles in diverse pathways, such as kinases. Conclusions The pre-translational regulation of the inclusion of protein targeting motifs is a prominent and tightly-regulated mechanism that adds another layer in the control of protein subcellular localization. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2854-4) contains supplementary material, which is available to authorized users.
Collapse
|
52
|
Jehl P, Manguy J, Shields DC, Higgins DG, Davey NE. ProViz-a web-based visualization tool to investigate the functional and evolutionary features of protein sequences. Nucleic Acids Res 2016; 44:W11-5. [PMID: 27085803 PMCID: PMC4987877 DOI: 10.1093/nar/gkw265] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/04/2016] [Indexed: 11/26/2022] Open
Abstract
Low-throughput experiments and high-throughput proteomic and genomic analyses have created enormous quantities of data that can be used to explore protein function and evolution. The ability to consolidate these data into an informative and intuitive format is vital to our capacity to comprehend these distinct but complementary sources of information. However, existing tools to visualize protein-related data are restricted by their presentation, sources of information, functionality or accessibility. We introduce ProViz, a powerful browser-based tool to aid biologists in building hypotheses and designing experiments by simplifying the analysis of functional and evolutionary features of proteins. Feature information is retrieved in an automated manner from resources describing protein modular architecture, post-translational modification, structure, sequence variation and experimental characterization of functional regions. These features are mapped to evolutionary information from precomputed multiple sequence alignments. Data are displayed in an interactive and information-rich yet intuitive visualization, accessible through a simple protein search interface. This allows users with limited bioinformatic skills to rapidly access data pertinent to their research. Visualizations can be further customized with user-defined data either manually or using a REST API. ProViz is available at http://proviz.ucd.ie/.
Collapse
Affiliation(s)
- Peter Jehl
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jean Manguy
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Denis C Shields
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Desmond G Higgins
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Norman E Davey
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
53
|
Dinkel H, Van Roey K, Michael S, Kumar M, Uyar B, Altenberg B, Milchevskaya V, Schneider M, Kühn H, Behrendt A, Dahl SL, Damerell V, Diebel S, Kalman S, Klein S, Knudsen AC, Mäder C, Merrill S, Staudt A, Thiel V, Welti L, Davey NE, Diella F, Gibson TJ. ELM 2016--data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Res 2016; 44:D294-300. [PMID: 26615199 PMCID: PMC4702912 DOI: 10.1093/nar/gkv1291] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/18/2023] Open
Abstract
The Eukaryotic Linear Motif (ELM) resource (http://elm.eu.org) is a manually curated database of short linear motifs (SLiMs). In this update, we present the latest additions to this resource, along with more improvements to the web interface. ELM 2016 contains more than 240 different motif classes with over 2700 experimentally validated instances, manually curated from more than 2400 scientific publications. In addition, more data have been made available as individually searchable pages and are downloadable in various formats.
Collapse
Affiliation(s)
- Holger Dinkel
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kim Van Roey
- Health Services Research Unit, Operational Direction Public Health and Surveillance, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium
| | - Sushama Michael
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Manjeet Kumar
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bora Uyar
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Brigitte Altenberg
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Vladislava Milchevskaya
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Helen Kühn
- Ruprecht-Karls-Universität, Heidelberg, Germany
| | | | | | | | | | - Sara Kalman
- Ruprecht-Karls-Universität, Heidelberg, Germany
| | | | | | | | | | | | - Vera Thiel
- Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Lukas Welti
- Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland
| | - Francesca Diella
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
54
|
Van Roey K, Davey NE. Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation. Cell Commun Signal 2015; 13:45. [PMID: 26626130 PMCID: PMC4666095 DOI: 10.1186/s12964-015-0123-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
A substantial portion of the regulatory interactions in the higher eukaryotic cell are mediated by simple sequence motifs in the regulatory segments of genes and (pre-)mRNAs, and in the intrinsically disordered regions of proteins. Although these regulatory modules are physicochemically distinct, they share an evolutionary plasticity that has facilitated a rapid growth of their use and resulted in their ubiquity in complex organisms. The ease of motif acquisition simplifies access to basal housekeeping functions, facilitates the co-regulation of multiple biomolecules allowing them to respond in a coordinated manner to changes in the cell state, and supports the integration of multiple signals for combinatorial decision-making. Consequently, motifs are indispensable for temporal, spatial, conditional and basal regulation at the transcriptional, post-transcriptional and post-translational level. In this review, we highlight that many of the key regulatory pathways of the cell are recruited by motifs and that the ease of motif acquisition has resulted in large networks of co-regulated biomolecules. We discuss how co-operativity allows simple static motifs to perform the conditional regulation that underlies decision-making in higher eukaryotic biological systems. We observe that each gene and its products have a unique set of DNA, RNA or protein motifs that encode a regulatory program to define the logical circuitry that guides the life cycle of these biomolecules, from transcription to degradation. Finally, we contrast the regulatory properties of protein motifs and the regulatory elements of DNA and (pre-)mRNAs, advocating that co-regulation, co-operativity, and motif-driven regulatory programs are common mechanisms that emerge from the use of simple, evolutionarily plastic regulatory modules.
Collapse
Affiliation(s)
- Kim Van Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany.
- Health Services Research Unit, Operational Direction Public Health and Surveillance, Scientific Institute of Public Health (WIV-ISP), 1050, Brussels, Belgium.
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
55
|
Davey NE, Cyert MS, Moses AM. Short linear motifs - ex nihilo evolution of protein regulation. Cell Commun Signal 2015; 13:43. [PMID: 26589632 PMCID: PMC4654906 DOI: 10.1186/s12964-015-0120-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Short sequence motifs are ubiquitous across the three major types of biomolecules: hundreds of classes and thousands of instances of DNA regulatory elements, RNA motifs and protein short linear motifs (SLiMs) have been characterised. The increase in complexity of transcriptional, post-transcriptional and post-translational regulation in higher Eukaryotes has coincided with a significant expansion of motif use. But how did the eukaryotic cell acquire such a vast repertoire of motifs? In this review, we curate the available literature on protein motif evolution and discuss the evidence that suggests SLiMs can be acquired by mutations, insertions and deletions in disordered regions. We propose a mechanism of ex nihilo SLiM evolution – the evolution of a novel SLiM from “nothing” – adding a functional module to a previously non-functional region of protein sequence. In our model, hundreds of motif-binding domains in higher eukaryotic proteins connect simple motif specificities with useful functions to create a large functional motif space. Accessible peptides that match the specificity of these motif-binding domains are continuously created and destroyed by mutations in rapidly evolving disordered regions, creating a dynamic supply of new interactions that may have advantageous phenotypic novelty. This provides a reservoir of diversity to modify existing interaction networks. Evolutionary pressures will act on these motifs to retain beneficial instances. However, most will be lost on an evolutionary timescale as negative selection and genetic drift act on deleterious and neutral motifs respectively. In light of the parallels between the presented model and the evolution of motifs in the regulatory segments of genes and (pre-)mRNAs, we suggest our understanding of regulatory networks would benefit from the creation of a shared model describing the evolution of transcriptional, post-transcriptional and post-translational regulation.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada. .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada.
