51
|
Okombo J, Chibale K. Antiplasmodial drug targets: a patent review (2000 – 2013). Expert Opin Ther Pat 2015; 26:107-30. [DOI: 10.1517/13543776.2016.1113258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
52
|
Tempera C, Franco R, Caro C, André V, Eaton P, Burke P, Hänscheid T. Characterization and optimization of the haemozoin-like crystal (HLC) assay to determine Hz inhibiting effects of anti-malarial compounds. Malar J 2015; 14:403. [PMID: 26458401 PMCID: PMC4603294 DOI: 10.1186/s12936-015-0913-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/25/2015] [Indexed: 01/13/2023] Open
Abstract
Background The haem-haemozoin biocrystallization pathway is an attractive target where several efficacious and safe anti-malarial drugs act. Consequently, in vitro haemozoin (Hz) inhibition assays have been developed to identify novel compounds. However, results may differ between assays and often require complex methods or sophisticated infrastructure. The recently reported growth of haemozoin-like crystals (HLC) appears to be a simple alternative although the endproduct is structurally different to Hz. This study set out to characterize this assay in depth, optimize it, and assess its performance. Methods The HLC assay was used as previously described but a range of different growth conditions were examined. Obtained HLCs were investigated and compared to synthetic (sHz) and natural haemozoin (nHz) using scanning electron microscopy, powder X-ray diffraction (PXRD), Fourier Transform Infrared spectroscopy (FTIR) and Raman spectroscopy (RS). Interactions of HLC with quinolines was analysed using RS. Inhibitory effects of currently used anti-malarial drugs under four final growth conditions were established. Results HLC growth requires Mycoplasma Broth Base, Tween 80, pancreatin, and lysed blood or haemin. HLCs are similar to nHz and sHz in terms of solubility, macroscopic and microscopic appearance although PXRD, FTIR and RS confirm that the haem aggregates of HLCs are structurally different. RS reveals that CQ seems to interact with HLCs in similar ways as with Hz. Inhibition of quinoline drugs ranged from 62.5 µM (chloroquine, amodiaquine, piperaquine) to 500 µM in mefloquine. Conclusions The HLC assay provides data on inhibiting properties of compounds. Even if the end-product is not structurally identical to Hz, the inhibitory effects appear consistent with those obtained with sHz assays, as illustrated by the results obtained for quinolines. The assay is simple, inexpensive, robust, reproducible and can be performed under basic laboratory conditions with a simple visual positive/negative read-out. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0913-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Tempera
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Ricardo Franco
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO, REQUIMTE, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Carlos Caro
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO, REQUIMTE, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| | - Peter Eaton
- , Departamento de Química e Bioquímica, Faculdade de Ciências, REQUIMTE/UCIBIO, Universidade do Porto, 4169-007, Porto, Portugal.
| | - Peter Burke
- STERIS Corporation, 5960 Heisley Road, Mentor, OH, 44060, USA.
| | - Thomas Hänscheid
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal. .,Faculdade de Medicina, Instituto de Microbiologia, Lisbon, Portugal.
| |
Collapse
|
53
|
Adams M, de Kock C, Smith PJ, Land KM, Liu N, Hopper M, Hsiao A, Burgoyne AR, Stringer T, Meyer M, Wiesner L, Chibale K, Smith GS. Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes. Dalton Trans 2015; 44:2456-68. [PMID: 25559246 DOI: 10.1039/c4dt03234a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A series of ferrocenyl- and aryl-functionalised organosilane thiosemicarbazone compounds was obtained via a nucleophilic substitution reaction with an amine-terminated organosilane. The thiosemicarbazone (TSC) ligands were further reacted with either a ruthenium dimer [(η(6-i)PrC6H4Me)Ru(μ-Cl)Cl]2 or a rhodium dimer [(Cp*)Rh(μ-Cl)Cl]2 to yield a series of cationic mono- and binuclear complexes. The thiosemicarbazone ligands, as well as their metal complexes, were characterised using NMR and IR spectroscopy, and mass spectrometry. The molecular structure of the binuclear ruthenium(ii) complex was determined by single-crystal X-ray diffraction analysis. The thiosemicarbazones and their complexes were evaluated for their in vitro antiplasmodial activities against the chloroquine-sensitive (NF54) and chloroquine-resistant (Dd2) Plasmodium falciparum strains, displaying activities in the low micromolar range. Selected compounds were screened for potential β-haematin inhibition activity, and it was found that two Rh(iii) complexes exhibited moderate to good inhibition. Furthermore, the compounds were screened for their antitrichomonal activities against the G3 Trichomonas vaginalis strain, revealing a higher percentage of growth inhibition for the ruthenium and rhodium complexes over their corresponding ligand.
