51
|
Abstract
The brain under immunological attack does not surrender quietly. Investigation of brain lesions in multiple sclerosis (MS) reveals a coordinated molecular response involving various proteins and small molecules ranging from heat shock proteins to small lipids, neurotransmitters, and even gases, which provide protection and foster repair. Reduction of inflammation serves as a necessary prerequisite for effective recovery and regeneration. Remarkably, many lesion-resident molecules activate pathways leading to both suppression of inflammation and promotion of repair mechanisms. These guardian molecules and their corresponding physiologic pathways could potentially be exploited to silence inflammation and repair the injured and degenerating brain and spinal cord in both relapsing-remitting and progressive forms of MS and may be beneficial in other neurologic and psychiatric conditions.
Collapse
|
52
|
Chandra A. Role of amyloid from a multiple sclerosis perspective: a literature review. Neuroimmunomodulation 2015; 22:343-6. [PMID: 25766575 DOI: 10.1159/000375309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/16/2015] [Indexed: 11/19/2022] Open
Abstract
The traditional concept of multiple sclerosis (MS), that it is primarily a white matter inflammatory disease, has changed a great deal. Thanks to the recent development witnessed in MS research, a whole new idea has emerged that MS is a neurodegenerative disease, and neurodegeneration occurs rather earlier in the pathological process. This has also led to the foundation of the hypothesis that two fundamentally different diseases, Alzheimer's disease (AD) and MS, may share a common mechanism of neurodegeneration. Conventionally, amyloid is thought to be a consequence of protein misfolding and aggregation and is most notorious for its association with debilitating and chronic human diseases. Amyloid is implicated to be related with the deterioration and progression of AD. The finding of amyloid precursor protein expression in axons around the plaque in MS, as well as the correlation of amyloid-β (Aβ) with different stages of MS, has clearly indicated that amyloid plays some kind of key role in MS disease pathogenesis. Excitingly, a paradoxical phenomenon of Aβ has also been observed in several studies recently. It has been shown that amyloid might actually be helping in ameliorating the inflammatory effect in diseases like AD and MS. Amyloid imaging allows earlier diagnosis of MS by taking advantage of the relation of amyloid with MS. This will have a big impact on patient diagnosis and management. In this review I have included the findings of research studies dating from several years back to the most recent ones. Through this review I have tried to show the critical role of amyloid in MS and the importance of investigating through PET imaging.
Collapse
Affiliation(s)
- Avinash Chandra
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Buffalo General Hospital, Buffalo, N.Y., USA
| |
Collapse
|
53
|
Iturria-Medina Y, Sotero RC, Toussaint PJ, Evans AC. Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders. PLoS Comput Biol 2014; 10:e1003956. [PMID: 25412207 PMCID: PMC4238950 DOI: 10.1371/journal.pcbi.1003956] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022] Open
Abstract
Misfolded proteins (MP) are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß) and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM) for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database). Furthermore, this model strongly supports a) the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b) that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c) the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d) the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders. Misfolded proteins (MP) mechanisms are a characteristic pathogenic feature of most prevalent human neurodegenerative diseases, such as Alzheimer's disease (AD). Characterizing the mechanisms underlying intra-brain MP propagation and deposition still constitutes a major challenge. Here, we hypothesize that these complex mechanisms can be accurately described by epidemic spreading-like interactions between infectious-like agents (MP) and the brain's MP clearance response, which are constrained by the brain's connectional architecture. Consequently, we have developed a stochastic epidemic spreading model (ESM) of MP propagation/deposition that allows for reconstructing individual lifetime histories of intra-brain MP propagation, and the subsequent analysis of factors that promote propagation/deposition (e.g., MP production and clearance). Using 733 individual PET Amyloid-ß (Aß) datasets, we show that ESM explains advanced Aß deposition patterns in healthy and diseased (AD) brains. More importantly, it offers new avenues for our understanding of the mechanisms underlying MP mediated disorders. For instance, the results strongly support the growing body of evidence suggesting the leading role of a reduced Aβ clearance on AD progression and the modulatory impact of Aß mechanisms on tau proteins concentrations, which could imply a turning point for associated therapeutic mitigation strategies.
