51
|
Zong Z, Zhang Z, Wu L, Zhang L, Zhou F. The Functional Deubiquitinating Enzymes in Control of Innate Antiviral Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002484. [PMID: 33511009 PMCID: PMC7816709 DOI: 10.1002/advs.202002484] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Indexed: 05/11/2023]
Abstract
Innate antiviral immunity is the first line of host defense against invading viral pathogens. Immunity activation primarily relies on the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Viral proteins or nucleic acids mainly engage three classes of PRRs: Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These receptors initiate a series of signaling cascades that lead to the production of proinflammatory cytokines and type I interferon (IFN-I) in response to viral infection. This system requires precise regulation to avoid aberrant activation. Emerging evidence has unveiled the crucial roles that the ubiquitin system, especially deubiquitinating enzymes (DUBs), play in controlling immune responses. In this review, an overview of the most current findings on the function of DUBs in the innate antiviral immune pathways is provided. Insights into the role of viral DUBs in counteracting host immune responses are also provided. Furthermore, the prospects and challenges of utilizing DUBs as therapeutic targets for infectious diseases are discussed.
Collapse
Affiliation(s)
- Zhi Zong
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Zhengkui Zhang
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
| | - Long Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Fangfang Zhou
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
52
|
Rasaei R, Sarodaya N, Kim KS, Ramakrishna S, Hong SH. Importance of Deubiquitination in Macrophage-Mediated Viral Response and Inflammation. Int J Mol Sci 2020; 21:ijms21218090. [PMID: 33138315 PMCID: PMC7662591 DOI: 10.3390/ijms21218090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/14/2023] Open
Abstract
Ubiquitination and deubiquitination play a fundamental role in the signaling pathways associated with innate and adaptive immune responses. Macrophages are key sentinels for the host defense, triggering antiviral and inflammatory responses against various invading pathogens. Macrophages recognize the genetic material of these pathogens as pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) through the activation of its pattern recognition receptors (PRRs), initiating the cascade of immune signaling, which leads to the production of pro- and anti-inflammatory cytokines that initiates the appropriate immune response. Macrophage-mediated immune response is highly regulated and tightly controlled by the ubiquitin system since its abnormal activation or dysregulation may result in the severe pathogenesis of numerous inflammatory and autoimmune diseases. Deubiquitinating enzymes (DUBs) play a crucial role in reversing the ubiquitination and controlling the magnitude of the immune response. During infection, pathogens manipulate the host defense system by regulating DUBs to obtain nutrients and increase proliferation. Indeed, the regulation of DUBs by small molecule inhibitors has been proposed as an excellent way to control aberrant activation of immune signaling molecules. This review is focused on the complex role of DUBs in macrophage-mediated immune response, exploring the potential use of DUBs as therapeutic targets in autoimmune and inflammatory diseases by virtue of small molecule DUB inhibitors.
Collapse
Affiliation(s)
- Roya Rasaei
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (K.-S.K.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (K.-S.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (K.-S.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: or (S.R.); or (S.-H.H.)
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: or (S.R.); or (S.-H.H.)
| |
Collapse
|
53
|
Xu W, Rush JS, Graham DB, Cao Z, Xavier RJ. USP15 Deubiquitinates CARD9 to Downregulate C-Type Lectin Receptor-Mediated Signaling. Immunohorizons 2020; 4:670-678. [PMID: 33093067 PMCID: PMC7758836 DOI: 10.4049/immunohorizons.2000036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
Posttranslational modifications are efficient means to rapidly regulate protein function in response to a stimulus. Although ubiquitination events and the E3 ubiquitin ligases involved are increasingly characterized in many signaling pathways, their regulation by deubiquitinating enzymes remains less understood. The C-type lectin receptor (CLR) signaling adaptor CARD9 was previously reported to be activated via TRIM62-mediated ubiquitination. In this study, we identify the deubiquitinase USP15 as a novel regulator of CARD9, demonstrating that USP15 constitutively associates with CARD9 and removes TRIM62-deposited ubiquitin marks. Furthermore, USP15 knockdown and knockout specifically enhance CARD9-dependent CLR signaling in both mouse and human immune cells. Altogether, our study identifies a novel regulator of innate immune signaling and provides a blueprint for the identification of additional deubiquitinases that are likely to control these processes.
Collapse
Affiliation(s)
- Wenting Xu
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; and
| | - Jason S Rush
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Daniel B Graham
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Zhifang Cao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
54
|
USP15 Deubiquitinates TUT1 Associated with RNA Metabolism and Maintains Cerebellar Homeostasis. Mol Cell Biol 2020; 40:MCB.00098-20. [PMID: 32839293 DOI: 10.1128/mcb.00098-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022] Open
Abstract
Precise regulation of RNA metabolism is crucial for dynamic gene expression and controlling cellular functions. In the nervous system, defects in RNA metabolism are implicated in the disturbance of brain homeostasis and development. Here, we report that deubiquitinating enzyme, ubiquitin specific peptidase 15 (USP15), deubiquitinates terminal uridylyl transferase 1 (TUT1) and changes global RNA metabolism. We found that the expression of USP15 redistributes TUT1 from the nucleolus to nucleoplasm, resulting in the stabilization of U6 snRNA. We also found that lack of the Usp15 gene induces an impairment in motor ability with an unconventional cerebellar formation. Moreover, inhibition of the USP15-TUT1 cascade triggered mild and chronic endoplasmic reticulum (ER) stress. Therefore, our results suggest that USP15 is crucial for mRNA metabolism and maintains a healthy brain. These findings provide a possibility that disturbance of the USP15-TUT1 cascade induces chronic and mild ER stress, leading to an acceleration of the neurodegenerative phenotype.
Collapse
|
55
|
TRIM Proteins and Their Roles in the Influenza Virus Life Cycle. Microorganisms 2020; 8:microorganisms8091424. [PMID: 32947942 PMCID: PMC7565951 DOI: 10.3390/microorganisms8091424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) has been recognized for regulating fundamental cellular processes, followed by induction of proteasomal degradation of target proteins, and triggers multiple signaling pathways that are crucial for numerous aspects of cellular physiology. Especially tripartite motif (TRIM) proteins, well-known E3 ubiquitin ligases, emerge as having critical roles in several antiviral signaling pathways against varying viral infections. Here we highlight recent advances in the study of antiviral roles of TRIM proteins toward influenza virus infection in terms of the modulation of pathogen recognition receptor (PRR)-mediated innate immune sensing, direct obstruction of influenza viral propagation, and participation in virus-induced autophagy.
Collapse
|
56
|
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are key sensors of virus infection, mediating the transcriptional induction of type I interferons and other genes that collectively establish an antiviral host response. Recent studies have revealed that both viral and host-derived RNAs can trigger RLR activation; this can lead to an effective antiviral response but also immunopathology if RLR activities are uncontrolled. In this Review, we discuss recent advances in our understanding of the types of RNA sensed by RLRs in the contexts of viral infection, malignancies and autoimmune diseases. We further describe how the activity of RLRs is controlled by host regulatory mechanisms, including RLR-interacting proteins, post-translational modifications and non-coding RNAs. Finally, we discuss key outstanding questions in the RLR field, including how our knowledge of RLR biology could be translated into new therapeutics.
Collapse
Affiliation(s)
- Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
57
|
Chen LL, Smith MD, Lv L, Nakagawa T, Li Z, Sun SC, Brown NG, Xiong Y, Xu YP. USP15 suppresses tumor immunity via deubiquitylation and inactivation of TET2. SCIENCE ADVANCES 2020; 6:6/38/eabc9730. [PMID: 32948596 PMCID: PMC7500937 DOI: 10.1126/sciadv.abc9730] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/06/2020] [Indexed: 05/10/2023]
Abstract
TET2 DNA dioxygenase is frequently mutated in human hematopoietic malignancies and functionally inactivated in many solid tumors through a nonmutational mechanism. We recently found that TET2 mediates the interferon-JAK-STAT pathway to stimulate chemokine expression and tumor infiltration of lymphocytes (TILs). TET2 is monoubiquitylated at K1299, which promotes its activity. Here, we report that USP15 is a TET2 deubiquitinase and inhibitor. USP15 catalyzes the removal of K1299-linked monoubiquitin and negatively regulates TET2 activity. Gene expression profiling demonstrates that TET2 and USP15 oppositely regulate genes involved in multiple inflammatory pathways, and TET2 is a major target of USP15 function. Deletion of Usp15 in melanoma stimulates chemokine expression and TILs in a TET2-dependent manner, leading to increased response to immunotherapy and extended life span of tumor-bearing mice. These results reveal a previously unknown regulator of TET2 activity and suggest USP15 as a potential therapeutic target for immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Lei-Lei Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew D Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lei Lv
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tadashi Nakagawa
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhijun Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yan-Ping Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
58
|
Sun YL, Guan XL, Zhang P, Li MF, Zhang J, Sun L. Pol-miR-363-3p plays a significant role in the immune defense of Japanese flounder Paralichthys olivaceus against bacterial and viral infection. FISH & SHELLFISH IMMUNOLOGY 2020; 104:439-446. [PMID: 32561457 DOI: 10.1016/j.fsi.2020.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, we examined the function of a Japanese flounder (Paralichthys olivaceus) microRNA (miRNA), pol-miR-363-3p. We found that pol-miR-363-3p targets an ubiquitin-specific protease (USP), USP32. USP is a family of deubiquitinating enzymes essential to the functioning of the ubiquitin proteasome system. In mammals, USP32 is known to be associated with cancer and immunity. In fish, the function of USP32 is unknown. We found that flounder USP32 (PoUSP32) expression was detected in the major tissues of flounder, particularly intestine. In vitro and in vivo studies showed that pol-miR-363-3p directly regulated PoUSP32 in a negative manner by interaction with the 3'UTR of PoUSP32. Overexpression of pol-miR-363-3p or interference with PoUSP32 expression in flounder cells significantly blocked Streptococcus iniae infection. Consistently, in vivo knockdown of pol-miR-363-3p or overexpression of PoUSP32 enhanced dissemination of S. iniae in flounder tissues, whereas in vivo knockdown of PoUSP32 inhibited S. iniae dissemination. In addition, pol-miR-363-3p knockdown also significantly promoted the tissue dissemination of the viral pathogen megalocytivirus, which, as well as S. iniae, regulated pol-miR-363-3p expression. Together these results revealed an important role of pol-miR-363-3p in flounder immune defense against bacterial and viral infection.