Collapse
Affiliation(s)
- Muneebah Adams
- Department of Chemistry, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Gildenhuys J, Sammy CJ, Müller R, Streltsov VA, le Roex T, Kuter D, de Villiers KA. Alkoxide coordination of iron(III) protoporphyrin IX by antimalarial quinoline methanols: a key interaction observed in the solid-state and solution. Dalton Trans 2015; 44:16767-77. [PMID: 26335948 DOI: 10.1039/c5dt02671g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quinoline methanol antimalarial drug mefloquine is a structural analogue of the Cinchona alkaloids, quinine and quinidine. We have elucidated the single crystal X-ray diffraction structure of the complexes formed between racemic erythro mefloquine and ferriprotoporphyrin IX (Fe(iii)PPIX) and show that alkoxide coordination is a key interaction in the solid-state. Mass spectrometry confirms the existence of coordination complexes of quinine, quinidine and mefloquine to Fe(iii)PPIX in acetonitrile. The length of the iron(iii)-O bond in the quinine and quinidine complexes as determined by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy unequivocally confirms that coordination of the quinoline methanol compounds to Fe(iii)PPIX occurs in non-aqueous aprotic solution via their benzylic alkoxide functional group. UV-visible spectrophotometric titrations of the low-spin bis-pyridyl-Fe(iii)PPIX complex with each of the quinoline methanol compounds results in the displacement of a single pyridine molecule and subsequent formation of a six-coordinate pyridine-Fe(iii)PPIX-drug complex. We propose that formation of the drug-Fe(iii)PPIX coordination complexes is favoured in a non-aqueous environment, such as that found in lipid bodies or membranes in the malaria parasite, and that their existence may contribute to the mechanism of haemozoin inhibition or other toxicity effects that lead ultimately to parasite death. In either case, coordination is a key interaction to be considered in the design of novel antimalarial drug candidates.
Collapse
Affiliation(s)
- Johandie Gildenhuys
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.
| | | | | | | | | | | | | |
Collapse
|
55
|
Wicht KJ, Combrinck JM, Smith PJ, Egan TJ. Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity. Bioorg Med Chem 2015; 23:5210-7. [PMID: 25573118 PMCID: PMC4475507 DOI: 10.1016/j.bmc.2014.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/29/2022]
Abstract
A large quantity of high throughput screening (HTS) data for antimalarial activity has become available in recent years. This includes both phenotypic and target-based activity. Realising the maximum value of these data remains a challenge. In this respect, methods that allow such data to be used for virtual screening maximise efficiency and reduce costs. In this study both in vitro antimalarial activity and inhibitory data for β-haematin formation, largely obtained from publically available sources, has been used to develop Bayesian models for inhibitors of β-haematin formation and in vitro antimalarial activity. These models were used to screen two in silico compound libraries. In the first, the 1510 U.S. Food and Drug Administration approved drugs available on PubChem were ranked from highest to lowest Bayesian score based on a training set of β-haematin inhibiting compounds active against Plasmodium falciparum that did not include any of the clinical antimalarials or close analogues. The six known clinical antimalarials that inhibit β-haematin formation were ranked in the top 2.1% of compounds. Furthermore, the in vitro antimalarial hit-rate for this prioritised set of compounds was found to be 81% in the case of the subset where activity data are available in PubChem. In the second, a library of about 5000 commercially available compounds (Aldrich(CPR)) was virtually screened for ability to inhibit β-haematin formation and then for in vitro antimalarial activity. A selection of 34 compounds was purchased and tested, of which 24 were predicted to be β-haematin inhibitors. The hit rate for inhibition of β-haematin formation was found to be 25% and a third of these were active against P. falciparum, corresponding to enrichments estimated at about 25- and 140-fold relative to random screening, respectively.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jill M Combrinck
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; Division of Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Peter J Smith
- Division of Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
56
|
M S, Koringa K, Dave U, Gatne D. A modified precise analytical method for anti-malarial screening: Heme polymerization assay. Mol Biochem Parasitol 2015; 201:112-5. [PMID: 26241332 DOI: 10.1016/j.molbiopara.2015.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022]
Abstract
Malarial parasite detoxifies the heme generated in its food vacuole in many ways one of which involves heme polymerization to hemozoin. The existing heme polymerization assays involve use of activators along with buffers for polymerization of heme leading to its precipitation. Such assays then involve special instruments and laborious work of isolating the precipitated polymer and its detection. Simple and precise spectrophotometric and HTS methods were developed for heme polymerization using tween 20 as the activator without isolation of polymerized heme.