| |
Collapse
|
56
|
Gibson TJ, Dinkel H, Van Roey K, Diella F. Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad. Cell Commun Signal 2015; 13:42. [PMID: 26581338 PMCID: PMC4652402 DOI: 10.1186/s12964-015-0121-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022] Open
Abstract
It has become clear in outline though not yet in detail how cellular regulatory and signalling systems are constructed. The essential machines are protein complexes that effect regulatory decisions by undergoing internal changes of state. Subcomponents of these cellular complexes are assembled into molecular switches. Many of these switches employ one or more short peptide motifs as toggles that can move between one or more sites within the switch system, the simplest being on-off switches. Paradoxically, these motif modules (termed short linear motifs or SLiMs) are both hugely abundant but difficult to research. So despite the many successes in identifying short regulatory protein motifs, it is thought that only the “tip of the iceberg” has been exposed. Experimental and bioinformatic motif discovery remain challenging and error prone. The advice presented in this article is aimed at helping researchers to uncover genuine protein motifs, whilst avoiding the pitfalls that lead to reports of false discovery.
Collapse
Affiliation(s)
- Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D69117, Heidelberg, Germany.
| | - Holger Dinkel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D69117, Heidelberg, Germany.
| | - Kim Van Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D69117, Heidelberg, Germany. .,Health Services Research Unit, Operational Direction Public Health and Surveillance, Scientific Institute of Public Health (WIV-ISP), 1050, Brussels, Belgium.
| | - Francesca Diella
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D69117, Heidelberg, Germany.
| |
Collapse
|
57
|
Redefining the BH3 Death Domain as a 'Short Linear Motif'. Trends Biochem Sci 2015; 40:736-748. [PMID: 26541461 PMCID: PMC5056427 DOI: 10.1016/j.tibs.2015.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 01/06/2023]
Abstract
B cell lymphoma-2 (BCL-2)-related proteins control programmed cell death through a complex network of protein–protein interactions mediated by BCL-2 homology 3 (BH3) domains. Given their roles as dynamic linchpins, the discovery of novel BH3-containing proteins has attracted considerable attention. However, without a clearly defined BH3 signature sequence the BCL-2 family has expanded to include a nebulous group of nonhomologous BH3-only proteins, now justified by an intriguing twist. We present evidence that BH3s from both ordered and disordered proteins represent a new class of short linear motifs (SLiMs) or molecular recognition features (MoRFs) and are diverse in their evolutionary histories. The implied corollaries are that BH3s have a broad phylogenetic distribution and could potentially bind to non-BCL-2-like structural domains with distinct functions. BCL-2 family interactions are mediated by evolutionarily diverse BH3 motifs to regulate apoptosis. Given their key roles, BH3 mimetics are in clinical trials as cancer therapies. The discovery of novel BH3-only proteins represents a major endeavor in the cell death field. As a result, BH3 motifs are reportedly present in a nebulous conglomerate of different proteins, both structured and intrinsically disordered. There is no rigorous definition of a BH3 motif. Currently available BH3 signatures are diverse and elusive for predicting new functional BH3-containing proteins. Redefining the BH3 motif as a new type of short linear motif (SLiM) or molecular recognition feature (MoRF) reconciles many puzzling features of this motif and opens up new avenues for research.
Collapse
|
58
|
Merabet S, Galliot B. The TALE face of Hox proteins in animal evolution. Front Genet 2015; 6:267. [PMID: 26347770 PMCID: PMC4539518 DOI: 10.3389/fgene.2015.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/31/2015] [Indexed: 01/22/2023] Open
Abstract
Hox genes are major regulators of embryonic development. One of their most conserved functions is to coordinate the formation of specific body structures along the anterior-posterior (AP) axis in Bilateria. This architectural role was at the basis of several morphological innovations across bilaterian evolution. In this review, we traced the origin of the Hox patterning system by considering the partnership with PBC and Meis proteins. PBC and Meis belong to the TALE-class of homeodomain-containing transcription factors and act as generic cofactors of Hox proteins for AP axis patterning in Bilateria. Recent data indicate that Hox proteins acquired the ability to interact with their TALE partners in the last common ancestor of Bilateria and Cnidaria. These interactions relied initially on a short peptide motif called hexapeptide (HX), which is present in Hox and non-Hox protein families. Remarkably, Hox proteins can also recruit the TALE cofactors by using specific PBC Interaction Motifs (SPIMs). We describe how a functional Hox/TALE patterning system emerged in eumetazoans through the acquisition of SPIMs. We anticipate that interaction flexibility could be found in other patterning systems, being at the heart of the astonishing morphological diversity observed in the animal kingdom.
Collapse
Affiliation(s)
- Samir Merabet
- Centre National de Recherche Scientifique, Institut de Génomique Fonctionnelle de Lyon Lyon, France ; Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon Lyon, France
| | - Brigitte Galliot
- Department of Genetics and Evolution, Faculty of Science, Institute of Genetics and Genomics in Geneva, University of Geneva Geneva, Switzerland
| |
Collapse
|
59
|
Clark SA, Jespersen N, Woodward C, Barbar E. Multivalent IDP assemblies: Unique properties of LC8-associated, IDP duplex scaffolds. FEBS Lett 2015; 589:2543-51. [PMID: 26226419 DOI: 10.1016/j.febslet.2015.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 01/17/2023]
Abstract
A wide variety of subcellular complexes are composed of one or more intrinsically disordered proteins (IDPs) that are multivalent, flexible, and characterized by dynamic binding of diverse partner proteins. These multivalent IDP assemblies, of broad functional diversity, are classified here into five categories distinguished by the number of IDP chains and the arrangement of partner proteins in the functional complex. Examples of each category are summarized in the context of the exceptional molecular and biological properties of IDPs. One type - IDP duplex scaffolds - is considered in detail. Its unique features include parallel alignment of two IDP chains, formation of new self-associated domains, enhanced affinity for additional bivalent ligands, and ubiquitous binding of the hub protein LC8. For two IDP duplex scaffolds, dynein intermediate chain IC and nucleoporin Nup159, these duplex features, together with the inherent flexibility of IDPs, are central to their assembly and function. A new type of IDP-LC8 interaction, distributed binding of LC8 among multiple IDP recognition sites, is described for Nup159 assembly.