Collapse
Affiliation(s)
- Yan-Ling Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Zhang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mo-Fei Li
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
59
|
Jia P, Zhang W, Xiang Y, Lu X, Liu W, Jia K, Yi M. Ubiquitin-specific protease 5 was involved in the interferon response to RGNNV in sea perch (Lateolabrax japonicus). FISH & SHELLFISH IMMUNOLOGY 2020; 103:239-247. [PMID: 32437860 DOI: 10.1016/j.fsi.2020.04.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/25/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Deubiquitinases are widely involved in the regulation of the virus-triggered type I interferon (IFN) signaling. Here, we found sea perch (Lateolabrax japonicus) ubiquitin-specific protease 5 (LjUSP5) was a negative regulatory factor of the red-spotted grouper nervous necrosis virus (RGNNV)-triggered IFN response. LjUSP5 encoded a polypeptide of 830 amino acids, containing a zinc finger UBP domain (residues 197-270 aa), two ubiquitin-associated domains (residues 593-607 aa; 628-665 aa), and one UBP domain (residues 782-807 aa), and shared the closest genetic relationship with the USP5 of Larimichthys crocea. Quantitative RT-PCR analysis showed that LjUSP5 was ubiquitously expressed and up-regulated significantly in all inspected tissues post RGNNV infection, and its transcripts significantly increased in brain, liver and kidney tissues post RGNNV infection. LjUSP5 was up-regulated in cultured LJB cells after poly I:C and RGNNV treatments. In addition, overexpression of LjUSP5 significantly inhibited the activation of zebrafish IFN 1 promoter and promoted RGNNV replication in vitro. Furthermore, LjUSP5 inhibited the activation of zebrafish IFN 1 promoter induced by key genes of retinoic acid-inducible gene I-like receptors signaling pathway. Our findings provides useful information for further elucidating the mechanism underlying NNV infection.
Collapse
Affiliation(s)
- Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Yangxi Xiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Xiaobing Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| |
Collapse
|
60
|
Ubiquitin-Conjugating Enzyme 2S Enhances Viral Replication by Inhibiting Type I IFN Production through Recruiting USP15 to Deubiquitinate TBK1. Cell Rep 2020; 32:108044. [DOI: 10.1016/j.celrep.2020.108044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/04/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
|
61
|
Wang Y, Zhou L, Lu J, Jiang B, Liu C, Guo J. USP4 function and multifaceted roles in cancer: a possible and potential therapeutic target. Cancer Cell Int 2020; 20:298. [PMID: 32669974 PMCID: PMC7350758 DOI: 10.1186/s12935-020-01391-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer remains one of the major culprits causing disease-related deaths and leads to a high morbidity and similar mortality. Insidious onset, difficult early detection and a lack of broad-spectrum and effective multi-cancer therapeutic targets have limited the prolongation of cancer patients’ survival for decades. Therefore, a versatile therapeutic target which is involved in various cancer-related signaling pathways and different cancers may be more effective for cancer targeted therapy. USP4, one of the DUBs members which participates in deubiquitination, an inverse process of ubiquitination, can regulate various classical cancer-related signaling pathways, and thereby plays a vital role in some pathological and physiological processes including tumor initiation and progression. Recently, USP4 has been found to exert versatile influences on cells proliferation, migration and invasion, also apoptosis of various tumors. Moreover, USP4 can also act as a prognostic biomarker in several cancers. This review will give a comprehensive introduction of USP4 about its regulatory mechanisms, related signaling pathways, pathophysiological functions and the roles in various cancers which may help us better understand its biological functions and improve future studies to construct suitable USP4-targeted cancer therapy system.
Collapse
Affiliation(s)
- Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Jun Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Bolun Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Chengxi Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| |
Collapse
|
62
|
Zhu Q, Yu T, Gan S, Wang Y, Pei Y, Zhao Q, Pei S, Hao S, Yuan J, Xu J, Hou F, Wu X, Peng C, Wu P, Qin J, Xiao Y. TRIM24 facilitates antiviral immunity through mediating K63-linked TRAF3 ubiquitination. J Exp Med 2020; 217:e20192083. [PMID: 32324863 PMCID: PMC7336305 DOI: 10.1084/jem.20192083] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/26/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ubiquitination is an essential mechanism in the control of antiviral immunity upon virus infection. Here, we identify a series of ubiquitination-modulating enzymes that are modulated by vesicular stomatitis virus (VSV). Notably, TRIM24 is down-regulated through direct transcriptional suppression induced by VSV-activated IRF3. Reducing or ablating TRIM24 compromises type I IFN (IFN-I) induction upon RNA virus infection and thus renders mice more sensitive to VSV infection. Mechanistically, VSV infection induces abundant TRIM24 translocation to mitochondria, where TRIM24 binds with TRAF3 and directly mediates K63-linked TRAF3 ubiquitination at K429/K436. This modification of TRAF3 enables its association with MAVS and TBK1, which consequently activates downstream antiviral signaling. Together, these findings establish TRIM24 as a critical positive regulator in controlling the activation of antiviral signaling and describe a previously unknown mechanism of TRIM24 function.
Collapse
Affiliation(s)
- Qingchen Zhu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tao Yu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shucheng Gan
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yifei Pei
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qifan Zhao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Siyu Pei
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shumeng Hao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jia Yuan
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Xu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fajian Hou
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, China
| | - Jun Qin
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
63
|
Oshiumi H. Recent Advances and Contradictions in the Study of the Individual Roles of Ubiquitin Ligases That Regulate RIG-I-Like Receptor-Mediated Antiviral Innate Immune Responses. Front Immunol 2020; 11:1296. [PMID: 32670286 PMCID: PMC7326816 DOI: 10.3389/fimmu.2020.01296] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
RIG-I and MDA5 are cytoplasmic viral RNA sensors and are essential for antiviral innate immune responses, such as type I interferon production. Post-translational modification is critical for the activation and inactivation of RIG-I and MDA5. At least seven ubiquitin ligases have been reported to be involved in either K63- or K48-linked polyubiquitination of RIG-I and MDA5, and these ubiquitin ligases are further regulated by other factors. TRIM25 is an E3 ubiquitin ligase that delivers a K63-linked polyubiquitin moiety to the caspase activation and recruitment domains (CARDs) of RIG-I, thereby activating the antiviral innate immune response. Recent studies have shown that NDR2, ZCCHC3, and Lnczc3h7a promote TRIM25-mediated RIG-I activation. Riplet is another ubiquitin ligase that mediates the K63-linked polyubiquitination of the C-terminal domain (CTD) of RIG-I; however, it was also reported that Riplet delivers the K63-linked polyubiquitin moiety to the CARDs of RIG-I as well as to the CTD, thereby activating RIG-I. Further, there are several factors that attenuate the activation of RIG-I and MDA5. RNF125, TRIM40, and c-Cbl mediate K48-linked polyubiquitination and induce degradation of RIG-I and/or MDA5. USP21 and CYLD remove the K63-linked polyubiquitin chain from RIG-I, and NLRP12 inhibits polyubiquitin-mediated RIG-I activation. Although these new regulators have been reported, their distinctive roles and functional differences remain elusive, and in some cases, studies on the topic are contradictory to each other. In the present review, recent studies related to post-translational modifications of RIG-I and MDA5 are summarized, and several controversies and unanswered questions in this field are discussed.