Collapse
Affiliation(s)
- Saritha M
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Kashyap Koringa
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Urja Dave
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Dipti Gatne
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (West), Mumbai 400056, India.
| |
Collapse
|
57
|
Ongarora DSB, Strydom N, Wicht K, Njoroge M, Wiesner L, Egan TJ, Wittlin S, Jurva U, Masimirembwa CM, Chibale K. Antimalarial benzoheterocyclic 4-aminoquinolines: Structure-activity relationship, in vivo evaluation, mechanistic and bioactivation studies. Bioorg Med Chem 2015; 23:5419-32. [PMID: 26264839 DOI: 10.1016/j.bmc.2015.07.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/15/2015] [Accepted: 07/25/2015] [Indexed: 10/23/2022]
Abstract
A novel class of benzoheterocyclic analogues of amodiaquine designed to avoid toxic reactive metabolite formation was synthesized and evaluated for antiplasmodial activity against K1 (multidrug resistant) and NF54 (sensitive) strains of the malaria parasite Plasmodium falciparum. Structure-activity relationship studies led to the identification of highly promising analogues, the most potent of which had IC50s in the nanomolar range against both strains. The compounds further demonstrated good in vitro microsomal metabolic stability while those subjected to in vivo pharmacokinetic studies had desirable pharmacokinetic profiles. In vivo antimalarial efficacy in Plasmodium berghei infected mice was evaluated for four compounds, all of which showed good activity following oral administration. In particular, compound 19 completely cured treated mice at a low multiple dose of 4×10mg/kg. Mechanistic and bioactivation studies suggest hemozoin formation inhibition and a low likelihood of forming quinone-imine reactive metabolites, respectively.
Collapse
Affiliation(s)
- Dennis S B Ongarora
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa; Department of Pharmaceutical Chemistry, University of Nairobi, Nairobi, Kenya
| | - Natasha Strydom
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kathryn Wicht
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Socinstrasse 57, 4002 Basel, Switzerland
| | | | | | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
58
|
Synthesis, characterization and pharmacological evaluation of ferrocenyl azines and their rhodium(I) complexes. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
59
|
Combrinck JM, Fong KY, Gibhard L, Smith PJ, Wright DW, Egan TJ. Optimization of a multi-well colorimetric assay to determine haem species in Plasmodium falciparum in the presence of anti-malarials. Malar J 2015; 14:253. [PMID: 26099266 PMCID: PMC4484700 DOI: 10.1186/s12936-015-0729-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/07/2015] [Indexed: 11/24/2022] Open
Abstract
Background The activity of several well-known anti-malarials, including chloroquine (CQ), is attributed to their ability to inhibit the formation of haemozoin (Hz) in the malaria parasite. The formation of inert Hz, or malaria pigment, from toxic haem acquired from the host red blood cell of the parasite during haemoglobin digestion represents a pathway essential for parasite survival. Inhibition of this critical pathway therefore remains a desirable target for novel anti-malarials. A recent publication described the results of a haem fractionation assay used to directly determine haemoglobin, free haem and Hz in Plasmodium falciparum inoculated with CQ. CQ was shown to cause a dose-dependent increase in cellular-free haem that was correlated with decreased parasite survival. The method provided valuable information but was limited due to its low throughput and high demand on parasite starting material. Here, this haem fractionation assay has been successfully adapted to a higher throughput method in 24-well plates, significantly reducing lead times and starting material volumes. Methods All major haem species in P. falciparum trophozoites, isolated through a series of cellular fractionation steps were determined spectrophotometrically in aqueous pyridine (5 % v/v, pH 7.5) as a low spin complex with haematin. Cell counts were determined using a haemocytometer and a rapid novel fluorescent flow cytometry method. Results A higher throughput haem fractionation assay in 24-well plates, containing at most ten million trophozoites was validated against the original published method using CQ and its robustness was confirmed. It provided a minimum six-fold improvement in productivity and 24-fold reduction in starting material volume. The assay was successfully applied to amodiaquine (AQ), which was shown to inhibit Hz formation, while the antifolate pyrimethamine (PYR) and the mitochondrial electron transporter inhibitor atovaquone (Atov) demonstrated no increase in toxic cellular free haem. Conclusions This higher throughput cellular haem fractionation assay can easily be applied to novel anti-malarials with a significantly decreased lead time, providing a valuable tool with which to probe the mechanisms of action of both new and established anti-malarials.