Collapse
Affiliation(s)
- Sarah A Clark
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Nathan Jespersen
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Clare Woodward
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, St. Paul, MN 55108, United States
| | - Elisar Barbar
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
60
|
Computational and statistical methods for high-throughput analysis of post-translational modifications of proteins. J Proteomics 2015. [PMID: 26216596 DOI: 10.1016/j.jprot.2015.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The investigation of post-translational modifications (PTMs) represents one of the main research focuses for the study of protein function and cell signaling. Mass spectrometry instrumentation with increasing sensitivity improved protocols for PTM enrichment and recently established pipelines for high-throughput experiments allow large-scale identification and quantification of several PTM types. This review addresses the concurrently emerging challenges for the computational analysis of the resulting data and presents PTM-centered approaches for spectra identification, statistical analysis, multivariate analysis and data interpretation. We furthermore discuss the potential of future developments that will help to gain deep insight into the PTM-ome and its biological role in cells. This article is part of a Special Issue entitled: Computational Proteomics.
Collapse
|
61
|
Zanzoni A, Chapple CE, Brun C. Relationships between predicted moonlighting proteins, human diseases, and comorbidities from a network perspective. Front Physiol 2015; 6:171. [PMID: 26157390 PMCID: PMC4477069 DOI: 10.3389/fphys.2015.00171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/20/2015] [Indexed: 12/26/2022] Open
Abstract
Moonlighting proteins are a subset of multifunctional proteins characterized by their multiple, independent, and unrelated biological functions. We recently set up a large-scale identification of moonlighting proteins using a protein-protein interaction (PPI) network approach. We established that 3% of the current human interactome is composed of predicted moonlighting proteins. We found that disease-related genes are over-represented among those candidates. Here, by comparing moonlighting candidates to non-candidates as groups, we further show that (i) they are significantly involved in more than one disease, (ii) they contribute to complex rather than monogenic diseases, (iii) the diseases in which they are involved are phenotypically different according to their annotations, finally, (iv) they are enriched for diseases pairs showing statistically significant comorbidity patterns based on Medicare records. Altogether, our results suggest that some observed comorbidities between phenotypically different diseases could be due to a shared protein involved in unrelated biological processes.
Collapse
Affiliation(s)
- Andreas Zanzoni
- INSERM, UMR_S1090 TAGC Marseille, France ; Aix-Marseille Université, UMR_S1090, TAGC Marseille, France
| | - Charles E Chapple
- INSERM, UMR_S1090 TAGC Marseille, France ; Aix-Marseille Université, UMR_S1090, TAGC Marseille, France
| | - Christine Brun
- INSERM, UMR_S1090 TAGC Marseille, France ; Aix-Marseille Université, UMR_S1090, TAGC Marseille, France ; Centre National de la Recherche Scientifique Marseille, France
| |
Collapse
|
62
|
Wong A, Gehring C, Irving HR. Conserved Functional Motifs and Homology Modeling to Predict Hidden Moonlighting Functional Sites. Front Bioeng Biotechnol 2015; 3:82. [PMID: 26106597 PMCID: PMC4460814 DOI: 10.3389/fbioe.2015.00082] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022] Open
Abstract
Moonlighting functional centers within proteins can provide them with hitherto unrecognized functions. Here, we review how hidden moonlighting functional centers, which we define as binding sites that have catalytic activity or regulate protein function in a novel manner, can be identified using targeted bioinformatic searches. Functional motifs used in such searches include amino acid residues that are conserved across species and many of which have been assigned functional roles based on experimental evidence. Molecules that were identified in this manner seeking cyclic mononucleotide cyclases in plants are used as examples. The strength of this computational approach is enhanced when good homology models can be developed to test the functionality of the predicted centers in silico, which, in turn, increases confidence in the ability of the identified candidates to perform the predicted functions. Computational characterization of moonlighting functional centers is not diagnostic for catalysis but serves as a rapid screening method, and highlights testable targets from a potentially large pool of candidates for subsequent in vitro and in vivo experiments required to confirm the functionality of the predicted moonlighting centers.
Collapse
Affiliation(s)
- Aloysius Wong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology , Thuwal , Saudi Arabia
| | - Chris Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology , Thuwal , Saudi Arabia
| | - Helen R Irving
- Monash Institute of Pharmaceutical Sciences, Monash University , Melbourne, VIC , Australia
| |
Collapse
|
63
|
Chapple CE, Robisson B, Spinelli L, Guien C, Becker E, Brun C. Extreme multifunctional proteins identified from a human protein interaction network. Nat Commun 2015; 6:7412. [PMID: 26054620 PMCID: PMC4468855 DOI: 10.1038/ncomms8412] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 05/06/2015] [Indexed: 12/30/2022] Open
Abstract
Moonlighting proteins are a subclass of multifunctional proteins whose functions are unrelated. Although they may play important roles in cells, there has been no large-scale method to identify them, nor any effort to characterize them as a group. Here, we propose the first method for the identification of ‘extreme multifunctional' proteins from an interactome as a first step to characterize moonlighting proteins. By combining network topological information with protein annotations, we identify 430 extreme multifunctional proteins (3% of the human interactome). We show that the candidates form a distinct sub-group of proteins, characterized by specific features, which form a signature of extreme multifunctionality. Overall, extreme multifunctional proteins are enriched in linear motifs and less intrinsically disordered than network hubs. We also provide MoonDB, a database containing information on all the candidates identified in the analysis and a set of manually curated human moonlighting proteins. Proteins are sometimes implicated in separate and seemingly unrelated processes, so called moonlighting functions. Here the authors use bioinformatics tools to identify extreme multifunctional proteins and define a signature of extreme multifunctionality.
Collapse
Affiliation(s)
- Charles E Chapple
- 1] Aix-Marseille University, TAGC, Marseille F-13009, France [2] INSERM UMR_S1090, Marseille F-13009, France
| | - Benoit Robisson
- 1] Aix-Marseille University, TAGC, Marseille F-13009, France [2] INSERM UMR_S1090, Marseille F-13009, France
| | - Lionel Spinelli
- 1] Aix-Marseille University, TAGC, Marseille F-13009, France [2] INSERM UMR_S1090, Marseille F-13009, France [3] Aix-Marseille University, CIML, Marseille F-13009, France [4] CNRS, UMR 7280, Marseille F-13009, France [5] INSERM, U631, Marseille F-13009, France
| | - Céline Guien
- 1] Aix-Marseille University, TAGC, Marseille F-13009, France [2] INSERM UMR_S1090, Marseille F-13009, France
| | - Emmanuelle Becker
- 1] Aix-Marseille University, TAGC, Marseille F-13009, France [2] INSERM UMR_S1090, Marseille F-13009, France
| | - Christine Brun
- 1] Aix-Marseille University, TAGC, Marseille F-13009, France [2] INSERM UMR_S1090, Marseille F-13009, France [3] CNRS, Marseille F-13009, France
| |
Collapse
|
64
|
Latysheva NS, Flock T, Weatheritt RJ, Chavali S, Babu MM. How do disordered regions achieve comparable functions to structured domains? Protein Sci 2015; 24:909-22. [PMID: 25752799 PMCID: PMC4456105 DOI: 10.1002/pro.2674] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 12/19/2022]
Abstract
The traditional structure to function paradigm conceives of a protein's function as emerging from its structure. In recent years, it has been established that unstructured, intrinsically disordered regions (IDRs) in proteins are equally crucial elements for protein function, regulation and homeostasis. In this review, we provide a brief overview of how IDRs can perform similar functions to structured proteins, focusing especially on the formation of protein complexes and assemblies and the mediation of regulated conformational changes. In addition to highlighting instances of such functional equivalence, we explain how differences in the biological and physicochemical properties of IDRs allow them to expand the functional and regulatory repertoire of proteins. We also discuss studies that provide insights into how mutations within functional regions of IDRs can lead to human diseases.