Collapse
Affiliation(s)
- Hiroyuki Oshiumi
- Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
64
|
Zhang X, Chu H, Wen L, Shuai H, Yang D, Wang Y, Hou Y, Zhu Z, Yuan S, Yin F, Chan JFW, Yuen KY. Competing endogenous RNA network profiling reveals novel host dependency factors required for MERS-CoV propagation. Emerg Microbes Infect 2020; 9:733-746. [PMID: 32223537 PMCID: PMC7170352 DOI: 10.1080/22221751.2020.1738277] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) are an integral component of the host competitive endogenous RNA (ceRNA) network. These noncoding RNAs are characterized by their unique splicing reactions to form covalently closed loop structures and play important RNA regulatory roles in cells. Recent studies showed that circRNA expressions were perturbed in viral infections and circRNAs might serve as potential antiviral targets. We investigated the host ceRNA network changes and biological relevance of circRNAs in human lung adenocarcinoma epithelial (Calu-3) cells infected with the highly pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV). A total of ≥49337 putative circRNAs were predicted. Among the 7845 genes which generated putative circRNAs, 147 (1.9%) of them each generated ≥30 putative circRNAs and were involved in various biological, cellular, and metabolic processes, including viral infections. Differential expression (DE) analysis showed that the proportion of DE circRNAs significantly (P < 0.001) increased at 24 h-post infection. These DE circRNAs were clustered into 4 groups according to their time-course expression patterns and demonstrated inter-cluster and intra-cluster variations in the predicted functions of their host genes. Our comprehensive circRNA-miRNA-mRNA network identified 7 key DE circRNAs involved in various biological processes upon MERS-CoV infection. Specific siRNA knockdown of two selected DE circRNAs (circFNDC3B and circCNOT1) significantly reduced MERS-CoV load and their target mRNA expression which modulates various biological pathways, including the mitogen-activated protein kinase (MAPK) and ubiquitination pathways. These results provided novel insights into the ceRNA network perturbations, biological relevance of circRNAs, and potential host-targeting antiviral strategies for MERS-CoV infection.
Collapse
Affiliation(s)
- Xi Zhang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Lei Wen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Dong Yang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Yixin Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Yuxin Hou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Zheng Zhu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Pathogen Biology, Hainan Medical University, Haikou, People's Republic of China.,Key Laboratory of Translational Tropical Medicine of Ministry of Education, Hainan Medical University, Haikou, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Kwok-Yung Yuen
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
65
|
Liu W, Jin Y, Zhang W, Xiang Y, Jia P, Yi M, Jia K. MiR-202-5p Inhibits RIG-I-Dependent Innate Immune Responses to RGNNV Infection by Targeting TRIM25 to Mediate RIG-I Ubiquitination. Viruses 2020; 12:v12030261. [PMID: 32120903 PMCID: PMC7150862 DOI: 10.3390/v12030261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
The RIG-I-like receptors (RLRs) signaling pathway is essential for inducing type I interferon (IFN) responses to viral infections. Meanwhile, it is also tightly regulated to prevent uncontrolled immune responses. Numerous studies have shown that microRNAs (miRNAs) are essential for the regulation of immune processes, however, the detailed molecular mechanism of miRNA regulating the RLRs signaling pathway remains to be elucidated. Here, our results showed that miR-202-5p was induced by red spotted grouper nervous necrosis virus (RGNNV) infection in zebrafish. Overexpression of miR-202-5p led to reduced expression of IFN 1 and its downstream antiviral genes, thus facilitating viral replication in vitro. In comparison, significantly enhanced levels of IFN 1 and antiviral genes and significantly low viral burden were observed in the miR-202-5p-/- zebrafish compared to wild type zebrafish. Subsequently, zebrafish tripartite motif-containing protein 25 (zbTRIM25) was identified as a target of miR-202-5p in both zebrafish and humans. Ectopic expression of miR-202-5p suppressed zbTRIM25-mediated RLRs signaling pathway. Furthermore, we showed that miR-202-5p inhibited zbTRIM25-mediated zbRIG-I ubiquitination and activation of IFN production. In conclusion, we demonstrate that RGNNV-inducible miR-202-5p acts as a negative regulator of zbRIG-I-triggered antiviral innate response by targeting zbTRIM25. Our study reveals a novel mechanism for the evasion of the innate immune response controlled by RGNNV.
Collapse
Affiliation(s)
- Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
| | - Yilin Jin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
| | - Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
| | - Yangxi Xiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
| | - Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong 510275, China
- Correspondence:
| |
Collapse
|
66
|
Jahan AS, Biquand E, Muñoz-Moreno R, Le Quang A, Mok CKP, Wong HH, Teo QW, Valkenburg SA, Chin AWH, Man Poon LL, Te Velthuis A, García-Sastre A, Demeret C, Sanyal S. OTUB1 Is a Key Regulator of RIG-I-Dependent Immune Signaling and Is Targeted for Proteasomal Degradation by Influenza A NS1. Cell Rep 2020; 30:1570-1584.e6. [PMID: 32023470 DOI: 10.1016/j.celrep.2020.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/21/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
Deubiquitylases (DUBs) regulate critical signaling pathways at the intersection of host immunity and viral pathogenesis. Although RIG-I activation is heavily dependent on ubiquitylation, systematic analyses of DUBs that regulate this pathway have not been performed. Using a ubiquitin C-terminal electrophile, we profile DUBs that function during influenza A virus (IAV) infection and isolate OTUB1 as a key regulator of RIG-I-dependent antiviral responses. Upon infection, OTUB1 relocalizes from the nucleus to mitochondrial membranes together with RIG-I, viral PB2, and NS1. Its expression depends on competing effects of interferon stimulation and IAV-triggered degradation. OTUB1 activates RIG-I via a dual mechanism of K48 polyubiquitin hydrolysis and formation of an E2-repressive complex with UBCH5c. We reconstitute this mechanism in a cell-free system comprising [35S]IRF3, purified RIG-I, mitochondrial membranes, and cytosol expressing OTUB1 variants. A range of IAV NS1 proteins trigger proteasomal degradation of OTUB1, antagonizing the RIG-I signaling cascade and antiviral responses.
Collapse
Affiliation(s)
- Akhee Sabiha Jahan
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Elise Biquand
- Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université de Paris, Institut Pasteur, Paris, France
| | - Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Agathe Le Quang
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Chris Ka-Pun Mok
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Ho Him Wong
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Qi Wen Teo
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Alex W H Chin
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Leo Lit Man Poon
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Artejan Te Velthuis
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Caroline Demeret
- Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université de Paris, Institut Pasteur, Paris, France
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong; School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong.
| |
Collapse
|
67
|
Zhou Q, Cheng C, Wei Y, Yang J, Zhou W, Song Q, Ke M, Yan W, Zheng L, Zhang Y, Huang K. USP15 potentiates NF-κB activation by differentially stabilizing TAB2 and TAB3. FEBS J 2020; 287:3165-3183. [PMID: 31903660 DOI: 10.1111/febs.15202] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/29/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor α (TNFα)- and interleukin 1β (IL-1β)-induced nuclear factor-κB (NF-κB) activation play key roles in inflammation, immunity, and cancer development. Here, we identified one of the deubiquitinating enzymes (DUBs), ubiquitin-specific protease 15 (USP15), as a positive regulator in both TNFα- and IL-1β-induced NF-κB activation. Overexpression of USP15 potentiated TNFα- or IL-1β-triggered NF-κB activation and downstream gene transcription, whereas knockdown of USP15 had opposite effects. Mechanistically, upon TNFα stimulation, USP15 showed an enhanced interaction with transforming growth factor-β activated kinase-1 (TAK1)-TAK1 binding protein (TAB) complex to inhibit the proteolysis of TAB2/3 by different pathways. Apart from deubiquitination dependently inducing cleavage of lysine 48-linked TAB2 ubiquitination, USP15 also DUB independently inhibited lysosome-associated TAB2 degradation, thus enhanced TAB2 stabilization. For TAB3, USP15 inhibited NBR1-mediated selective autophagic TAB3 degradation independent of its deubiquitinating activity. Together, our results reveal a novel USP15-mediated mechanism through which efficient NF-κB activation is achieved by differentially maintaining the TAB2/3 stability.
Collapse
Affiliation(s)
- Qiaoqiao Zhou
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Cheng Cheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yujuan Wei
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jing Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wanzhu Zhou
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qiuyi Song
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Mengxiang Ke
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wanyao Yan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Yu Zhang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
68
|
Yang W, Gu Z, Zhang H, Hu H. To TRIM the Immunity: From Innate to Adaptive Immunity. Front Immunol 2020; 11:02157. [PMID: 33117334 PMCID: PMC7578260 DOI: 10.3389/fimmu.2020.02157] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/07/2020] [Indexed: 02/05/2023] Open
Abstract
The tripartite motif (TRIM) proteins have been intensively studied as essential modulators in various biological processes, especially in regulating a wide range of signaling pathways involved in immune responses. Most TRIM proteins have E3 ubiquitin ligase activity, mediating polyubiquitination of target proteins. Emerging evidence demonstrates that TRIM proteins play important roles in innate immunity by regulating pattern recognition receptors, vital adaptor proteins, kinases, and transcription factors in innate immune signaling pathways. Additionally, the critical roles of TRIM proteins in adaptive immunity, especially in T cell development and activation, are increasingly appreciated. In this review, we aim to summarize the studies on TRIMs in both innate and adaptive immunity, focusing on their E3 ubiquitin ligase functions in pattern recognition receptor signaling pathways and T cell functions, shedding light on the developing new strategies for modulating innate and adaptive immune responses against invading pathogens and avoiding autoimmunity.