Collapse
Affiliation(s)
- Jill M Combrinck
- Division of Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa.
| | - Kim Y Fong
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN, 37235, USA.
| | - Liezl Gibhard
- Division of Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa.
| | - Peter J Smith
- Division of Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa.
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN, 37235, USA.
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa.
| |
Collapse
|
60
|
Young RM, Adendorff MR, Wright AD, Davies-Coleman MT. Antiplasmodial activity: The first proof of inhibition of heme crystallization by marine isonitriles. Eur J Med Chem 2015; 93:373-80. [DOI: 10.1016/j.ejmech.2015.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
|
61
|
Stringer T, Taylor D, Guzgay H, Shokar A, Au A, Smith PJ, Hendricks DT, Land KM, Egan TJ, Smith GS. Polyamine quinoline rhodium complexes: synthesis and pharmacological evaluation as antiparasitic agents against Plasmodium falciparum and Trichomonas vaginalis. Dalton Trans 2015. [DOI: 10.1039/c5dt02378e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salicylaldimine ligands and their corresponding Rh(i) complexes were prepared and evaluated as antiparasitic agents.
Collapse
Affiliation(s)
- Tameryn Stringer
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
| | - Dale Taylor
- Division of Clinical Pharmacology
- Department of Medicine
- University of Cape Town Medical School
- South Africa
| | - Hajira Guzgay
- Division of Medical Biochemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
| | - Ajit Shokar
- Department of Biological Sciences
- University of the Pacific
- Stockton
- USA
| | - Aaron Au
- Department of Biological Sciences
- University of the Pacific
- Stockton
- USA
| | - Peter J. Smith
- Division of Clinical Pharmacology
- Department of Medicine
- University of Cape Town Medical School
- South Africa
| | - Denver T. Hendricks
- Division of Medical Biochemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
| | - Kirkwood M. Land
- Department of Biological Sciences
- University of the Pacific
- Stockton
- USA
| | - Timothy J. Egan
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
| | - Gregory S. Smith
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701
- South Africa
| |
Collapse
|
62
|
Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains. Antimicrob Agents Chemother 2014; 59:1110-8. [PMID: 25487796 DOI: 10.1128/aac.03265-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs.
Collapse
|
63
|
Sandlin RD, Fong KY, Wicht KJ, Carrell HM, Egan TJ, Wright DW. Identification of β-hematin inhibitors in a high-throughput screening effort reveals scaffolds with in vitro antimalarial activity. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:316-25. [PMID: 25516843 PMCID: PMC4266794 DOI: 10.1016/j.ijpddr.2014.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hemozoin formation is a prime drug target pathway to probe for new lead compounds. We examined the VICB library of compounds for in vitro β-hematin inhibition. β-Hematin inhibitors were tested for in vitro antimalarial activity in two P. falciparum strains. Chemical scaffolds with target-specific and in vitro antimalarial activity were identified.
The emergence of drug resistant strains of Plasmodium spp. creates a critical need for the development of novel antimalarials. Formation of hemozoin, a crystalline heme detoxification process vital to parasite survival serves as an important drug target. The quinoline antimalarials including chloroquine and amodiaquine owe their antimalarial activity to inhibition of hemozoin formation. Though in vivo formation of hemozoin occurs within the presence of neutral lipids, the lipophilic detergent NP-40 was previously shown to serve as a surrogate in the β-hematin (synthetic hemozoin) formation process. Consequently, an NP-40 mediated β-hematin formation assay was developed for use in high-throughput screening. Here, the assay was utilized to screen 144,330 compounds for the identification of inhibitors of crystallization, resulting in 530 hits. To establish the effectiveness of these target-based β-hematin inhibitors against Plasmodiumfalciparum, each hit was further tested in cultures of parasitized red blood cells. This effort revealed that 171 of the β-hematin inhibitors are also active against the parasite. Dose–response data identified 73 of these β-hematin inhibitors have IC50 values ⩽5 μM, including 25 compounds with nanomolar activity against P. falciparum. A scaffold-based analysis of this data identified 14 primary scaffolds that represent 46% of the 530 total hits. Representative compounds from each of the classes were further assessed for hemozoin inhibitory activity in P. falciparum infected human erythrocytes. Each of the hit compounds tested were found to be positive inhibitors, while a negative control did not perturb this biological pathway in culture.