Collapse
Affiliation(s)
| | - Tilman Flock
- MRC Laboratory of Molecular BiologyCambridge, CB2 0QH, United Kingdom
| | | | - Sreenivas Chavali
- MRC Laboratory of Molecular BiologyCambridge, CB2 0QH, United Kingdom
| | - M Madan Babu
- MRC Laboratory of Molecular BiologyCambridge, CB2 0QH, United Kingdom
| |
Collapse
|
65
|
Baëza M, Viala S, Heim M, Dard A, Hudry B, Duffraisse M, Rogulja-Ortmann A, Brun C, Merabet S. Inhibitory activities of short linear motifs underlie Hox interactome specificity in vivo. eLife 2015; 4. [PMID: 25869471 PMCID: PMC4392834 DOI: 10.7554/elife.06034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/16/2015] [Indexed: 12/30/2022] Open
Abstract
Hox proteins are well-established developmental regulators that coordinate cell fate and morphogenesis throughout embryogenesis. In contrast, our knowledge of their specific molecular modes of action is limited to the interaction with few cofactors. Here, we show that Hox proteins are able to interact with a wide range of transcription factors in the live Drosophila embryo. In this context, specificity relies on a versatile usage of conserved short linear motifs (SLiMs), which, surprisingly, often restrains the interaction potential of Hox proteins. This novel buffering activity of SLiMs was observed in different tissues and found in Hox proteins from cnidarian to mouse species. Although these interactions remain to be analysed in the context of endogenous Hox regulatory activities, our observations challenge the traditional role assigned to SLiMs and provide an alternative concept to explain how Hox interactome specificity could be achieved during the embryonic development. DOI:http://dx.doi.org/10.7554/eLife.06034.001 In all animals, it is important that cells are correctly organised into tissues and organs. This organisation starts in the embryo, and cells are instructed to perform different roles depending on their position within the body. A family of proteins called the Hox proteins coordinates the organisation of the cells in the animal embryo by binding to and controlling the expression of specific genes. To properly control their target genes, Hox proteins need to interact with other proteins called transcription factors that can also bind to the genes. However, only a few of these transcription factors have been identified so far, and it is not clear how Hox proteins are able to interact with them. Here, Baëza, Viala, Heim et al. identified several more transcription factors that can bind to the Hox proteins in fruit fly embryos. The experiments show that Hox proteins are able to bind to many transcription factors that are very different from each other. Baëza, Viala, Heim et al. also show that two short sections within the Hox proteins known as short linear motifs are important for controlling these interactions. A fly Hox protein that was missing these motifs was able to interact with new transcription factors. This inhibitory role was found in Hox proteins from mice and sea anemones, suggesting that these motifs may play the same role in all animals. Baëza, Viala, Heim et al.'s findings challenge the traditional view of the role of the short linear motifs in interactions between proteins. Also, the findings provide an alternative explanation for how the Hox proteins are only able to interact with particular transcription factors in animal embryos. The next step will be to find out whether the inhibitory role of short linear motifs could more generally apply to many other protein families. DOI:http://dx.doi.org/10.7554/eLife.06034.002
Collapse
Affiliation(s)
- Manon Baëza
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Séverine Viala
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Marjorie Heim
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Amélie Dard
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Bruno Hudry
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Marilyne Duffraisse
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | | | - Christine Brun
- Technological Advances for Genomics and clinics, Institut national de la santé et de la recherche médicale, University Aix-Marseille, Parc Scientifique de Luminy, Marseille, France
| | - Samir Merabet
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| |
Collapse
|
66
|
Abstract
Intrinsically disordered proteins (IDPs) are important components of the cellular signalling machinery, allowing the same polypeptide to undertake different interactions with different consequences. IDPs are subject to combinatorial post-translational modifications and alternative splicing, adding complexity to regulatory networks and providing a mechanism for tissue-specific signalling. These proteins participate in the assembly of signalling complexes and in the dynamic self-assembly of membrane-less nuclear and cytoplasmic organelles. Experimental, computational and bioinformatic analyses combine to identify and characterize disordered regions of proteins, leading to a greater appreciation of their widespread roles in biological processes.
Collapse
|
67
|
Niklas KJ, Bondos SE, Dunker AK, Newman SA. Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications. Front Cell Dev Biol 2015; 3:8. [PMID: 25767796 PMCID: PMC4341551 DOI: 10.3389/fcell.2015.00008] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/26/2015] [Indexed: 11/16/2022] Open
Abstract
Models for genetic regulation and cell fate specification characteristically assume that gene regulatory networks (GRNs) are essentially deterministic and exhibit multiple stable states specifying alternative, but pre-figured cell fates. Mounting evidence shows, however, that most eukaryotic precursor RNAs undergo alternative splicing (AS) and that the majority of transcription factors contain intrinsically disordered protein (IDP) domains whose functionalities are context dependent as well as subject to post-translational modification (PTM). Consequently, many transcription factors do not have fixed cis-acting regulatory targets, and developmental determination by GRNs alone is untenable. Modeling these phenomena requires a multi-scale approach to explain how GRNs operationally interact with the intra- and intercellular environments. Evidence shows that AS, IDP, and PTM complicate gene expression and act synergistically to facilitate and promote time- and cell-specific protein modifications involved in cell signaling and cell fate specification and thereby disrupt a strict deterministic GRN-phenotype mapping. The combined effects of AS, IDP, and PTM give proteomes physiological plasticity, adaptive responsiveness, and developmental versatility without inefficiently expanding genome size. They also help us understand how protein functionalities can undergo major evolutionary changes by buffering mutational consequences.