Collapse
Affiliation(s)
| | | | | | - Hongbo Hu
- *Correspondence: Huiyuan Zhang, ; Hongbo Hu,
| |
Collapse
|
69
|
Lee HC, Chathuranga K, Lee JS. Intracellular sensing of viral genomes and viral evasion. Exp Mol Med 2019; 51:1-13. [PMID: 31827068 PMCID: PMC6906418 DOI: 10.1038/s12276-019-0299-y] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
During viral infection, virus-derived cytosolic nucleic acids are recognized by host intracellular specific sensors. The efficacy of this recognition system is crucial for triggering innate host defenses, which then stimulate more specific adaptive immune responses against the virus. Recent studies show that signal transduction pathways activated by sensing proteins are positively or negatively regulated by many modulators to maintain host immune homeostasis. However, viruses have evolved several strategies to counteract/evade host immune reactions. These systems involve viral proteins that interact with host sensor proteins and prevent them from detecting the viral genome or from initiating immune signaling. In this review, we discuss key regulators of cytosolic sensor proteins and viral proteins based on experimental evidence.
Collapse
Affiliation(s)
- Hyun-Cheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
- Central Research Institute, Komipharm International Co., Ltd, Shiheung, 15094, Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
70
|
Jin Y, Jia K, Zhang W, Xiang Y, Jia P, Liu W, Yi M. Zebrafish TRIM25 Promotes Innate Immune Response to RGNNV Infection by Targeting 2CARD and RD Regions of RIG-I for K63-Linked Ubiquitination. Front Immunol 2019; 10:2805. [PMID: 31849979 PMCID: PMC6901795 DOI: 10.3389/fimmu.2019.02805] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
RIG-I-like receptors (RLRs) play important roles in response to virus infection by regulating host innate immune signaling pathways. Meanwhile, the RLR signaling pathway is also tightly regulated by host and virus to achieve the immune homeostasis between antiviral responses and virus survival. Here, we found that zebrafish TRIM25 (zbTRIM25) functioned as a positive regulator of RLR signaling pathway during red spotted grouper nervous necrosis virus (RGNNV) infection. Post-RGNNV infection, zbTRIM25 expression was obviously inhibited and ectopic expression of zbTRIM25 led to enhanced expression of RLR signaling pathway-related genes. Overexpression and knockdown analysis revealed that zbTRIM25 promoted zebrafish RIG-I (zbRIG-I)-mediated IFN signaling and inhibited RGNNV replication. Mechanistically, zbTRIM25 bound to zbRIG-I; in particular, the SPRY domain of zbTRIM25 interacted with the tandem caspase activation and recruitment domains (2CARD) and repressor domain (RD) regions of zbRIG-I. zbTRIM25 promoted the K63 polyubiquitination of 2CARD and RD regions of zbRIG-I. Furthermore, zbTRIM25-mediated zbRIG-I activation of IFN production was enhanced by K63-linked ubiquitin, indicating that zbTRIM25-mediated zbRIG-I polyubiquitination was essential for RIG-I-triggered IFN induction. In conclusion, these findings reveal a novel mechanism that zbTRIM25 positively regulates the innate immune response by targeting and promoting the K63-linked polyubiquitination of zbRIG-I.
Collapse
Affiliation(s)
- Yilin Jin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| | - Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| | - Yangxi Xiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| | - Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| |
Collapse
|
71
|
Quicke KM, Kim KY, Horvath CM, Suthar MS. RNA Helicase LGP2 Negatively Regulates RIG-I Signaling by Preventing TRIM25-Mediated Caspase Activation and Recruitment Domain Ubiquitination. J Interferon Cytokine Res 2019; 39:669-683. [PMID: 31237466 PMCID: PMC6820871 DOI: 10.1089/jir.2019.0059] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/07/2019] [Indexed: 01/05/2023] Open
Abstract
The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are a family of cytosolic pattern recognition receptors that play a critical role in binding viral RNA and triggering antiviral immune responses. The RLR LGP2 (or DHX58) is a known regulator of the RIG-I signaling pathway; however, the underlying mechanism by which LGP2 regulates RIG-I signaling is poorly understood. To better understand the effects of LGP2 on RIG-I-specific signaling and myeloid cell responses, we probed RIG-I signaling using a highly specific RIG-I agonist to compare transcriptional profiles between WT and Dhx58-/- C57BL\6 bone marrow-derived dendritic cells. Dhx58-/- cells exhibited a marked increase in the magnitude and kinetics of type I interferon (IFN) induction and a broader antiviral response as early as 1 h post-treatment. We determined that LGP2 inhibited RIG-I-mediated IFN-β, IRF-3, and NF-κB promoter activities, indicating a function upstream of the RLR adaptor protein mitochondrial antiviral signaling. Mutational analysis of LGP2 revealed that RNA binding, ATP hydrolysis, and the C-terminal domain fragment were dispensable for inhibiting RIG-I signaling. Using mass spectrometry, we discovered that LGP2 interacted with the E3 ubiquitin ligase TRIM25. Finally, we determined that LGP2 inhibited the TRIM25-mediated K63-specific ubiquitination of the RIG-I N-terminus required for signaling activation.
Collapse
Affiliation(s)
- Kendra M. Quicke
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kristin Y. Kim
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Curt M. Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| | - Mehul S. Suthar
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia
| |
Collapse
|
72
|
Kumar A, Kumar H. Long noncoding RNA: TRIMming the viral load. Cell Mol Immunol 2019; 16:843-845. [PMID: 31511644 PMCID: PMC6828744 DOI: 10.1038/s41423-019-0290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Akhilesh Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
73
|
Gupta S, Ylä-Anttila P, Sandalova T, Sun R, Achour A, Masucci MG. 14-3-3 scaffold proteins mediate the inactivation of trim25 and inhibition of the type I interferon response by herpesvirus deconjugases. PLoS Pathog 2019; 15:e1008146. [PMID: 31710640 PMCID: PMC6874091 DOI: 10.1371/journal.ppat.1008146] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/21/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
The 14-3-3 molecular scaffolds promote type I interferon (IFN) responses by stabilizing the interaction of RIG-I with the TRIM25 ligase. Viruses have evolved unique strategies to halt this cellular response to support their replication and spread. Here, we report that the ubiquitin deconjugase (DUB) encoded in the N-terminus of the Epstein-Barr virus (EBV) large tegument protein BPLF1 harnesses 14-3-3 molecules to promote TRIM25 autoubiquitination and sequestration of the ligase into inactive protein aggregates. Catalytically inactive BPLF1 induced K48-linked autoubiquitination and degradation of TRIM25 while the ligase was mono- or di-ubiquitinated in the presence of the active viral enzyme and formed cytosolic aggregates decorated by the autophagy receptor p62/SQSTM1. Aggregate formation and the inhibition of IFN response were abolished by mutations of solvent exposed residues in helix-2 of BPLF1 that prevented binding to 14-3-3 while preserving both catalytic activity and binding to TRIM25. 14-3-3 interacted with the Coiled-Coil (CC) domain of TRIM25 in in vitro pulldown, while BPLF1 interacted with both the CC and B-box domains, suggesting that 14-3-3 positions BPLF1 at the ends of the CC dimer, close to known autoubiquitination sites. Our findings provide a molecular understanding of the mechanism by which a viral deubiquitinase inhibits the IFN response and emphasize the role of 14-3-3 proteins in modulating antiviral defenses.