Collapse
Affiliation(s)
| | | | | | - Alan C. Evans
- Montreal Neurological Institute, Montreal, Quebec, Canada
- * E-mail: (YIM); (ACE)
| | | |
Collapse
|
54
|
Steinman L. Why are prions and amyloid structures immune suppressive and other intriguing questions facing neuroimmunologists in the future. Rev Neurol (Paris) 2014; 170:602-7. [PMID: 25193013 DOI: 10.1016/j.neurol.2014.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/25/2014] [Indexed: 11/25/2022]
Abstract
The immune system plays a major role in certain diseases of the brain like multiple sclerosis and neuromyelitis optica, while the brain may play a major role in modulating certain immunologic diseases of the periphery like inflammatory bowel disease. The most significant developments in neuroimmunology will involve explorations of the roles for the immune system in neurodegenerative conditions often associated with the presence of amyloid deposits. Here I present my personal perspectives on four of the most intriguing challenges that we face in the future of neuroimmunology: (1) Why are the traditional hallmarks of innate and adaptive inflammation conspicuously absent from brains of individuals with prion disease and amyloid pathology? (2) What is the role of adaptive and innate immunity in progressive forms of multiple sclerosis? (3) Is molecular mimicry an adequate explanation for the initiation of neuroinflammatory disease and for exacerbations in conditions like multiple sclerosis, narcolepsy, and neuromyelitis optica? (4) Do neural pathways regulate inflammatory diseases outside the nervous system?
Collapse
Affiliation(s)
- L Steinman
- 279 Campus, Dr. Beckman Center for Molecular Medicine B002, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
55
|
Kurnellas MP, Schartner JM, Fathman CG, Jagger A, Steinman L, Rothbard JB. Mechanisms of action of therapeutic amyloidogenic hexapeptides in amelioration of inflammatory brain disease. ACTA ACUST UNITED AC 2014; 211:1847-56. [PMID: 25073790 PMCID: PMC4144739 DOI: 10.1084/jem.20140107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Amyloid fibrils composed of peptides as short as six amino acids are effective therapeutics for experimental autoimmune encephalomyelitis (EAE). Immunosuppression arises from at least two pathways: (1) expression of type 1 IFN by pDCs, which were induced by neutrophil extracellular traps arising from the endocytosis of the fibrils; and (2) the reduced expression of IFN-γ, TNF, and IL-6. The two independent pathways stimulated by the fibrils can act in concert to be immunosuppressive in Th1 indications, or in opposition, resulting in inflammation when Th17 T lymphocytes are predominant. The generation of type 1 IFN can be minimized by using polar, nonionizable, amyloidogenic peptides, which are effective in both Th1 and Th17 polarized EAE.
Collapse
Affiliation(s)
- Michael P Kurnellas
- Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jill M Schartner
- Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - C Garrison Fathman
- Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Ann Jagger
- Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jonathan B Rothbard
- Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305 Department of Neurology and Neurological Sciences and Department of Medicine, Division of Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
56
|
Steinman L, Rothbard JB, Kurnellas MP. Janus faces of amyloid proteins in neuroinflammation. J Clin Immunol 2014; 34 Suppl 1:S61-3. [PMID: 24711007 DOI: 10.1007/s10875-014-0034-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022]
Abstract
Amyloid forming molecules are generally considered harmful. In Alzheimer's Disease two amyloid molecules Aβ A4 and tau vie for consideration as the main pathogenic culprit. But molecules obey the laws of chemistry and defy the way we categorize them as humans with our well-known proclivities to bias in our reasoning. We have been exploring the brains of multiple sclerosis patients to identify molecules that are associated with protection from inflammation and degeneration. In 2001 we noted that aB crystallin (cryab) was the most abundant transcript found in MS lesions, but not in healthy brains. Cryab can reverse paralysis and attenuate inflammation in several models of inflammation including experimental autoimmune encephalomyelitis (EAE), and various models of ischemia. Cryab is an amyloid forming molecule. We have identified a core structure common to many amyloids including amyloid protein Aβ A4, tau, amylin, prion protein, serum amyloid protein P, and cryab. The core hexapeptide structure is highly immune suppressive and can reverse paralysis in EAE when administered systemically. Administration of this amyloid forming hexapeptide quickly lowers inflammatory cytokines in plasma like IL-6 and IL-2. The hexapeptide bind a set of proinflammatory mediators in plasma, including acute phase reactants and complement components. The beneficial properties of amyloid forming hexapeptides provide a potential new therapeutic direction. These experiments indicate that amyloid forming molecules have Janus faces, providing unexpected benefit for neuroinflammatory conditions.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA,