Collapse
Affiliation(s)
- Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA
| | - Sarah E Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College Station, TX, USA
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University Indianapolis, IN, USA
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College Valhalla, NY, USA
| |
Collapse
|
68
|
Huang Y, Xu B, Zhou X, Li Y, Lu M, Jiang R, Li T. Systematic characterization and prediction of post-translational modification cross-talk. Mol Cell Proteomics 2015; 14:761-70. [PMID: 25605461 DOI: 10.1074/mcp.m114.037994] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Post-translational modification (PTM)(1) plays an important role in regulating the functions of proteins. PTMs of multiple residues on one protein may work together to determine a functional outcome, which is known as PTM cross-talk. Identification of PTM cross-talks is an emerging theme in proteomics and has elicited great interest, but their properties remain to be systematically characterized. To this end, we collected 193 PTM cross-talk pairs in 77 human proteins from the literature and then tested location preference and co-evolution at the residue and modification levels. We found that cross-talk events preferentially occurred among nearby PTM sites, especially in disordered protein regions, and cross-talk pairs tended to co-evolve. Given the properties of PTM cross-talk pairs, a naïve Bayes classifier integrating different features was built to predict cross-talks for pairwise combination of PTM sites. By using a 10-fold cross-validation, the integrated prediction model showed an area under the receiver operating characteristic (ROC) curve of 0.833, superior to using any individual feature alone. The prediction performance was also demonstrated to be robust to the biases in the collected PTM cross-talk pairs. The integrated approach has the potential for large-scale prioritization of PTM cross-talk candidates for functional validation and was implemented as a web server available at http://bioinfo.bjmu.edu.cn/ptm-x/.
Collapse
Affiliation(s)
- Yuanhua Huang
- From the ‡Department of Biomedical Informatics, ‖MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China; **European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Bosen Xu
- §Department of Biochemistry and Molecular Biology, and
| | - Xueya Zhou
- ¶¶Department of Psychiatry and Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying Li
- From the ‡Department of Biomedical Informatics
| | - Ming Lu
- From the ‡Department of Biomedical Informatics
| | - Rui Jiang
- ‖MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
| | - Tingting Li
- From the ‡Department of Biomedical Informatics, ¶Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China;
| |
Collapse
|
69
|
Bhowmick P, Guharoy M, Tompa P. Bioinformatics Approaches for Predicting Disordered Protein Motifs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:291-318. [PMID: 26387106 DOI: 10.1007/978-3-319-20164-1_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Short, linear motifs (SLiMs) in proteins are functional microdomains consisting of contiguous residue segments along the protein sequence, typically not more than 10 consecutive amino acids in length with less than 5 defined positions. Many positions are 'degenerate' thus offering flexibility in terms of the amino acid types allowed at those positions. Their short length and degenerate nature confers evolutionary plasticity meaning that SLiMs often evolve convergently. Further, SLiMs have a propensity to occur within intrinsically unstructured protein segments and this confers versatile functionality to unstructured regions of the proteome. SLiMs mediate multiple types of protein interactions based on domain-peptide recognition and guide functions including posttranslational modifications, subcellular localization of proteins, and ligand binding. SLiMs thus behave as modular interaction units that confer versatility to protein function and SLiM-mediated interactions are increasingly being recognized as therapeutic targets. In this chapter we start with a brief description about the properties of SLiMs and their interactions and then move on to discuss algorithms and tools including several web-based methods that enable the discovery of novel SLiMs (de novo motif discovery) as well as the prediction of novel occurrences of known SLiMs. Both individual amino acid sequences as well as sets of protein sequences can be scanned using these methods to obtain statistically overrepresented sequence patterns. Lists of putatively functional SLiMs are then assembled based on parameters such as evolutionary sequence conservation, disorder scores, structural data, gene ontology terms and other contextual information that helps to assess the functional credibility or significance of these motifs. These bioinformatics methods should certainly guide experiments aimed at motif discovery.
Collapse
Affiliation(s)
- Pallab Bhowmick
- VIB Department of Structural Biology, Vrije Universiteit Brussel (VUB), Building E, Pleinlaan 2, 1050, Brussels, Belgium
| | - Mainak Guharoy
- VIB Department of Structural Biology, Vrije Universiteit Brussel (VUB), Building E, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Peter Tompa
- VIB Department of Structural Biology, Vrije Universiteit Brussel (VUB), Building E, Pleinlaan 2, 1050, Brussels, Belgium. .,Institute of Enzymology, Research Center of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
70
|
Minguez P, Letunic I, Parca L, Garcia-Alonso L, Dopazo J, Huerta-Cepas J, Bork P. PTMcode v2: a resource for functional associations of post-translational modifications within and between proteins. Nucleic Acids Res 2014; 43:D494-502. [PMID: 25361965 PMCID: PMC4383916 DOI: 10.1093/nar/gku1081] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The post-translational regulation of proteins is mainly driven by two molecular events, their modification by several types of moieties and their interaction with other proteins. These two processes are interdependent and together are responsible for the function of the protein in a particular cell state. Several databases focus on the prediction and compilation of protein–protein interactions (PPIs) and no less on the collection and analysis of protein post-translational modifications (PTMs), however, there are no resources that concentrate on describing the regulatory role of PTMs in PPIs. We developed several methods based on residue co-evolution and proximity to predict the functional associations of pairs of PTMs that we apply to modifications in the same protein and between two interacting proteins. In order to make data available for understudied organisms, PTMcode v2 (http://ptmcode.embl.de) includes a new strategy to propagate PTMs from validated modified sites through orthologous proteins. The second release of PTMcode covers 19 eukaryotic species from which we collected more than 300 000 experimentally verified PTMs (>1 300 000 propagated) of 69 types extracting the post-translational regulation of >100 000 proteins and >100 000 interactions. In total, we report 8 million associations of PTMs regulating single proteins and over 9.4 million interplays tuning PPIs.
Collapse
Affiliation(s)
- Pablo Minguez
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ivica Letunic
- Biobyte solutions GmbH, Bothestr 142, 69117 Heidelberg, Germany
| | - Luca Parca
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Luz Garcia-Alonso
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Joaquin Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Jaime Huerta-Cepas
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany Max-Delbruck-Centre for Molecular Medicine, Berlin-Buch, Germany
| |
Collapse
|
71
|
A million peptide motifs for the molecular biologist. Mol Cell 2014; 55:161-9. [PMID: 25038412 DOI: 10.1016/j.molcel.2014.05.032] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/24/2014] [Accepted: 05/15/2014] [Indexed: 11/22/2022]
Abstract
A molecular description of functional modules in the cell is the focus of many high-throughput studies in the postgenomic era. A large portion of biomolecular interactions in virtually all cellular processes is mediated by compact interaction modules, referred to as peptide motifs. Such motifs are typically less than ten residues in length, occur within intrinsically disordered regions, and are recognized and/or posttranslationally modified by structured domains of the interacting partner. In this review, we suggest that there might be over a million instances of peptide motifs in the human proteome. While this staggering number suggests that peptide motifs are numerous and the most understudied functional module in the cell, it also holds great opportunities for new discoveries.