Collapse
Affiliation(s)
- Soham Gupta
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Päivi Ylä-Anttila
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Campus Solna, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Renhua Sun
- Science for Life Laboratory, Campus Solna, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Campus Solna, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
74
|
Taghizadeh E, Jahangiri S, Rostami D, Taheri F, Renani PG, Taghizadeh H, Gheibi Hayat SM. Roles of E6 and E7 Human Papillomavirus Proteins in Molecular Pathogenesis of Cervical Cancer. Curr Protein Pept Sci 2019; 20:926-934. [PMID: 31244421 DOI: 10.2174/1389203720666190618101441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/11/2019] [Accepted: 05/26/2019] [Indexed: 01/07/2023]
Abstract
Human papillomavirus (HPV) cancers are expected to be major global health concerns in the upcoming decades. The growth of HPV-positive cancer cells depends on the consistent expression of oncoprotein which has been poorly taken into account in the cellular communication. Among them, E6/E7 oncoproteins are attractive therapeutic targets as their inhibition rapidly leads to the onset of aging in HPV-positive cancer cells. This cellular response is associated with the regeneration of p53, pRb anti-proliferative proteins as well as the mTOR signaling pathway; hence, the identification of involved and application of E6/E7 inhibitors can lead to new therapeutic strategies. In the present review, we focused on the pathogenicity of E6/E7 Proteins of human papillomavirus and their roles associated with the cervical cancer.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sepideh Jahangiri
- Genetics department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Forough Taheri
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Hassan Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
75
|
Cao P, Luo WW, Li C, Tong Z, Zheng ZQ, Zhou L, Xiong Y, Li S. The heterogeneous nuclear ribonucleoprotein hnRNPM inhibits RNA virus-triggered innate immunity by antagonizing RNA sensing of RIG-I-like receptors. PLoS Pathog 2019; 15:e1007983. [PMID: 31433824 PMCID: PMC6703689 DOI: 10.1371/journal.ppat.1007983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Recognition of viral RNA by the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), including RIG-I and MDA5, initiates innate antiviral responses. Although regulation of RLR-mediated signal transduction has been extensively investigated, how the recognition of viral RNA by RLRs is regulated remains enigmatic. In this study, we identified heterogeneous nuclear ribonucleoprotein M (hnRNPM) as a negative regulator of RLR-mediated signaling. Overexpression of hnRNPM markedly inhibited RNA virus-triggered innate immune responses. Conversely, hnRNPM-deficiency increased viral RNA-triggered innate immune responses and inhibited replication of RNA viruses. Viral infection caused translocation of hnRNPM from the nucleus to the cytoplasm. hnRNPM interacted with RIG-I and MDA5, and impaired the binding of the RLRs to viral RNA, leading to inhibition of innate antiviral response. Our findings suggest that hnRNPM acts as an important decoy for excessive innate antiviral immune response.
Collapse
Affiliation(s)
- Pan Cao
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Wei-Wei Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (WWL); (SL)
| | - Chen Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhen Tong
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhou-Qin Zheng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lu Zhou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yong Xiong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
- * E-mail: (WWL); (SL)
| |
Collapse
|
76
|
Brisse M, Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front Immunol 2019; 10:1586. [PMID: 31379819 PMCID: PMC6652118 DOI: 10.3389/fimmu.2019.01586] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
RIG-I (Retinoic acid-inducible gene I) and MDA5 (Melanoma Differentiation-Associated protein 5), collectively known as the RIG-I-like receptors (RLRs), are key protein sensors of the pathogen-associated molecular patterns (PAMPs) in the form of viral double-stranded RNA (dsRNA) motifs to induce expression of type 1 interferons (IFN1) (IFNα and IFNβ) and other pro-inflammatory cytokines during the early stage of viral infection. While RIG-I and MDA5 share many genetic, structural and functional similarities, there is increasing evidence that they can have significantly different strategies to recognize different pathogens, PAMPs, and in different host species. This review article discusses the similarities and differences between RIG-I and MDA5 from multiple perspectives, including their structures, evolution and functional relationships with other cellular proteins, their differential mechanisms of distinguishing between host and viral dsRNAs and interactions with host and viral protein factors, and their immunogenic signaling. A comprehensive comparative analysis can help inform future studies of RIG-I and MDA5 in order to fully understand their functions in order to optimize potential therapeutic approaches targeting them.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| |
Collapse
|
77
|
The long noncoding RNA Lnczc3h7a promotes a TRIM25-mediated RIG-I antiviral innate immune response. Nat Immunol 2019; 20:812-823. [PMID: 31036902 DOI: 10.1038/s41590-019-0379-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/18/2019] [Indexed: 12/22/2022]
Abstract
The helicase RIG-I initiates an antiviral immune response after recognition of pathogenic RNA. TRIM25, an E3 ubiquitin ligase, mediates K63-linked ubiquitination of RIG-I, which is crucial for RIG-I downstream signaling and the antiviral innate immune response. The components and mode of the RIG-I-initiated innate signaling remain to be fully understood. Here we identify a novel long noncoding RNA (Lnczc3h7a) that binds to TRIM25 and promotes RIG-I-mediated antiviral innate immune responses. Depletion of Lnczc3h7a impairs RIG-I signaling and the antiviral innate response to RNA viruses in vitro and in vivo. Mechanistically, Lnczc3h7a binds to both TRIM25 and activated RIG-I, serving as a molecular scaffold for stabilization of the RIG-I-TRIM25 complex at the early stage of viral infection. Lnczc3h7a facilitates TRIM25-mediated K63-linked ubiquitination of RIG-I and thus promotes downstream signaling transduction. Our findings reveal that host RNAs can enhance the response of innate immune sensors to foreign RNAs, ensuring effective antiviral defense.
Collapse
|
78
|
USP15 Participates in Hepatitis C Virus Propagation through Regulation of Viral RNA Translation and Lipid Droplet Formation. J Virol 2019; 93:JVI.01708-18. [PMID: 30626683 DOI: 10.1128/jvi.01708-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) utilizes cellular factors for efficient propagation. Ubiquitin is covalently conjugated to the substrate to alter its stability or to modulate signal transduction. In this study, we examined the importance of ubiquitination for HCV propagation. We found that inhibition of deubiquitinating enzymes (DUBs) or overexpression of nonspecific DUBs impaired HCV replication, suggesting that ubiquitination regulates HCV replication. To identify specific DUBs involved in HCV propagation, we set up RNA interference (RNAi) screening against DUBs and successfully identified ubiquitin-specific protease 15 (USP15) as a novel host factor for HCV propagation. Our studies showed that USP15 is involved in translation of HCV RNA and production of infectious HCV particles. In addition, deficiency of USP15 in human hepatic cell lines (Huh7 and Hep3B/miR-122 cells) but not in a nonhepatic cell line (293T cells) impaired HCV propagation, suggesting that USP15 participates in HCV propagation through the regulation of hepatocyte-specific functions. Moreover, we showed that loss of USP15 had no effect on innate immune responses in vitro and in vivo We also found that USP15-deficient Huh7 cells showed reductions in the amounts of lipid droplets (LDs), and the addition of palmitic acids restored the production of infectious HCV particles. Taken together, these data suggest that USP15 participates in HCV propagation by regulating the translation of HCV RNA and the formation of LDs.IMPORTANCE Although ubiquitination has been shown to play important roles in the HCV life cycle, the roles of deubiquitinating enzymes (DUBs), which cleave ubiquitin chains from their substrates, in HCV propagation have not been investigated. Here, we identified USP15 as a DUB regulating HCV propagation. USP15 showed no interaction with viral proteins and no participation in innate immune responses. Deficiency of USP15 in Huh7 cells resulted in suppression of the translation of HCV RNA and reduction in the amounts of lipid droplets, and the addition of fatty acids partially restored the production of infectious HCV particles. These data suggest that USP15 participates in HCV propagation in hepatic cells through the regulation of viral RNA translation and lipid metabolism.
Collapse
|
79
|
Full F, van Gent M, Sparrer KMJ, Chiang C, Zurenski MA, Scherer M, Brockmeyer NH, Heinzerling L, Stürzl M, Korn K, Stamminger T, Ensser A, Gack MU. Centrosomal protein TRIM43 restricts herpesvirus infection by regulating nuclear lamina integrity. Nat Microbiol 2019; 4:164-176. [PMID: 30420784 PMCID: PMC6294671 DOI: 10.1038/s41564-018-0285-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Tripartite motif (TRIM) proteins mediate antiviral host defences by either directly targeting viral components or modulating innate immune responses. Here we identify a mechanism of antiviral restriction in which a TRIM E3 ligase controls viral replication by regulating the structure of host cell centrosomes and thereby nuclear lamina integrity. Through RNAi screening we identified several TRIM proteins, including TRIM43, that control the reactivation of Kaposi's sarcoma-associated herpesvirus. TRIM43 was distinguished by its ability to restrict a broad range of herpesviruses and its profound upregulation during herpesvirus infection as part of a germline-specific transcriptional program mediated by the transcription factor DUX4. TRIM43 ubiquitinates the centrosomal protein pericentrin, thereby targeting it for proteasomal degradation, which subsequently leads to alterations of the nuclear lamina that repress active viral chromatin states. Our study identifies a role of the TRIM43-pericentrin-lamin axis in intrinsic immunity, which may be targeted for therapeutic intervention against herpesviral infections.
Collapse
Affiliation(s)
- Florian Full
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Konstantin M J Sparrer
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | | | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Norbert H Brockmeyer
- Department of Dermatology, Venerology, and Allergology, Center for Sexual Health and Medicine, Ruhr University Bochum, Bochum, Germany
| | - Lucie Heinzerling
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Klaus Korn
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Armin Ensser
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
80
|
Li Y, Shi F, Hu J, Xie L, Bode AM, Cao Y. The Role of Deubiquitinases in Oncovirus and Host Interactions. JOURNAL OF ONCOLOGY 2019; 2019:2128410. [PMID: 31396277 PMCID: PMC6668545 DOI: 10.1155/2019/2128410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
Infection-related cancer comprises one-sixth of the global cancer burden. Oncoviruses can directly or indirectly contribute to tumorigenesis. Ubiquitination is a dynamic and reversible posttranslational modification that participates in almost all cellular processes. Hijacking of the ubiquitin system by viruses continues to emerge as a central theme around the viral life cycle. Deubiquitinating enzymes (DUBs) maintain ubiquitin homeostasis by removing ubiquitin modifications from target proteins, thereby altering protein function, stability, and signaling pathways, as well as acting as key mediators between the virus and its host. In this review, we focus on the multiple functions of DUBs in RIG-I-like receptors (RLRs) and stimulator of interferon genes (STING)-mediated antiviral signaling pathways, oncoviruses regulation of NF-κB activation, oncoviral life cycle, and the potential of DUB inhibitors as therapeutic strategies.