| | | | | |
Collapse
|
57
|
Shin S, Walz KA, Archambault AS, Sim J, Bollman BP, Koenigsknecht-Talboo J, Cross AH, Holtzman DM, Wu GF. Apolipoprotein E mediation of neuro-inflammation in a murine model of multiple sclerosis. J Neuroimmunol 2014; 271:8-17. [PMID: 24794230 DOI: 10.1016/j.jneuroim.2014.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 12/12/2022]
Abstract
Apolipoprotein E (ApoE) functions as a ligand in receptor-mediated endocytosis of lipoprotein particles and has been demonstrated to play a role in antigen presentation. To explore the contribution of ApoE during autoimmune central nervous system (CNS) demyelination, we examined the clinical, cellular immune function, and pathologic consequences of experimental autoimmune encephalomyelitis (EAE) induction in ApoE knockout (ApoE(-/-)) mice. We observed reduced clinical severity of EAE in ApoE(-/-) mice in comparison to WT mice that was concomitant with an early reduction of dendritic cells (DCs) followed by a reduction of additional innate cells in the spinal cord at the peak of disease without any differences in axonal damage. While T cell priming was enhanced in ApoE(-/-) mice, reduced severity of EAE was also observed in ApoE(-/-) recipients of encephalitogenic wild type T cells. Expression of ApoE during EAE was elevated within the CNS of wild type mice, particularly by innate cells such as DCs. Overall, ApoE promotes clinical EAE, likely by mediation of inflammation localized within the CNS.
Collapse
Affiliation(s)
- Soomin Shin
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Katharine A Walz
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Angela S Archambault
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Julia Sim
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Bryan P Bollman
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Jessica Koenigsknecht-Talboo
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - David M Holtzman
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Department of Developmental Biology, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Gregory F Wu
- Department of Neurology, Washington University in St. Louis School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Hope Center for Neurological Disorders, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States.
| |
Collapse
|
58
|
Affiliation(s)
- Lawrence Steinman
- Departments of Pediatrics, Neurology and Neurological Sciences, Stanford University, Stanford, California 94305;
| |
Collapse
|
59
|
Pajoohesh-Ganji A, Burns MP, Pal-Ghosh S, Tadvalkar G, Hokenbury NG, Stepp MA, Faden AI. Inhibition of amyloid precursor protein secretases reduces recovery after spinal cord injury. Brain Res 2014; 1560:73-82. [PMID: 24630972 DOI: 10.1016/j.brainres.2014.02.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/18/2022]
Abstract
Amyloid-β (Aβ) is produced through the enzymatic cleavage of amyloid precursor protein (APP) by β (Bace1) and γ-secretases. The accumulation and aggregation of Aβ as amyloid plaques is the hallmark pathology of Alzheimer׳s disease and has been found in other neurological disorders, such as traumatic brain injury and multiple sclerosis. Although the role of Aβ after injury is not well understood, several studies have reported a negative correlation between Aβ formation and functional outcome. In this study we show that levels of APP, the enzymes cleaving APP (Bace1 and γ-secretase), and Aβ are significantly increased from 1 to 3 days after impact spinal cord injury (SCI) in mice. To determine the role of Aβ after SCI, we reduced or inhibited Aβ in vivo through pharmacological (using DAPT) or genetic (Bace1 knockout mice) approaches. We found that these interventions significantly impaired functional recovery as evaluated by white matter sparing and behavioral testing. These data are consistent with a beneficial role for Aβ after SCI.