Collapse
|
72
|
Kim I, Lee H, Han SK, Kim S. Linear motif-mediated interactions have contributed to the evolution of modularity in complex protein interaction networks. PLoS Comput Biol 2014; 10:e1003881. [PMID: 25299147 PMCID: PMC4191887 DOI: 10.1371/journal.pcbi.1003881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/29/2014] [Indexed: 02/06/2023] Open
Abstract
The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for the reduction in module boundaries that originate from increased connections between different modules in complex PPI networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping the architecture and modularity of biological networks over the course of evolution. Modular architecture is important for the evolution of cellular systems. Modular rearrangements facilitate functional innovations and modular insulations provide robustness to perturbations. However, molecular-level understanding of the mechanisms underlying modular network evolution is currently not well understood. Here we show that strong domain-domain interactions (DDIs) and weak domain-linear motif interactions (DLIs) made different contributions to the evolution of the modular architecture of PPI networks. Especially, DLIs mediate between-module interactions, and that their relative abundance has dramatically increased in metazoan species. Linear motifs have been identified as evolutionary interaction switches since subtle amino acid changes can cause the short sequences in linear motifs to appear and disappear. Our results suggest that subtle changes in linear motifs have contributed to the rewiring of functional modules and, consequently, to functional innovations in metazoan species.
Collapse
Affiliation(s)
- Inhae Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Heetak Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
- * E-mail:
| |
Collapse
|
73
|
Uyar B, Weatheritt RJ, Dinkel H, Davey NE, Gibson TJ. Proteome-wide analysis of human disease mutations in short linear motifs: neglected players in cancer? MOLECULAR BIOSYSTEMS 2014; 10:2626-42. [PMID: 25057855 PMCID: PMC4306509 DOI: 10.1039/c4mb00290c] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/11/2014] [Indexed: 01/09/2023]
Abstract
Disease mutations are traditionally thought to impair protein functionality by disrupting the folded globular structure of proteins. However, 22% of human disease mutations occur in natively unstructured segments of proteins known as intrinsically disordered regions (IDRs). This therefore implicates defective IDR functionality in various human diseases including cancer. The functionality of IDRs is partly attributable to short linear motifs (SLiMs), but it remains an open question how much defects in SLiMs contribute to human diseases. A proteome-wide comparison of the distribution of missense mutations from disease and non-disease mutation datasets revealed that, in IDRs, disease mutations are more likely to occur within SLiMs than neutral missense mutations. Moreover, compared to neutral missense mutations, disease mutations more frequently impact functionally important residues of SLiMs, cause changes in the physicochemical properties of SLiMs, and disrupt more SLiM-mediated interactions. Analysis of these mutations resulted in a comprehensive list of experimentally validated or predicted SLiMs disrupted in disease. Furthermore, this in-depth analysis suggests that 'prostate cancer pathway' is particularly enriched for proteins with disease-related SLiMs. The contribution of mutations in SLiMs to disease may currently appear small when compared to mutations in globular domains. However, our analysis of mutations in predicted SLiMs suggests that this contribution might be more substantial. Therefore, when analysing the functional impact of mutations on proteins, SLiMs in proteins should not be neglected. Our results suggest that an increased focus on SLiMs in the coming decades will improve our understanding of human diseases and aid in the development of targeted treatments.
Collapse
Affiliation(s)
- Bora Uyar
- Structural and Computational Biology Unit , European Molecular Biology Laboratory , Meyerhofstrasse 1 , 69117 , Heidelberg , Germany . ;
| | - Robert J. Weatheritt
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Hills Road , Cambridge CB2 0QH , UK
- Banting and Best Department of Medical Research and Donnelly Centre , University of Toronto , Toronto , Ontario M5S 3E1 , Canada
| | - Holger Dinkel
- Structural and Computational Biology Unit , European Molecular Biology Laboratory , Meyerhofstrasse 1 , 69117 , Heidelberg , Germany . ;
| | - Norman E. Davey
- Structural and Computational Biology Unit , European Molecular Biology Laboratory , Meyerhofstrasse 1 , 69117 , Heidelberg , Germany . ;
- Department of Physiology , University of California, San Francisco , San Francisco , California , USA
| | - Toby J. Gibson
- Structural and Computational Biology Unit , European Molecular Biology Laboratory , Meyerhofstrasse 1 , 69117 , Heidelberg , Germany . ;
| |
Collapse
|
74
|
Asymmetric mRNA localization contributes to fidelity and sensitivity of spatially localized systems. Nat Struct Mol Biol 2014; 21:833-9. [PMID: 25150862 DOI: 10.1038/nsmb.2876] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 07/22/2014] [Indexed: 12/24/2022]
Abstract
Although many proteins are localized after translation, asymmetric protein distribution is also achieved by translation after mRNA localization. Why are certain mRNA transported to a distal location and translated on-site? Here we undertake a systematic, genome-scale study of asymmetrically distributed protein and mRNA in mammalian cells. Our findings suggest that asymmetric protein distribution by mRNA localization enhances interaction fidelity and signaling sensitivity. Proteins synthesized at distal locations frequently contain intrinsically disordered segments. These regions are generally rich in assembly-promoting modules and are often regulated by post-translational modifications. Such proteins are tightly regulated but display distinct temporal dynamics upon stimulation with growth factors. Thus, proteins synthesized on-site may rapidly alter proteome composition and act as dynamically regulated scaffolds to promote the formation of reversible cellular assemblies. Our observations are consistent across multiple mammalian species, cell types and developmental stages, suggesting that localized translation is a recurring feature of cell signaling and regulation.