Collapse
Affiliation(s)
- Rebecca D Sandlin
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Kim Y Fong
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Kathryn J Wicht
- Department of Chemistry, University of Cape Town, Rondebosch 7700, South Africa
| | - Holly M Carrell
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7700, South Africa
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| |
Collapse
|
64
|
Raj R, Mehra V, Gut J, Rosenthal PJ, Wicht KJ, Egan TJ, Hopper M, Wrischnik LA, Land KM, Kumar V. Discovery of highly selective 7-chloroquinoline-thiohydantoins with potent antimalarial activity. Eur J Med Chem 2014; 84:425-32. [DOI: 10.1016/j.ejmech.2014.07.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
65
|
Wang N, Wicht KJ, Wang L, Lu WJ, Misumi R, Wang MQ, El Gokha AAA, Kaiser M, El Sayed IET, Egan TJ, Inokuchi T. Synthesis and in vitro testing of antimalarial activity of non-natural-type neocryptolepines: structure–activity relationship study of 2,11- and 9,11-disubstituted 6-methylindolo[2,3-b]quinolines. Chem Pharm Bull (Tokyo) 2014; 61:1282-90. [PMID: 24436959 DOI: 10.1248/cpb.c13-00639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This report describes the synthesis and in vitro anti-malarial evaluations of certain C2 or C8 and C11-disubstituted 6-methyl-5H-indolo[2,3-b]quinoline (neocryptolepine congener) derivatives. To attain higher activities, the structure–activity relationship (SAR) studies were conducted by varying the kind of alkylamino or ω-aminoalkylamino stubstituents at C11 and with Cl at the C2 position, or CO2Me at the C9 position. The anti-malarial activities of the tested compounds were significantly increased compared to the 11-non(alkylamino) derivatives. The 3-aminopropylamino group at C11 was further modified to urea and thiourea, which improved the cytotoxicity against normal cells. The best results were achieved with compounds 8 and 9d against the NF54 strain with the IC(50)/SI values as of 86 nM/20 and 317 nM/370, respectively. Furthermore, the compounds were tested for β-haematin inhibition. Twelve were found to have IC(50) values below 100 µM and a linear correlation between the β-haematin inhibition and cell growth inhibition in the NF54 strain was found for those derivatives with basic amino side chains. A second correlation was identified between the NF54 activity and physico-chemical factors related to solvation and polarity.
Collapse
|
66
|
Carrasco MP, Newton AS, Gonçalves L, Góis A, Machado M, Gut J, Nogueira F, Hänscheid T, Guedes RC, dos Santos DJVA, Rosenthal PJ, Moreira R. Probing the aurone scaffold against Plasmodium falciparum: design, synthesis and antimalarial activity. Eur J Med Chem 2014; 80:523-34. [PMID: 24813880 DOI: 10.1016/j.ejmech.2014.04.076] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 11/18/2022]
Abstract
A library comprising 44 diversely substituted aurones derivatives was synthesized by straightforward aldol condensation reactions of benzofuranones and the appropriately substituted benzaldehydes. Microwave enhanced synthesis using palladium catalyzed protocols was introduced as a powerful strategy for extending the chemical space around the aurone scaffold. Additionally, Mannich-base derivatives, containing a 7-aminomethyl-6-hydroxy substitution pattern at ring A, were also prepared. Screening against the chloroquine resistant Plasmodium falciparum W2 strain identified novel aurones with IC50 values in the low micromolar range. The most potent compounds contained a basic moiety, with the ability to accumulate in acidic digestive vacuole of the malaria parasite. However, none of those aurones revealed significant activity against hemozoin formation and falcipain-2, two validated targets expressed during the blood stage of P. falciparum infection and functional in digestive vacuole of the parasite. Overall, this study highlight (i) the usefulness of aurones as platforms for synthetic procedures using palladium catalyzed protocols to rapidly deliver lead compounds for further optimization and (ii) the potential of novel aurone derivatives as promising antimalarial compounds.
Collapse
Affiliation(s)
- Marta P Carrasco
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Ana S Newton
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Lídia Gonçalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Ana Góis
- Unidade de Microbiologia Molecular e Infecção, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Marta Machado
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, Box 0811, San Francisco, CA 94143, USA
| | - Fátima Nogueira
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Thomas Hänscheid
- Unidade de Microbiologia Molecular e Infecção, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita C Guedes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Daniel J V A dos Santos
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, Box 0811, San Francisco, CA 94143, USA
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal.