Collapse
Affiliation(s)
| | - Mark P Burns
- Georgetown University, Washington, DC, United States
| | | | - Gauri Tadvalkar
- The George Washington University, Washington, DC, United States
| | - Nicole G Hokenbury
- The George Washington University, Washington, DC, United States; Georgetown University, Washington, DC, United States; University of Maryland, Baltimore, United States
| | - Mary Ann Stepp
- The George Washington University, Washington, DC, United States
| | - Alan I Faden
- University of Maryland, Baltimore, United States
| |
Collapse
|
60
|
Markopoulou K, Biernacka JM, Armasu SM, Anderson KJ, Ahlskog JE, Chase BA, Chung SJ, Cunningham JM, Farrer M, Frigerio R, Maraganore DM. Does α-synuclein have a dual and opposing effect in preclinical vs. clinical Parkinson's disease? Parkinsonism Relat Disord 2014; 20:584-9; discussion 584. [PMID: 24656894 DOI: 10.1016/j.parkreldis.2014.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/10/2014] [Accepted: 02/22/2014] [Indexed: 10/25/2022]
Abstract
α-Synuclein gene (SNCA) multiplications cause familial parkinsonism and allele-length polymorphisms within the SNCA dinucleotide repeat REP1 increase the risk for developing Parkinson's disease (PD). Since SNCA multiplications increase SNCA expression, and REP1 genotypes that increase the risk of developing PD show increased SNCA expression in cell-culture systems, animal models, and human blood and brain, PD therapies seek to reduce SNCA expression. We conducted an observational study of 1098 PD cases to test the hypothesis that REP1 genotypes correlated with reduced SNCA expression are associated with better motor and cognitive outcomes. We evaluated the association of REP1 genotypes with survival free of Hoehn and Yahr stages 4 or 5 (motor outcome) and of Modified Telephone Interview for Cognitive Status score ≤27 or Alzheimer's Disease Dementia Screening Interview score ≥2 (cognitive outcome). Median disease duration at baseline was 3.3 years and median lag time from baseline to follow-up was 7.8 years. Paradoxically, REP1 genotypes associated with increased risk of developing PD and increased SNCA expression were associated with better motor (HR = 0.87, p = 0.046, covariate-adjusted age-scale analysis; HR = 0.85, p = 0.020, covariate-adjusted time-scale analysis) and cognitive outcomes (HR = 0.90, p = 0.12, covariate-adjusted age-scale analysis; HR = 0.85, p = 0.023, covariate-adjusted time-scale analysis). Our findings raise the possibility that SNCA has a dual, opposing, and time-dependent role. This may have implications for the development of therapies that target SNCA expression.
Collapse
Affiliation(s)
| | | | | | - Kari J Anderson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - J Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Bruce A Chase
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Matthew Farrer
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada
| | - Roberta Frigerio
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, USA
| | | |
Collapse
|
61
|
Alzheimer's disease therapeutics targeted to the control of amyloid precursor protein translation: maintenance of brain iron homeostasis. Biochem Pharmacol 2014; 88:486-94. [PMID: 24513321 DOI: 10.1016/j.bcp.2014.01.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 11/20/2022]
Abstract
The neurotoxicity of amyloid beta (Aβ), a major cleavage product of the amyloid precursor protein (APP), is enhanced by iron, as found in the amyloid plaques of Alzheimer's disease (AD) patients. By contrast, the long-known neuroprotective activity of APP is evident after α-secretase cleavage of the precursor to release sAPPα, and depends on the iron export actions of APP itself. The latter underlie its neurotrophic and protective effects in facilitating the homeostatic actions of ferroportin mediated-iron export. Thus APP-dependent iron export may alleviate oxidative stress by minimizing labile iron thus protecting neurons from iron overload during stroke and hemorrhage. Consistent with this, altered phosphorylation of iron-regulatory protein-1 (IRP1) and its signaling processes play a critical role in modulating APP translation via the 5' untranslated region (5'UTR) of its transcript. The APP 5'UTR region encodes a functional iron-responsive element (IRE) RNA stem loop that represents a potential target for modulating APP production. Targeted regulation of APP gene expression via the modulation of 5'UTR sequence function represents a novel approach for the potential treatment of AD since altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. Approved drugs including paroxetine and desferrioxamine and several novel compounds have been identified that suppress abnormal metal-promoted Aβ accumulation with a subset of these acting via APP 5'UTR-dependent mechanisms to modulate APP translation and cleavage to generate the non-toxic sAPPα.