Collapse
|
75
|
van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones D, Kim PM, Kriwacki R, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright P, Babu MM. Classification of intrinsically disordered regions and proteins. Chem Rev 2014; 114:6589-631. [PMID: 24773235 PMCID: PMC4095912 DOI: 10.1021/cr400525m] [Citation(s) in RCA: 1488] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Robin van der Lee
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Centre
for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6500 HB Nijmegen, The
Netherlands
| | - Marija Buljan
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Benjamin Lang
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Gary W. Daughdrill
- Department
of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 3720 Spectrum Boulevard, Suite 321, Tampa, Florida 33612, United States
| | - A. Keith Dunker
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, H-4032 Debrecen, Nagyerdei krt 98, Hungary
| | - Julian Gough
- Department
of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, United Kingdom
| | - Joerg Gsponer
- Department
of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David
T. Jones
- Bioinformatics
Group, Department of Computer Science, University
College London, London, WC1E 6BT, United Kingdom
| | - Philip M. Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular
Genetics, and Department of Computer Science, University
of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Richard
W. Kriwacki
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
| | - Christopher J. Oldfield
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rohit V. Pappu
- Department
of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Peter Tompa
- VIB Department
of Structural Biology, Vrije Universiteit
Brussel, Brussels, Belgium
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vladimir N. Uversky
- Department
of Molecular Medicine and USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation,
Russian Academy of Sciences, Pushchino,
Moscow Region, Russia
| | - Peter
E. Wright
- Department
of Integrative Structural and Computational Biology and Skaggs Institute
of Chemical Biology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - M. Madan Babu
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
76
|
Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev 2014; 114:6733-78. [DOI: 10.1021/cr400585q] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kim Van Roey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bora Uyar
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Holger Dinkel
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Markus Seiler
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aidan Budd
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Toby J. Gibson
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Norman E. Davey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department
of Physiology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
77
|
Hagai T, Azia A, Babu MM, Andino R. Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions. Cell Rep 2014; 7:1729-1739. [PMID: 24882001 DOI: 10.1016/j.celrep.2014.04.052] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/25/2014] [Accepted: 04/24/2014] [Indexed: 12/31/2022] Open
Abstract
Viruses interact extensively with host proteins, but the mechanisms controlling these interactions are not well understood. We present a comprehensive analysis of eukaryotic linear motifs (ELMs) in 2,208 viral genomes and reveal that viruses exploit molecular mimicry of host-like ELMs to possibly assist in host-virus interactions. Using a statistical genomics approach, we identify a large number of potentially functional ELMs and observe that the occurrence of ELMs is often evolutionarily conserved but not uniform across virus families. Some viral proteins contain multiple types of ELMs, in striking similarity to complex regulatory modules in host proteins, suggesting that ELMs may act combinatorially to assist viral replication. Furthermore, a simple evolutionary model suggests that the inherent structural simplicity of ELMs often enables them to tolerate mutations and evolve quickly. Our findings suggest that ELMs may allow fast rewiring of host-virus interactions, which likely assists rapid viral evolution and adaptation to diverse environments.
Collapse
Affiliation(s)
- Tzachi Hagai
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA
| | - Ariel Azia
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - M Madan Babu
- The Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA.
| |
Collapse
|
78
|
Schaefer U, Ho JSY, Prinjha RK, Tarakhovsky A. The "histone mimicry" by pathogens. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2014; 78:81-90. [PMID: 24733380 DOI: 10.1101/sqb.2013.78.020339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the defining characteristics of human and animal viruses is their ability to suppress host antiviral responses. Viruses express proteins that impair the detection of viral nucleic acids by host pattern-recognition receptors, block signaling pathways that lead to the synthesis of type I interferons and other cytokines, or prevent the activation of virus-induced genes. We have identified a novel mechanism of virus-mediated suppression of antiviral gene expression that relies on the presence of histone-like sequences (histone mimics) in viral proteins. We describe how viral histone mimics can interfere with key regulators of gene expression and contribute to the suppression of antiviral responses. We also describe how viral histone mimics can facilitate the identification of novel mechanisms of antiviral gene regulation and lead to the development of drugs that use histone mimicry for interference with gene expression during diseases.
Collapse
Affiliation(s)
- Uwe Schaefer
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York 10065
| | - Jessica S Y Ho
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York 10065 Laboratory of Methyltransferases in Development and Disease, Institute of Molecular and Cell Biology (IMCB), Singapore 138673
| | - Rab K Prinjha
- Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage SG1 2NY, United Kingdom
| | - Alexander Tarakhovsky
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York 10065
| |
Collapse
|
79
|
Gfeller D, Ernst A, Jarvik N, Sidhu SS, Bader GD. Prediction and experimental characterization of nsSNPs altering human PDZ-binding motifs. PLoS One 2014; 9:e94507. [PMID: 24722214 PMCID: PMC3983204 DOI: 10.1371/journal.pone.0094507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/17/2014] [Indexed: 01/03/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) are a major contributor to genetic and phenotypic variation within populations. Non-synonymous SNPs (nsSNPs) modify the sequence of proteins and can affect their folding or binding properties. Experimental analysis of all nsSNPs is currently unfeasible and therefore computational predictions of the molecular effect of nsSNPs are helpful to guide experimental investigations. While some nsSNPs can be accurately characterized, for instance if they fall into strongly conserved or well annotated regions, the molecular consequences of many others are more challenging to predict. In particular, nsSNPs affecting less structured, and often less conserved regions, are difficult to characterize. Binding sites that mediate protein-protein or other protein interactions are an important class of functional sites on proteins and can be used to help interpret nsSNPs. Binding sites targeted by the PDZ modular peptide recognition domain have recently been characterized. Here we use this data to show that it is possible to computationally identify nsSNPs in PDZ binding motifs that modify or prevent binding to the proteins containing the motifs. We confirm these predictions by experimentally validating a selected subset with ELISA. Our work also highlights the importance of better characterizing linear motifs in proteins as many of these can be affected by genetic variations.
Collapse
Affiliation(s)
- David Gfeller
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, Lausanne, Switzerland
| | - Andreas Ernst
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Nick Jarvik
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S. Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gary D. Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
80
|
Abstract
Intrinsically disordered proteins (IDPs) and IDP regions fail to form a stable structure, yet they exhibit biological activities. Their mobile flexibility and structural instability are encoded by their amino acid sequences. They recognize proteins, nucleic acids, and other types of partners; they accelerate interactions and chemical reactions between bound partners; and they help accommodate posttranslational modifications, alternative splicing, protein fusions, and insertions or deletions. Overall, IDP-associated biological activities complement those of structured proteins. Recently, there has been an explosion of studies on IDP regions and their functions, yet the discovery and investigation of these proteins have a long, mostly ignored history. Along with recent discoveries, we present several early examples and the mechanisms by which IDPs contribute to function, which we hope will encourage comprehensive discussion of IDPs and IDP regions in biochemistry textbooks. Finally, we propose future directions for IDP research.
Collapse
Affiliation(s)
- Christopher J Oldfield
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202; ,
| | | |
Collapse
|
81
|
Texier Y, Toedt G, Gorza M, Mans DA, van Reeuwijk J, Horn N, Willer J, Katsanis N, Roepman R, Gibson TJ, Ueffing M, Boldt K. Elution profile analysis of SDS-induced subcomplexes by quantitative mass spectrometry. Mol Cell Proteomics 2014; 13:1382-91. [PMID: 24563533 DOI: 10.1074/mcp.o113.033233] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analyzing the molecular architecture of native multiprotein complexes via biochemical methods has so far been difficult and error prone. Protein complex isolation by affinity purification can define the protein repertoire of a given complex, yet, it remains difficult to gain knowledge of its substructure or modular composition. Here, we introduce SDS concentration gradient induced decomposition of protein complexes coupled to quantitative mass spectrometry and in silico elution profile distance analysis. By applying this new method to a cellular transport module, the IFT/lebercilin complex, we demonstrate its ability to determine modular composition as well as sensitively detect known and novel complex components. We show that the IFT/lebercilin complex can be separated into at least five submodules, the IFT complex A, the IFT complex B, the 14-3-3 protein complex and the CTLH complex, as well as the dynein light chain complex. Furthermore, we identify the protein TULP3 as a potential new member of the IFT complex A and showed that several proteins, classified as IFT complex B-associated, are integral parts of this complex. To further demonstrate EPASIS general applicability, we analyzed the modular substructure of two additional complexes, that of B-RAF and of 14-3-3-ε. The results show, that EPASIS provides a robust as well as sensitive strategy to dissect the substructure of large multiprotein complexes in a highly time- as well as cost-effective manner.