| |
Collapse
|
67
|
Synthesis, β-haematin inhibition, and in vitro antimalarial testing of isocryptolepine analogues: SAR study of indolo[3,2-c]quinolines with various substituents at C2, C6, and N11. Bioorg Med Chem 2014; 22:2629-42. [PMID: 24721829 DOI: 10.1016/j.bmc.2014.03.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/17/2014] [Indexed: 11/23/2022]
Abstract
A series of indolo[3,2-c]quinolines were synthesized by modifying the side chains of the ω-aminoalkylamines at the C6 position and introducing substituents at the C2 position, such as F, Cl, Br, Me, MeO and NO2, and a methyl group at the N11 position for an SAR study. The in vitro antiplasmodial activities of the derivative agents against two different strains (CQS: NF54 and CQR: K1) and the cytotoxic activity against normal L6 cells were evaluated. The test results showed that compounds 6k and 6l containing the branched methyl groups of 3-aminopropylamino at C6 with a Cl atom at C2 exhibited a very low cytotoxicity with IC50 values above 4000 nM, high antimalarial activities with IC50 values of about 11 nM for CQS (NF54), IC50 values of about 17 nM for CQR (K1), and RI resistance indices of 1.6. Furthermore, the compounds were tested for β-haematic inhibition, and QSAR revealed an interesting linear correlation between the biological activity of CQS (NF54) and three contributing factors, namely solubility, hydrophilic surface area, and β-haematin inhibition for this series. In vivo testing of 6l showed a reduction in parasitaemia on day 4 with an activity of 38%.
Collapse
|
68
|
Stiebler R, Majerowicz D, Knudsen J, Gondim KC, Wright DW, Egan TJ, Oliveira MF. Unsaturated glycerophospholipids mediate heme crystallization: biological implications for hemozoin formation in the kissing bug Rhodnius prolixus. PLoS One 2014; 9:e88976. [PMID: 24586467 PMCID: PMC3935856 DOI: 10.1371/journal.pone.0088976] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
Hemozoin (Hz) is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membranes (PMVM). Here, we investigated the role of commercial glycerophospholipids containing serine, choline and ethanolamine as headgroups and R. prolixus midgut lipids (RML) in heme crystallization. All commercial unsaturated forms of phospholipids, as well as RML, mediated fast and efficient β-hematin formation by means of two kinetically distinct mechanisms: an early and fast component, followed by a late and slow one. The fastest reactions observed were induced by unsaturated forms of phosphatidylethanolamine (uPE) and phosphatidylcholine (uPC), with half-lives of 0.04 and 0.7 minutes, respectively. β-hematin crystal morphologies were strikingly distinct among groups, with uPE producing homogeneous regular brick-shaped crystals. Interestingly, uPC-mediated reactions resulted in two morphologically distinct crystal populations: one less representative group of regular crystals, resembling those induced by uPE, and the other largely represented by crystals with numerous sharp edges and tapered ends. Heme crystallization reactions induced by RML were efficient, with a heme to β-hematin conversion rate higher than 70%, but clearly slower (t1/2 of 9.9-17.7 minutes) than those induced by uPC and uPE. Interestingly, crystals produced by RML were homogeneous in shape and quite similar to those mediated by uPE. Thus, β-hematin formation can be rapidly and efficiently induced by unsaturated glycerophospholipids, particularly uPE and uPC, and may play a role on biological heme crystallization in R. prolixus midgut.
Collapse
Affiliation(s)
- Renata Stiebler
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David Majerowicz
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia,Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Jens Knudsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Katia C. Gondim
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - David W. Wright
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, South Africa
| | - Marcus F. Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
69
|
Abstract
Recent initiatives to develop more effective and affordable drugs, controlling mosquitoes and development of a preventative vaccine have been launched with the goal of completely eradicating malaria. To this end, Novartis (Surrey, UK) and GlaxoSmithKline (Middlesex, UK) screened their chemical libraries of approximately two million small molecules for antimalarial properties, which resulted in a set of over 20,000 'highly druggable' initial hits. Efforts in academia are centered on specific pathway targets. One such high-throughput screening effort has been focused on hemozoin formation, a unique heme detoxification pathway found in the malaria parasite. This review discusses the current approaches and limitations of high-throughput screening discovery of hemozoin inhibitors. In the future, new methods must be developed to validate the mechanism of action of these hit compounds within the parasite.
Collapse
|
70
|
Nkoana W, Nyoni D, Chellan P, Stringer T, Taylor D, Smith PJ, Hutton AT, Smith GS. Heterometallic half-sandwich complexes containing a ferrocenyl motif: Synthesis, molecular structure, electrochemistry and antiplasmodial evaluation. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.11.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
71
|
Wang N, Wicht KJ, Shaban E, Ngoc TA, Wang MQ, Hayashi I, Hossain MI, Takemasa Y, Kaiser M, El Tantawy El Sayed I, Egan TJ, Inokuchi T. Synthesis and evaluation of artesunate–indoloquinoline hybrids as antimalarial drug candidates. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00091a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrids of artesunate–indoloquinoline were synthesized and antiplasmodial activity was evaluated.