Collapse
|
62
|
Hauser SL, Chan JR, Oksenberg JR. Multiple sclerosis: Prospects and promise. Ann Neurol 2013; 74:317-27. [PMID: 23955638 DOI: 10.1002/ana.24009] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 12/15/2022]
Abstract
We have entered a golden era in multiple sclerosis (MS) research. Two decades ago, our understanding of the disease was largely descriptive and there were no approved therapies to modify the natural history of MS. Today, delineation of immune pathways relevant to MS have been clarified; a comprehensive map of genes that influence risk compiled; clues to environmental triggers identified; noninvasive in vivo monitoring of the MS disease process has been revolutionized by high-field MRI; and many effective therapies for the early, relapsing, component of MS now exist. However, major challenges remain. We still have no useful treatment for progressive MS (the holy grail of MS research), no means to repair injured axons or protect neurons, and extremely limited evidence to guide treatment decisions. Recent advances have set in place a foundation for development of increasingly selective immunotherapy for patients; application of genetic and genomic discoveries to improve therapeutic options; development of remyelination or neuroprotection therapies for progressive MS; and integrating clinical, imaging and genomic data for personalized medicine. MS has now advanced from the backwaters of autoimmune disease research to the front-line, and definitive answers, including cures, are now realistic goals for the next decade. Many of the breakthrough discoveries in MS have also resulted from meaningful interactions across disciplines, and especially from translational and basic scientists working closely with clinicians, highlighting that the clinical value of discoveries are most often revealed when ideas developed in the laboratory are tested at the bedside.
Collapse
Affiliation(s)
- Stephen L Hauser
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | | | | |
Collapse
|
63
|
Kurnellas MP, Adams CM, Sobel RA, Steinman L, Rothbard JB. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation. Sci Transl Med 2013; 5:179ra42. [PMID: 23552370 DOI: 10.1126/scitranslmed.3005681] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amyloid-forming proteins tau, αB crystallin, and amyloid P protein are all found in lesions of multiple sclerosis (MS). Our previous work established that amyloidogenic peptides from the small heat shock protein αB crystallin (HspB5) and from amyloid β fibrils, characteristic of Alzheimer's disease, were therapeutic in experimental autoimmune encephalomyelitis (EAE), reflecting aspects of the pathology of MS. To understand the molecular basis for the therapeutic effect, we showed a set of amyloidogenic peptides composed of six amino acids, including those from tau, amyloid β A4, major prion protein (PrP), HspB5, amylin, serum amyloid P, and insulin B chain, to be anti-inflammatory and capable of reducing serological levels of interleukin-6 and attenuating paralysis in EAE. The chaperone function of the fibrils correlates with the therapeutic outcome. Fibrils composed of tau 623-628 precipitated 49 plasma proteins, including apolipoprotein B-100, clusterin, transthyretin, and complement C3, supporting the hypothesis that the fibrils are active biological agents. Amyloid fibrils thus may provide benefit in MS and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Michael P Kurnellas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5316, USA
| | | | | | | | | |
Collapse
|
64
|
Sarazin M, Dorothée G, de Souza LC, Aucouturier P. Immunotherapy in Alzheimer's disease: do we have all the pieces of the puzzle? Biol Psychiatry 2013; 74:329-32. [PMID: 23683656 DOI: 10.1016/j.biopsych.2013.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/26/2013] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
Abstract
Results of Phase III studies involving a large number of Alzheimer's disease (AD) patients treated by passive immunotherapy with humanized anti-amyloid β monoclonal antibodies have recently been released. These approaches failed to show a significant clinical benefit in patients with mild to moderate AD. The most considered explanation is that the patients have been treated too late. Whereas targeting patients at asymptomatic stages of the disease is a critical step in the goal of improving the efficacy of such antibody-based strategies, several other important factors should be considered in the development and clinical evaluation of anti-amyloid β immunotherapies, including the as yet poorly understood relationship of AD with the immune system and the importance of cerebral amyloid angiopathy. Better understanding the role of immune responses in AD and their impact on immunotherapy appears essential in the design of alternative or combinatorial immunotherapy approaches in AD, which may imply effectors other than antibodies and even additional antigenic targets.