Collapse
Affiliation(s)
- Yves Texier
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes. Proc Natl Acad Sci U S A 2014; 111:2542-7. [PMID: 24550280 DOI: 10.1073/pnas.1312296111] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins β-PIX, plakophilin-4, and guanylate cyclase soluble subunit α-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-μM range. Furthermore, we identified several well-established host-virus protein-protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions.
Collapse
|
83
|
Beltrao P, Bork P, Krogan NJ, van Noort V. Evolution and functional cross-talk of protein post-translational modifications. Mol Syst Biol 2013; 9:714. [PMID: 24366814 PMCID: PMC4019982 DOI: 10.1002/msb.201304521] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 12/19/2022] Open
Abstract
Protein post-translational modifications (PTMs) allow the cell to regulate protein activity and play a crucial role in the response to changes in external conditions or internal states. Advances in mass spectrometry now enable proteome wide characterization of PTMs and have revealed a broad functional role for a range of different types of modifications. Here we review advances in the study of the evolution and function of PTMs that were spurred by these technological improvements. We provide an overview of studies focusing on the origin and evolution of regulatory enzymes as well as the evolutionary dynamics of modification sites. Finally, we discuss different mechanisms of altering protein activity via post-translational regulation and progress made in the large-scale functional characterization of PTM function.
Collapse
Affiliation(s)
- Pedro Beltrao
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)CambridgeUK
| | - Peer Bork
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Max‐Delbruck‐Centre for Molecular MedicineBerlin‐BuchGermany
| | - Nevan J. Krogan
- Department of Cellular and Molecular PharmacologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- California Institute for Quantitative BiosciencesSan FranciscoCaliforniaUSA
- J. David Gladstone InstitutesSan FranciscoCaliforniaUSA
| | - Vera van Noort
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
84
|
Abstract
Much of what is known about mammalian cell regulation has been achieved with the aid of transiently transfected cells. However, overexpression can violate balanced gene dosage, affecting protein folding, complex assembly and downstream regulation. To avoid these problems, genome engineering technologies now enable the generation of stable cell lines expressing modified proteins at (almost) native levels.
Collapse
Affiliation(s)
- Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | |
Collapse
|
85
|
Dinkel H, Van Roey K, Michael S, Davey NE, Weatheritt RJ, Born D, Speck T, Krüger D, Grebnev G, Kuban M, Strumillo M, Uyar B, Budd A, Altenberg B, Seiler M, Chemes LB, Glavina J, Sánchez IE, Diella F, Gibson TJ. The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res 2013; 42:D259-66. [PMID: 24214962 PMCID: PMC3964949 DOI: 10.1093/nar/gkt1047] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The eukaryotic linear motif (ELM http://elm.eu.org) resource is a hub for collecting, classifying and curating information about short linear motifs (SLiMs). For >10 years, this resource has provided the scientific community with a freely accessible guide to the biology and function of linear motifs. The current version of ELM contains ∼200 different motif classes with over 2400 experimentally validated instances manually curated from >2000 scientific publications. Furthermore, detailed information about motif-mediated interactions has been annotated and made available in standard exchange formats. Where appropriate, links are provided to resources such as switches.elm.eu.org and KEGG pathways.
Collapse
Affiliation(s)
- Holger Dinkel
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany, Department of Physiology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA, Structural Studies Division, MRC, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK, Ruprecht-Karls-Universität, 69117 Heidelberg, Germany, School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Co. Dublin, Republic of Ireland, Laboratory of Bioinformatics and Biostatistics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, WK Roentgena 5, 02-781 Warsaw, Poland, Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas Avenida Patricias Argentinas 435 CP 1405 Buenos Aires, Argentina and Departamento de Química Biológica and IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Gúiraldes 2160 CP 1428, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochem J 2013; 454:361-9. [PMID: 23988124 DOI: 10.1042/bj20130545] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of their pervasiveness in eukaryotic genomes and their unique properties, understanding the role that ID (intrinsically disordered) regions in proteins play in the interactome is essential for gaining a better understanding of the network. Especially critical in determining this role is their ability to bind more than one partner using the same region. Studies have revealed that proteins containing ID regions tend to take a central role in protein interaction networks; specifically, they act as hubs, interacting with multiple different partners across time and space, allowing for the co-ordination of many cellular activities. There appear to be three different modules within ID regions responsible for their functionally promiscuous behaviour: MoRFs (molecular recognition features), SLiMs (small linear motifs) and LCRs (low complexity regions). These regions allow for functionality such as engaging in the formation of dynamic heteromeric structures which can serve to increase local activity of an enzyme or store a collection of functionally related molecules for later use. However, the use of promiscuity does not come without a cost: a number of diseases that have been associated with ID-containing proteins seem to be caused by undesirable interactions occurring upon altered expression of the ID-containing protein.
Collapse
|
87
|
Van Roey K, Orchard S, Kerrien S, Dumousseau M, Ricard-Blum S, Hermjakob H, Gibson TJ. Capturing cooperative interactions with the PSI-MI format. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat066. [PMID: 24067240 PMCID: PMC3782717 DOI: 10.1093/database/bat066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The complex biological processes that control cellular function are mediated by intricate networks of molecular interactions. Accumulating evidence indicates that these interactions are often interdependent, thus acting cooperatively. Cooperative interactions are prevalent in and indispensible for reliable and robust control of cell regulation, as they underlie the conditional decision-making capability of large regulatory complexes. Despite an increased focus on experimental elucidation of the molecular details of cooperative binding events, as evidenced by their growing occurrence in literature, they are currently lacking from the main bioinformatics resources. One of the contributing factors to this deficiency is the lack of a computer-readable standard representation and exchange format for cooperative interaction data. To tackle this shortcoming, we added functionality to the widely used PSI-MI interchange format for molecular interaction data by defining new controlled vocabulary terms that allow annotation of different aspects of cooperativity without making structural changes to the underlying XML schema. As a result, we are able to capture cooperative interaction data in a structured format that is backward compatible with PSI-MI–based data and applications. This will facilitate the storage, exchange and analysis of cooperative interaction data, which in turn will advance experimental research on this fundamental principle in biology. Database URL:http://psi-mi-cooperativeinteractions.embl.de/
Collapse
Affiliation(s)
- Kim Van Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Proteomics Services, EMBL Outstation, European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK and UMR 5086 CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|