Collapse
Affiliation(s)
- Yueshuo Li
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Feng Shi
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Jianmin Hu
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Longlong Xie
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M. Bode
- 4The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- 1Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
- 2Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
- 3Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
- 5Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha 410078, China
- 6Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China
- 7National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China
| |
Collapse
|
81
|
Li H, Zhao Z, Ling J, Pan L, Zhao X, Zhu H, Yu J, Xie B, Shen J, Chen W. USP14 promotes K63-linked RIG-I deubiquitination and suppresses antiviral immune responses. Eur J Immunol 2019; 49:42-53. [PMID: 30466171 DOI: 10.1002/eji.201847603] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/15/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I) is a critical RNA virus sensor that initiates antiviral immune response through K63-linked ubiquitination. In this study, we demonstrated USP14, a deubiquitinating enzyme, as a negative regulator in antiviral responses by directly deubiquitinating K63-linked RIG-I. USP14 knockdown significantly enhanced RIG-I-triggered type I IFN signaling and inhibited vesicular stomatitis virus (VSV) replication both in mouse peritoneal macrophages and THP1 cells. USP14 overexpression in HeLa cells attenuated RIG-I-triggered IFN-β expression and promoted VSV replication. Besides, USP14-specific inhibitor, IU1, increased RIG-I-mediated type I IFN production and antiviral responses in vitro and in vivo. In addition, USP14 could interact with RIG-I and remove RIG-I K63-linked polyubiquitination chains. This article is the first to report that USP14 acts as a negative regulator in antiviral response through deubiquitinating K63-linked RIG-I. These findings provide insights into a potential new therapy targeting USP14 for RNA virus-related diseases.
Collapse
Affiliation(s)
- Hongrui Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zizhao Zhao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Ling
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linhui Pan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xibao Zhao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong Sheng, China
| | - Huihui Zhu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Yu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bin Xie
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL
| | - Weilin Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong Sheng, China
| |
Collapse
|
82
|
USP4 positively regulates RLR-induced NF-κB activation by targeting TRAF6 for K48-linked deubiquitination and inhibits enterovirus 71 replication. Sci Rep 2018; 8:13418. [PMID: 30194441 PMCID: PMC6128947 DOI: 10.1038/s41598-018-31734-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/24/2018] [Indexed: 12/25/2022] Open
Abstract
Retinoic acid-inducible gene I-like receptor (RLR) is one of the most important pattern recognition receptors of the innate immune system that detects positive and/or negative stranded RNA viruses. Subsequently, it stimulates downstream transcription of interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB) inducing the production of interferons (IFNs) and inflammatory cytokines. Tumour necrosis factor receptor associated factor 6 (TRAF6) is a key protein involved in the RLR-mediated antiviral signalling pathway, recruiting additional proteins to form a multiprotein complex capable of activating the NF-κB inflammatory pathway. Despite TRAF6 playing an important role in regulating host immunity and viral infection, the deubiquitination of TRAF6 induced by viral infection remains elusive. In this study, we found that enterovirus 71 (EV71) infection attenuated the expression of Ubiquitin-specific protease 4 (USP4) in vitro and in vivo, while overexpression of USP4 significantly suppressed EV71 replication. Furthermore, it was found that EV71 infection reduced the RLR signalling pathway and enhanced the degradation of TRAF6. USP4 was also found to interact with TRAF6 and positively regulate the RLR-induced NF-κB signalling pathway, inhibiting the replication of EV71. Therefore, as a novel positive regulator of TRAF6, USP4 plays an essential role in EV71 infection by deubiquitinating K48-linked ubiquitin chains.
Collapse
|
83
|
Abstract
Tripartite motif (TRIM) proteins are a versatile family of ubiquitin E3 ligases involved in a multitude of cellular processes. Studies in recent years have demonstrated that many TRIM proteins play central roles in the host defense against viral infection. While some TRIM proteins directly antagonize distinct steps in the viral life cycle, others regulate signal transduction pathways induced by innate immune sensors, thereby modulating antiviral cytokine responses. Furthermore, TRIM proteins have been implicated in virus-induced autophagy and autophagy-mediated viral clearance. Given the important role of TRIM proteins in antiviral restriction, it is not surprising that several viruses have evolved effective maneuvers to neutralize the antiviral action of specific TRIM proteins. Here, we describe the major antiviral mechanisms of TRIM proteins as well as viral strategies to escape TRIM-mediated host immunity.
Collapse
Affiliation(s)
- Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Konstantin M J Sparrer
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
84
|
Genetic analysis of cerebral malaria in the mouse model infected with Plasmodium berghei. Mamm Genome 2018; 29:488-506. [DOI: 10.1007/s00335-018-9752-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022]
|
85
|
Courtois G, Fauvarque MO. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018; 6:E43. [PMID: 29642643 PMCID: PMC6027159 DOI: 10.3390/biomedicines6020043] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.
Collapse
|
86
|
Chiang C, Pauli EK, Biryukov J, Feister KF, Meng M, White EA, Münger K, Howley PM, Meyers C, Gack MU. The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling. J Virol 2018; 92:e01737-17. [PMID: 29263274 PMCID: PMC5827370 DOI: 10.1128/jvi.01737-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a key pattern recognition receptor that senses viral RNA and interacts with the mitochondrial adaptor MAVS, triggering a signaling cascade that results in the production of type I interferons (IFNs). This signaling axis is initiated by K63-linked ubiquitination of RIG-I mediated by the E3 ubiquitin ligase TRIM25, which promotes the interaction of RIG-I with MAVS. USP15 was recently identified as an upstream regulator of TRIM25, stabilizing the enzyme through removal of degradative K48-linked polyubiquitin, ultimately promoting RIG-I-dependent cytokine responses. Here, we show that the E6 oncoprotein of human papillomavirus type 16 (HPV16) as well as of other HPV types form a complex with TRIM25 and USP15 in human cells. In the presence of E6, the K48-linked ubiquitination of TRIM25 was markedly increased, and in line with this, TRIM25 degradation was enhanced. Our results further showed that E6 inhibited the TRIM25-mediated K63-linked ubiquitination of RIG-I and its CARD-dependent interaction with MAVS. HPV16 E6, but not E7, suppressed the RIG-I-mediated induction of IFN-β, chemokines, and IFN-stimulated genes (ISGs). Finally, CRISPR-Cas9 gene targeting in human keratinocytes showed that the TRIM25-RIG-I-MAVS triad is important for eliciting an antiviral immune response to HPV16 infection. Our study thus identifies a novel immune escape mechanism that is conserved among different HPV strains and further indicates that the RIG-I signaling pathway plays an important role in the innate immune response to HPV infection.IMPORTANCE Persistent infection and tumorigenesis by HPVs are known to require viral manipulation of a variety of cellular processes, including those involved in innate immune responses. Here, we show that the HPV E6 oncoprotein antagonizes the activation of the cytoplasmic innate immune sensor RIG-I by targeting its upstream regulatory enzymes TRIM25 and USP15. We further show that the RIG-I signaling cascade is important for an antiviral innate immune response to HPV16 infection, providing evidence that RIG-I, whose role in sensing RNA virus infections has been well characterized, also plays a crucial role in the antiviral host response to small DNA viruses of the Papillomaviridae family.
Collapse
Affiliation(s)
- Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Eva-Katharina Pauli
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Biryukov
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Katharina F Feister
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa Meng
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karl Münger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
87
|
Li K, Zhong B. Regulation of Cellular Antiviral Signaling by Modifications of Ubiquitin and Ubiquitin-like Molecules. Immune Netw 2018; 18:e4. [PMID: 29503737 PMCID: PMC5833123 DOI: 10.4110/in.2018.18.e4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
The initiation of cellular antiviral signaling depends on host pattern-recognition receptors (PRRs)-mediated recognition of viral nucleic acids that are known as classical pathogen-associated molecular patterns (PAMPs). PRRs recruit adaptor proteins and kinases to activate transcription factors and epigenetic modifiers to regulate transcription of hundreds of genes, the products of which collaborate to elicit antiviral responses. In addition, PRRs-triggered signaling induces activation of various inflammasomes which leads to the release of IL-1β and inflammation. Recent studies have demonstrated that PRRs-triggered signaling is critically regulated by ubiquitin and ubiquitin-like molecules. In this review, we first summarize an updated understanding of cellular antiviral signaling and virus-induced activation of inflammasome and then focus on the regulation of key components by ubiquitin and ubiquitin-like molecules.