Collapse
Affiliation(s)
- Marie Sarazin
- Université Paris Descartes, Sorbonne Paris Cité, France.
| | | | | | | |
Collapse
|
65
|
Krementsov DN, Wall EH, Martin RA, Subramanian M, Noubade R, Rio RD, Mawe GM, Bond JP, Poynter ME, Blankenhorn EP, Teuscher C. Histamine H(3) receptor integrates peripheral inflammatory signals in the neurogenic control of immune responses and autoimmune disease susceptibility. PLoS One 2013; 8:e62743. [PMID: 23894272 PMCID: PMC3718788 DOI: 10.1371/journal.pone.0062743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/23/2013] [Indexed: 12/15/2022] Open
Abstract
Histamine H3 receptor (Hrh3/H3R) is primarily expressed by neurons in the central nervous system (CNS) where it functions as a presynaptic inhibitory autoreceptor and heteroreceptor. Previously, we identified an H3R-mediated central component in susceptibility to experimental allergic encephalomyelitis (EAE), the principal autoimmune model of multiple sclerosis (MS), related to neurogenic control of blood brain barrier permeability and peripheral T cell effector responses. Furthermore, we identified Hrh3 as a positional candidate for the EAE susceptibility locus Eae8. Here, we characterize Hrh3 polymorphisms between EAE-susceptible and resistant SJL and B10.S mice, respectively, and show that Hrh3 isoform expression in the CNS is differentially regulated by acute peripheral inflammatory stimuli in an allele-specific fashion. Next, we show that Hrh3 is not expressed in any subpopulations of the immune compartment, and that secondary lymphoid tissue is anatomically poised to be regulated by central H3R signaling. Accordingly, using transcriptome analysis, we show that, inflammatory stimuli elicit unique transcriptional profiles in the lymph nodes of H3RKO mice compared to WT mice, which is indicative of negative regulation of peripheral immune responses by central H3R signaling. These results further support a functional link between the neurogenic control of T cell responses and susceptibility to CNS autoimmune disease coincident with acute and/or chronic peripheral inflammation. Pharmacological targeting of H3R may therefore be useful in preventing the development and formation of new lesions in MS, thereby limiting disease progression.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gene Expression Regulation
- Genetic Predisposition to Disease/genetics
- Hematopoiesis/genetics
- Hematopoiesis/immunology
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Intracellular Space/metabolism
- Lymph Nodes/immunology
- Male
- Mice
- Molecular Sequence Data
- Polymorphism, Single Nucleotide
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Structure, Tertiary
- Receptors, Histamine H3/chemistry
- Receptors, Histamine H3/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Dimitry N. Krementsov
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Emma H. Wall
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Rebecca A. Martin
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Meenakumari Subramanian
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Rajkumar Noubade
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Roxana Del Rio
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Gary M. Mawe
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Jeffrey P. Bond
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Matthew E. Poynter
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
| | - Elizabeth P. Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Cory Teuscher
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont, United States of America
- Department of Pathology, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
66
|
Stys PK. Pathoetiology of multiple sclerosis: are we barking up the wrong tree? F1000PRIME REPORTS 2013; 5:20. [PMID: 23755367 PMCID: PMC3673225 DOI: 10.12703/p5-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite a century of intensive investigation, the underlying cause of multiple sclerosis has eluded us. It is clear that there exists a prominent progressive degenerative phenotype together with an important autoimmune inflammatory component, and careful histopathological examination always shows, to a greater or lesser degree, concomitant degeneration/demyelination and adaptive T cell-dependent immune responses. Given this picture, it is difficult, if not impossible, to definitively say whether degeneration or autoimmunity is the initiator of the disease. In this review, I put forward the evidence for and against both models and speculate that, in contrast to the accepted view, it is equally likely that multiple sclerosis may be a degenerative disease that secondarily elicits an autoimmune response, and suggest how this might influence therapeutic approaches.