Collapse
Affiliation(s)
- Ning Wang
- Division of Chemistry and Biotechnology
- Graduate School of Natural Science and Technology
- Okayama University
- Kita-ku, Japan
| | - Kathryn J. Wicht
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701, South Africa
| | - Elkhabiry Shaban
- Division of Chemistry and Biotechnology
- Graduate School of Natural Science and Technology
- Okayama University
- Kita-ku, Japan
| | - Tran Anh Ngoc
- Division of Chemistry and Biotechnology
- Graduate School of Natural Science and Technology
- Okayama University
- Kita-ku, Japan
| | - Ming-Qi Wang
- Division of Chemistry and Biotechnology
- Graduate School of Natural Science and Technology
- Okayama University
- Kita-ku, Japan
| | - Ikuya Hayashi
- Division of Chemistry and Biotechnology
- Graduate School of Natural Science and Technology
- Okayama University
- Kita-ku, Japan
| | - Md. Imran Hossain
- Division of Chemistry and Biotechnology
- Graduate School of Natural Science and Technology
- Okayama University
- Kita-ku, Japan
| | - Yoshihiko Takemasa
- Division of Chemistry and Biotechnology
- Graduate School of Natural Science and Technology
- Okayama University
- Kita-ku, Japan
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute
- CH-4002 Basel, Switzerland
- University Basel
- CH-4003 Basel, Switzerland
| | - Ibrahim El Tantawy El Sayed
- Division of Chemistry and Biotechnology
- Graduate School of Natural Science and Technology
- Okayama University
- Kita-ku, Japan
- Chemistry Departments
| | - Timothy J. Egan
- Department of Chemistry
- University of Cape Town
- Rondebosch 7701, South Africa
| | - Tsutomu Inokuchi
- Division of Chemistry and Biotechnology
- Graduate School of Natural Science and Technology
- Okayama University
- Kita-ku, Japan
| |
Collapse
|
72
|
In vitro antimalarial activity, β-haematin inhibition and structure–activity relationships in a series of quinoline triazoles. Eur J Med Chem 2013; 69:338-47. [DOI: 10.1016/j.ejmech.2013.08.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/19/2013] [Accepted: 08/25/2013] [Indexed: 11/23/2022]
|
73
|
Stringer T, Taylor D, de Kock C, Guzgay H, Au A, An SH, Sanchez B, O'Connor R, Patel N, Land KM, Smith PJ, Hendricks DT, Egan TJ, Smith GS. Synthesis, characterization, antiparasitic and cytotoxic evaluation of thioureas conjugated to polyamine scaffolds. Eur J Med Chem 2013; 69:90-8. [DOI: 10.1016/j.ejmech.2013.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/10/2013] [Accepted: 08/02/2013] [Indexed: 11/25/2022]
|
74
|
Teguh SC, Klonis N, Duffy S, Lucantoni L, Avery VM, Hutton CA, Baell JB, Tilley L. Novel Conjugated Quinoline–Indoles Compromise Plasmodium falciparum Mitochondrial Function and Show Promising Antimalarial Activity. J Med Chem 2013; 56:6200-15. [DOI: 10.1021/jm400656s] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Sandra Duffy
- Eskitis Institute for Drug Discovery, Brisbane Innovation Park, Griffith University,
Nathan QLD 4111, Australia
| | - Leonardo Lucantoni
- Eskitis Institute for Drug Discovery, Brisbane Innovation Park, Griffith University,
Nathan QLD 4111, Australia
| | - Vicky M. Avery
- Eskitis Institute for Drug Discovery, Brisbane Innovation Park, Griffith University,
Nathan QLD 4111, Australia
| | | | - Jonathan B. Baell
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Science, Parkville
VIC 3052, Australia
| | | |
Collapse
|
75
|
Gorka AP, de Dios A, Roepe PD. Quinoline drug-heme interactions and implications for antimalarial cytostatic versus cytocidal activities. J Med Chem 2013; 56:5231-46. [PMID: 23586757 DOI: 10.1021/jm400282d] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Historically, the most successful molecular target for antimalarial drugs has been heme biomineralization within the malarial parasite digestive vacuole. Heme released from catabolized host red blood cell hemoglobin is toxic, so malarial parasites crystallize heme to nontoxic hemozoin. For years it has been accepted that a number of effective quinoline antimalarial drugs (e.g., chloroquine, quinine, amodiaquine) function by preventing hemozoin crystallization. However, recent studies over the past decade have revealed a surprising molecular diversity in quinoline-heme molecular interactions. This diversity shows that even closely related quinoline drugs may have quite different molecular pharmacology. This paper reviews the molecular diversity and highlights important implications for understanding quinoline antimalarial drug resistance and for future drug design.