Collapse
Affiliation(s)
- Kang Li
- Department of Immunology, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Bo Zhong
- Department of Immunology, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China.,Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
88
|
Arimoto KI, Miyauchi S, Stoner SA, Fan JB, Zhang DE. Negative regulation of type I IFN signaling. J Leukoc Biol 2018; 103:1099-1116. [PMID: 29357192 DOI: 10.1002/jlb.2mir0817-342r] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Type I IFNs (α, β, and others) are a family of cytokines that are produced in physiological conditions as well as in response to the activation of pattern recognition receptors. They are critically important in controlling the host innate and adaptive immune response to viral and some bacterial infections, cancer, and other inflammatory stimuli. However, dysregulation of type I IFN production or response can contribute to immune pathologies termed "interferonopathies", pointing to the importance of balanced activating signals with tightly regulated mechanisms of tuning this signaling. Here, we summarize the recent advances of how type I IFN production and response are controlled at multiple levels of the type I IFN signaling cascade.
Collapse
Affiliation(s)
- Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Sayuri Miyauchi
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Samuel A Stoner
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jun-Bao Fan
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
89
|
Gupta S, Ylä-Anttila P, Callegari S, Tsai MH, Delecluse HJ, Masucci MG. Herpesvirus deconjugases inhibit the IFN response by promoting TRIM25 autoubiquitination and functional inactivation of the RIG-I signalosome. PLoS Pathog 2018; 14:e1006852. [PMID: 29357390 PMCID: PMC5794190 DOI: 10.1371/journal.ppat.1006852] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/01/2018] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
The N-terminal domains of the herpesvirus large tegument proteins encode a conserved cysteine protease with ubiquitin- and NEDD8-specific deconjugase activity. The proteins are expressed during the productive virus cycle and are incorporated into infectious virus particles, being delivered to the target cells upon primary infection. Members of this viral enzyme family were shown to regulate different aspects of the virus life cycle and the innate anti-viral response. However, only few substrates have been identified and the mechanisms of these effects remain largely unknown. In order to gain insights on the substrates and signaling pathways targeted by the viral enzymes, we have used co-immunoprecipitation and mass spectrometry to identify cellular proteins that interact with the Epstein-Barr virus encoded homologue BPLF1. Several members of the 14-3-3-family of scaffold proteins were found amongst the top hits of the BPLF1 interactome, suggesting that, through this interaction, BPLF1 may regulate a variety of cellular signaling pathways. Analysis of the shared protein-interaction network revealed that BPLF1 promotes the assembly of a tri-molecular complex including, in addition to 14-3-3, the ubiquitin ligase TRIM25 that participates in the innate immune response via ubiquitination of cytosolic pattern recognition receptor, RIG-I. The involvement of BPLF1 in the regulation of this signaling pathway was confirmed by inhibition of the type-I IFN responses in cells transfected with a catalytically active BPLF1 N-terminal domain or expressing the endogenous protein upon reactivation of the productive virus cycle. We found that the active viral enzyme promotes the dimerization and autoubiquitination of TRIM25. Upon triggering of the IFN response, RIG-I is recruited to the complex but ubiquitination is severely impaired, which functionally inactivates the RIG-I signalosome. The capacity to bind to and functionally inactivate the RIG-I signalosome is shared by the homologues encoded by other human herpesviruses.
Collapse
Affiliation(s)
- Soham Gupta
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Päivi Ylä-Anttila
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Simone Callegari
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ming-Han Tsai
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
90
|
Miorin L, Maestre AM, Fernandez-Sesma A, García-Sastre A. Antagonism of type I interferon by flaviviruses. Biochem Biophys Res Commun 2017; 492:587-596. [PMID: 28576494 PMCID: PMC5626595 DOI: 10.1016/j.bbrc.2017.05.146] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/24/2022]
Abstract
The prompt and tightly controlled induction of type I interferon is a central event of the immune defense against viral infection. Flaviviruses comprise a large family of arthropod-borne positive-stranded RNA viruses, many of which represent a serious threat to global human health due to their high rates of morbidity and mortality. All flaviviruses studied so far have been shown to counteract the host's immune response to establish a productive infection and facilitate viral spread. Here, we review the current knowledge on the main strategies that human pathogenic flaviviruses utilize to escape both type I IFN induction and effector pathways. A better understanding of the specific mechanisms by which flaviviruses activate and evade innate immune responses is critical for the development of better therapeutics and vaccines.
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
91
|
Finding the 'ubiquitous' threads in infection and autoimmune neuroinflammation. Nat Immunol 2017; 18:7-8. [PMID: 27984564 DOI: 10.1038/ni.3633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
92
|
Martín-Vicente M, Medrano LM, Resino S, García-Sastre A, Martínez I. TRIM25 in the Regulation of the Antiviral Innate Immunity. Front Immunol 2017; 8:1187. [PMID: 29018447 PMCID: PMC5614919 DOI: 10.3389/fimmu.2017.01187] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5–mitochondrial antiviral signaling protein–TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Luz M Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
93
|
Das T, Park JK, Park J, Kim E, Rape M, Kim EE, Song EJ. USP15 regulates dynamic protein-protein interactions of the spliceosome through deubiquitination of PRP31. Nucleic Acids Res 2017; 45:4866-4880. [PMID: 28088760 PMCID: PMC5416801 DOI: 10.1093/nar/gkw1365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 01/02/2017] [Indexed: 12/30/2022] Open
Abstract
Post-translational modifications contribute to the spliceosome dynamics by facilitating the physical rearrangements of the spliceosome. Here, we report USP15, a deubiquitinating enzyme, as a regulator of protein-protein interactions for the spliceosome dynamics. We show that PRP31, a component of U4 snRNP, is modified with K63-linked ubiquitin chains by the PRP19 complex and deubiquitinated by USP15 and its substrate targeting factor SART3. USP15SART3 makes a complex with USP4 and this ternary complex serves as a platform to deubiquitinate PRP31 and PRP3. The ubiquitination and deubiquitination status of PRP31 regulates its interaction with the U5 snRNP component PRP8, which is required for the efficient splicing of chromosome segregation related genes, probably by stabilizing the U4/U6.U5 tri-snRNP complex. Collectively, our data suggest that USP15 plays a key role in the regulation of dynamic protein-protein interactions of the spliceosome.
Collapse
Affiliation(s)
- Tanuza Das
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Joon Kyu Park
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu 02792, Seoul, Korea
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Eunji Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu 02792, Seoul, Korea
| | - Michael Rape
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu 02792, Seoul, Korea
| | - Eun Joo Song
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
94
|
Poirson J, Biquand E, Straub ML, Cassonnet P, Nominé Y, Jones L, van der Werf S, Travé G, Zanier K, Jacob Y, Demeret C, Masson M. Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitin-proteasome system. FEBS J 2017; 284:3171-3201. [PMID: 28786561 DOI: 10.1111/febs.14193] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
Protein ubiquitination and its reverse reaction, deubiquitination, regulate protein stability, protein binding activity, and their subcellular localization. These reactions are catalyzed by the enzymes E1, E2, and E3 ubiquitin (Ub) ligases and deubiquitinases (DUBs). The Ub-proteasome system (UPS) is targeted by viruses for the sake of their replication and to escape host immune response. To identify novel partners of human papillomavirus 16 (HPV16) E6 and E7 proteins, we assembled and screened a library of 590 cDNAs related to the UPS by using the Gaussia princeps luciferase protein complementation assay. HPV16 E6 was found to bind to the homology to E6AP C terminus-type Ub ligase (E6AP), three really interesting new gene (RING)-type Ub ligases (MGRN1, LNX3, LNX4), and the DUB Ub-specific protease 15 (USP15). Except for E6AP, the binding of UPS factors did not require the LxxLL-binding pocket of HPV16 E6. LNX3 bound preferentially to all high-risk mucosal HPV E6 tested, whereas LNX4 bound specifically to HPV16 E6. HPV16 E7 was found to bind to several broad-complex tramtrack and bric-a-brac domain-containing proteins (such as TNFAIP1/KCTD13) that are potential substrate adaptors of Cullin 3-RING Ub ligases, to RING-type Ub ligases implicated in innate immunity (RNF135, TRIM32, TRAF2, TRAF5), to the substrate adaptor DCAF15 of Cullin 4-RING Ub ligase and to some DUBs (USP29, USP33). The binding to UPS factors did not require the LxCxE motif but rather the C-terminal region of HPV16 E7 protein. The identified UPS factors interacted with most of E7 proteins across different HPV types. This study establishes a strategy for the rapid identification of interactions between host or pathogen proteins and the human ubiquitination system.