Collapse
|
67
|
Laman JD, Weller RO. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J Neuroimmune Pharmacol 2013; 8:840-56. [PMID: 23695293 PMCID: PMC7088878 DOI: 10.1007/s11481-013-9470-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/28/2013] [Indexed: 12/25/2022]
Abstract
Despite the absence of conventional lymphatics, there is efficient drainage of both cerebrospinal fluid (CSF) and interstitial fluid (ISF) from the CNS to regional lymph nodes. CSF drains from the subarachnoid space by channels that pass through the cribriform plate of the ethmoid bone to the nasal mucosa and cervical lymph nodes in animals and in humans; antigen presenting cells (APC) migrate along this pathway to lymph nodes. ISF and solutes drain from the brain parenchyma to cervical lymph nodes by a separate route along 100–150 nm wide basement membranes in the walls of cerebral capillaries and arteries. This pathway is too narrow for the migration of APC so it is unlikely that APC traffic directly from brain parenchyma to lymph nodes by this route. We present a model for the pivotal involvement of regional lymph nodes in immunological reactions of the CNS. The role of regional lymph nodes in immune reactions of the CNS in virus infections, the remote influence of the gut microbiota, multiple sclerosis and stroke are discussed. Evidence is presented for the role of cervical lymph nodes in the induction of tolerance and its influence on neuroimmunological reactions. We look to the future by examining how nanoparticle technology will enhance our understanding of CNS-lymph node connections and by reviewing the implications of lymphatic drainage of the brain for diagnosis and therapy of diseases of the CNS ranging from neuroimmunological disorders to dementias. Finally, we review the challenges and opportunities for progress in CNS-lymph node interactions and their involvement in disease processes.
Collapse
Affiliation(s)
- Jon D. Laman
- Department of Immunology, room NB-1148a Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Roy O. Weller
- Clinical Neurosciences, Faculty of Medicine, Southampton University, Mailpoint 813, Southampton General Hospital, Southampton, SO16 6YD UK
| |
Collapse
|
68
|
Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. Nat Cell Biol 2013; 15:614-24. [PMID: 23644469 DOI: 10.1038/ncb2735] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/14/2013] [Indexed: 12/13/2022]
Abstract
Oligodendrocytes-the myelin-forming cells of the central nervous system-can be regenerated during adulthood. In adults, new oligodendrocytes originate from oligodendrocyte progenitor cells (OPCs), but also from neural stem cells (NSCs). Although several factors supporting oligodendrocyte production have been characterized, the mechanisms underlying the generation of adult oligodendrocytes are largely unknown. Here we show that genetic inactivation of SIRT1, a protein deacetylase implicated in energy metabolism, increases the production of new OPCs in the adult mouse brain, in part by acting in NSCs. New OPCs produced following SIRT1 inactivation differentiate normally, generating fully myelinating oligodendrocytes. Remarkably, SIRT1 inactivation ameliorates remyelination and delays paralysis in mouse models of demyelinating injuries. SIRT1 inactivation leads to the upregulation of genes involved in cell metabolism and growth factor signalling, in particular PDGF receptor α (PDGFRα). Oligodendrocyte expansion following SIRT1 inactivation is mediated at least in part by AKT and p38 MAPK-signalling molecules downstream of PDGFRα. The identification of drug-targetable enzymes that regulate oligodendrocyte regeneration in adults could facilitate the development of therapies for demyelinating injuries and diseases, such as multiple sclerosis.