Collapse
Affiliation(s)
- Juline Poirson
- Ecole Supérieure de Biotechnologie Strasbourg, UMR-7242, CNRS, Université de Strasbourg, Illkirch, France
| | - Elise Biquand
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Marie-Laure Straub
- Ecole Supérieure de Biotechnologie Strasbourg, UMR-7242, CNRS, Université de Strasbourg, Illkirch, France
| | - Patricia Cassonnet
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Yves Nominé
- UMR 7104-Inserm U964, CNRS, IGBMC-CBI, Equipe labellisée Ligue 2015, Illkirch, France
| | - Louis Jones
- Biostatistiques et biologie intégrative (C3BI), Institut Pasteur, Centre de bioinformatique, Paris, France
| | - Sylvie van der Werf
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Gilles Travé
- UMR 7104-Inserm U964, CNRS, IGBMC-CBI, Equipe labellisée Ligue 2015, Illkirch, France
| | - Katia Zanier
- Ecole Supérieure de Biotechnologie Strasbourg, UMR-7242, CNRS, Université de Strasbourg, Illkirch, France
| | - Yves Jacob
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Caroline Demeret
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Murielle Masson
- Ecole Supérieure de Biotechnologie Strasbourg, UMR-7242, CNRS, Université de Strasbourg, Illkirch, France
| |
Collapse
|
95
|
The TRIMendous Role of TRIMs in Virus-Host Interactions. Vaccines (Basel) 2017; 5:vaccines5030023. [PMID: 28829373 PMCID: PMC5620554 DOI: 10.3390/vaccines5030023] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/23/2022] Open
Abstract
The innate antiviral response is integral in protecting the host against virus infection. Many proteins regulate these signaling pathways including ubiquitin enzymes. The ubiquitin-activating (E1), -conjugating (E2), and -ligating (E3) enzymes work together to link ubiquitin, a small protein, onto other ubiquitin molecules or target proteins to mediate various effector functions. The tripartite motif (TRIM) protein family is a group of E3 ligases implicated in the regulation of a variety of cellular functions including cell cycle progression, autophagy, and innate immunity. Many antiviral signaling pathways, including type-I interferon and NF-κB, are TRIM-regulated, thus influencing the course of infection. Additionally, several TRIMs directly restrict viral replication either through proteasome-mediated degradation of viral proteins or by interfering with different steps of the viral replication cycle. In addition, new studies suggest that TRIMs can exert their effector functions via the synthesis of unconventional polyubiquitin chains, including unanchored (non-covalently attached) polyubiquitin chains. TRIM-conferred viral inhibition has selected for viruses that encode direct and indirect TRIM antagonists. Furthermore, new evidence suggests that the same antagonists encoded by viruses may hijack TRIM proteins to directly promote virus replication. Here, we describe numerous virus–TRIM interactions and novel roles of TRIMs during virus infections.
Collapse
|
96
|
Quicke KM, Diamond MS, Suthar MS. Negative regulators of the RIG-I-like receptor signaling pathway. Eur J Immunol 2017; 47:615-628. [PMID: 28295214 DOI: 10.1002/eji.201646484] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/18/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022]
Abstract
Upon recognition of specific molecular patterns on microbes, host cells trigger an innate immune response, which culminates in the production of type I interferons, proinflammatory cytokines and chemokines, and restricts pathogen replication and spread within the host. At each stage of this response, there are stimulatory and inhibitory signals that regulate the magnitude, quality, and character of the response. Positive regulation promotes an antiviral state to control and eventually clear infection, whereas negative regulation dampens inflammation and prevents immune-mediated tissue damage. An overexuberant innate response can lead to cell and tissue destruction, and the development of spontaneous autoimmunity. The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), RIG-I and melanoma differentiation-associated gene 5 (MDA5), belong to a family of cytosolic host RNA helicases that recognize distinct nonself RNA signatures and trigger innate immune responses against several RNA viruses by signaling through the essential adaptor protein mitochondrial antiviral signaling (MAVS). The RLR signaling pathway is tightly regulated to maximize antiviral immunity and minimize immune-mediated pathology. This review highlights contemporary findings on negative regulators of the RLR signaling pathway, with specific focus on the proteins and biological processes that directly regulate RIG-I, MDA5 and MAVS signaling function.
Collapse
Affiliation(s)
- Kendra M Quicke
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Mehul S Suthar
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| |
Collapse
|
97
|
Baker PJ, De Nardo D, Moghaddas F, Tran LS, Bachem A, Nguyen T, Hayman T, Tye H, Vince JE, Bedoui S, Ferrero RL, Masters SL. Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiol Rev 2017; 97:1165-1209. [DOI: 10.1152/physrev.00026.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Cell surface innate immune receptors can directly detect a variety of extracellular pathogens to which cytoplasmic innate immune sensors are rarely exposed. Instead, within the cytoplasm, the environment is rife with cellular machinery and signaling pathways that are indirectly perturbed by pathogenic microbes to activate intracellular sensors, such as pyrin, NLRP1, NLRP3, or NLRC4. Therefore, subtle changes in key intracellular processes such as phosphorylation, ubiquitination, and other pathways leading to posttranslational protein modification are key determinants of innate immune recognition in the cytoplasm. This concept is critical to establish the “guard hypothesis” whereby otherwise homeostatic pathways that keep innate immune sensors at bay are released in response to alterations in their posttranslational modification status. Originally identified in plants, evidence that a similar guardlike mechanism exists in humans has recently been identified, whereby a mutation that prevents phosphorylation of the innate immune sensor pyrin triggers a dominantly inherited autoinflammatory disease. It is also noteworthy that even when a cytoplasmic innate immune sensor has a direct ligand, such as bacterial peptidoglycan (NOD1 or NOD2), RNA (RIG-I or MDA5), or DNA (cGAS or IFI16), it can still be influenced by posttranslational modification to dramatically alter its response. Therefore, due to their existence in the cytoplasmic milieu, posttranslational modification is a key determinant of intracellular innate immune receptor functionality.
Collapse
Affiliation(s)
- Paul J. Baker
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Le Son Tran
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Annabell Bachem
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Tan Nguyen
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Thomas Hayman
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Hazel Tye
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - James E. Vince
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Sammy Bedoui
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Richard L. Ferrero
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Seth L. Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
98
|
Gunderstofte C, Holm CK, Olagnier D. 2017 Keystone Symposia at the Fairmont Banff Springs: Exploring new concepts in innate immunity and interferon signaling at the haunted castle. Cytokine Growth Factor Rev 2017; 35:1-6. [DOI: 10.1016/j.cytogfr.2017.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022]
|
99
|
Watanabe M, Hatakeyama S. TRIM proteins and diseases. J Biochem 2017; 161:135-144. [PMID: 28069866 DOI: 10.1093/jb/mvw087] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
Ubiquitination is one of the posttranslational modifications that regulates a number of intracellular events including signal transduction, protein quality control, transcription, cell cycle, apoptosis and development. The ubiquitin system functions as a garbage machine to degrade target proteins and as a regulator for several signalling pathways. Biochemical reaction of ubiquitination requires several enzymes including E1, E2 and E3, and E3 ubiquitin ligases play roles as receptors for recognizing target proteins. Most of the tripartite motif (TRIM) proteins are E3 ubiquitin ligases. Recent studies have shown that some TRIM proteins function as important regulators for a variety of diseases including cancer, inflammatory diseases, infectious diseases, neuropsychiatric disorders, chromosomal abnormalities and developmental diseases. In this review, we summarize the involvement of TRIM proteins in the aetiology of various diseases.
Collapse
Affiliation(s)
- Masashi Watanabe
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
100
|
Furlan G, Nakagami H, Eschen-Lippold L, Jiang X, Majovsky P, Kowarschik K, Hoehenwarter W, Lee J, Trujillo M. Changes in PUB22 Ubiquitination Modes Triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 Dampen the Immune Response. THE PLANT CELL 2017; 29:726-745. [PMID: 28280093 PMCID: PMC5435422 DOI: 10.1105/tpc.16.00654] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 05/11/2023]
Abstract
Crosstalk between posttranslational modifications, such as ubiquitination and phosphorylation, play key roles in controlling the duration and intensity of signaling events to ensure cellular homeostasis. However, the molecular mechanisms underlying the regulation of negative feedback loops remain poorly understood. Here, we uncover a pathway in Arabidopsis thaliana by which a negative feedback loop involving the E3 ubiquitin ligase PUB22 that dampens the immune response is triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3), best known for its function in the activation of signaling. PUB22's stability is controlled by MPK3-mediated phosphorylation of residues localized in and adjacent to the E2 docking domain. We show that phosphorylation is critical for stabilization by inhibiting PUB22 oligomerization and, thus, autoubiquitination. The activity switch allows PUB22 to dampen the immune response. This regulatory mechanism also suggests that autoubiquitination, which is inherent to most single unit E3s in vitro, can function as a self-regulatory mechanism in vivo.
Collapse
Affiliation(s)
- Giulia Furlan
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Plant Proteomics Research Unit, Yokohama 230-0045, Japan
- Max-Planck-Institute for Plant Breeding Research, Protein Mass Spectrometry Service, Cologne 50829, Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Xiyuan Jiang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Petra Majovsky
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Kathrin Kowarschik
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Marco Trujillo
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| |
Collapse
|