Collapse
|
69
|
Steinman L, Axtell RC, Barbieri D, Bhat R, Brownell SE, de Jong BA, Dunn SE, Grant JL, Han MH, Ho PP, Kuipers HF, Kurnellas MP, Ousman SS, Rothbard JB. Piet Mondrian’s trees and the evolution in understanding multiple sclerosis, Charcot Prize Lecture 2011. Mult Scler 2013; 19:5-14. [DOI: 10.1177/1352458512470730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Four questions were posed about multiple sclerosis (MS) at the 2011 Charcot Lecture, Oct. 22, 2011. 1. The Male/Female Disparity: Why are women developing MS so much more frequently than men? 2. Neuronal and Glial Protection: Are there guardian molecules that protect the nervous system in MS? 3. Predictive Medicine: With all the approved drugs, how can we rationally decide which one to use? 4. The Precise Scalpel vs. the Big Hammer for Therapy: Is antigen-specific therapy for demyelinating disease possible? To emphasize how our views on the pathogenesis and treatment of MS are evolving, and given the location of the talk in Amsterdam, Piet Mondrian’s progressive interpretations of trees serve as a heuristic.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Robert C Axtell
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Donald Barbieri
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Roopa Bhat
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Sara E Brownell
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Brigit A de Jong
- Department of Neurology (HP935), Radboud University Nijmegen Medical Centre, The Netherlands
| | | | - Jacqueline L Grant
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - May H Han
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Peggy P Ho
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | - Hedwich F Kuipers
- Department of Neurology and Neurological Sciences, Stanford University, USA
| | | | - Shalina S Ousman
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Canada
| | | |
Collapse
|
70
|
Affiliation(s)
- Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, Munich D-81377, Germany
| | | |
Collapse
|
71
|
Abstract
Neurodegenerative diseases are a burden of our century. Although significant efforts were made to find a cure or relief to this scourge, their pathophysiology remains vague and the cellular function of the key involved proteins is still unclear. However, in the case of amyloid β (Aβ), a key protein concerned in Alzheimer disease, we are now a step closer in the unscrambling of its cellular functions. Interestingly, whereas the exact role of Aβ in the pathophysiology of Alzheimer disease is still unresolved, a recent study revealed a neuroprotective function of Aβ in multiple sclerosis with possibly promising therapeutic benefits.
Collapse
Affiliation(s)
- Juliane Proft
- Hotchkiss Brain Institute; Department of Clinical Neuroscience; Calgary, AB Canada
| | | |
Collapse
|
72
|
Abstract
To date, nearly 35.6 million people world wide live with dementia, and the situation is going to get worse by 2050 with 115.4 million cases.(1) In the western world, the prevalence for dementia in people over the age of 60 is greater than 5% and two thirds are due to Alzheimer disease,(2) (-) (5) the most common form of dementias. Alzheimer disease (AD), first described as "presenile dementia" by the German psychiatrist and neuropathologist Alois Alzheimer in 1906,(6) is a devastating disease characterized by progressive cognitive deterioration, as well as impairments in behavior, language, and visuospatial skills.(7) Furthermore, Alzheimer discovered the presence of intraneuronal tangles and extracellular amyloid plaques in the diseased-damaged brain, the hallmarks of Alzheimer disease.
Collapse
Affiliation(s)
- Juliane Proft
- Hotchkiss Brain Institute; Department of Clinical Neuroscience; Calgary, AB Canada
| | | |
Collapse
|
73
|
|
74
|
Kurnellas MP, Brownell SE, Su L, Malkovskiy AV, Rajadas J, Dolganov G, Chopra S, Schoolnik GK, Sobel RA, Webster J, Ousman SS, Becker RA, Steinman L, Rothbard JB. Chaperone activity of small heat shock proteins underlies therapeutic efficacy in experimental autoimmune encephalomyelitis. J Biol Chem 2012; 287:36423-34. [PMID: 22955287 DOI: 10.1074/jbc.m112.371229] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine whether the therapeutic activity of αB crystallin, small heat shock protein B5 (HspB5), was shared with other human sHsps, a set of seven human family members, a mutant of HspB5 G120 known to exhibit reduced chaperone activity, and a mycobacterial sHsp were expressed and purified from bacteria. Each of the recombinant proteins was shown to be a functional chaperone, capable of inhibiting aggregation of denatured insulin with varying efficiency. When injected into mice at the peak of disease, they were all effective in reducing the paralysis in experimental autoimmune encephalomyelitis. Additional structure activity correlations between chaperone activity and therapeutic function were established when linear regions within HspB5 were examined. A single region, corresponding to residues 73-92 of HspB5, forms amyloid fibrils, exhibited chaperone activity, and was an effective therapeutic for encephalomyelitis. The linkage of the three activities was further established by demonstrating individual substitutions of critical hydrophobic amino acids in the peptide resulted in the loss of all of the functions.
Collapse
Affiliation(s)
- Michael P Kurnellas
- Department Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305-5316, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
|