Collapse
Affiliation(s)
- Alexander P Gorka
- Department of Chemistry, Department of Biochemistry, Cellular, and Molecular Biology, and Center for Infectious Diseases, Georgetown University , 37th and O Streets, NW, Washington, D.C. 20057, United States
| | | | | |
Collapse
|
76
|
Lu WJ, Wicht KJ, Wang L, Imai K, Mei ZW, Kaiser M, El Sayed IET, Egan TJ, Inokuchi T. Synthesis and antimalarial testing of neocryptolepine analogues: addition of ester function in SAR study of 2,11-disubstituted indolo[2,3-b]quinolines. Eur J Med Chem 2013; 64:498-511. [PMID: 23685569 DOI: 10.1016/j.ejmech.2013.03.072] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/30/2013] [Accepted: 03/31/2013] [Indexed: 11/30/2022]
Abstract
This report describes the synthesis, and in vitro and in vivo antimalarial evaluations of certain ester-modified neocryptolepine (5-methyl-5H-indolo[2,3-b]quinoline) derivatives. The modifications were carried out by introducing ester groups at the C2 and/or C9 position on the neocryptolepine core and the terminal amino group of the 3-aminopropylamine substituents at the C11 position with a urea/thiourea unit. The antiplasmodial activities of our derivative agents against two different strains (CQS: NF54, and CQR: K1) and the cytotoxic activity against normal L6 cells were evaluated. The test results showed that the ester modified neocryptolepine derivatives have higher antiplasmodial activities against both strains and a low cytotoxic activity against normal cells. The best results were achieved by compounds 9c and 12b against the NF54 strain with the IC50/SI value as 2.27 nM/361 and 1.81 nM/321, respectively. While against K1 strain, all the tested compounds showed higher activity than the well-known antimalarial drug chloroquine. Furthermore, the compounds were tested for β-haematin inhibition and 12 were found to be more active than chloroquine (IC50 = 18 μM). Structure activity relationship studies exposed an interesting linear correlation between polar surface area of the molecule and β-haematin inhibition for this series. In vivo testing of compounds 7 and 8a against NF54 strain on Plasmodium berghei female mice showed that the introduction of the ester group increased the antiplasmodial activity of the neocryptolepine core substantially.
Collapse
Affiliation(s)
- Wen-Jie Lu
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Combrinck JM, Mabotha TE, Ncokazi KK, Ambele MA, Taylor D, Smith PJ, Hoppe HC, Egan TJ. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem Biol 2013; 8:133-7. [PMID: 23043646 DOI: 10.1021/cb300454t] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
By using cell fractionation and measurement of Fe(III)heme-pyridine, the antimalarial chloroquine (CQ) has been shown to cause a dose-dependent decrease in hemozoin and concomitant increase in toxic free heme in cultured Plasmodium falciparum that is directly correlated with parasite survival. Transmission electron microscopy techniques have further shown that heme is redistributed from the parasite digestive vacuole to the cytoplasm and that CQ disrupts hemozoin crystal growth, resulting in mosaic boundaries in the crystals formed in the parasite. Extension of the cell fractionation study to other drugs has shown that artesunate, amodiaquine, lumefantrine, mefloquine, and quinine, all clinically important antimalarials, also inhibit hemozoin formation in the parasite cell, while the antifolate pyrimethamine and its combination with sulfadoxine do not. This study finally provides direct evidence in support of the hemozoin inhibition hypothesis for the mechanism of action of CQ and shows that other quinoline and related antimalarials inhibit cellular hemozoin formation.
Collapse
Affiliation(s)
- Jill M. Combrinck
- Department of Chemistry and ‡Division of Pharmacology, Department of Medicine, University of Cape Town, Private Bag,
Rondebosch 7701, South Africa
| | - Tebogo E. Mabotha
- Department of Chemistry and ‡Division of Pharmacology, Department of Medicine, University of Cape Town, Private Bag,
Rondebosch 7701, South Africa
| | - Kanyile K. Ncokazi
- Department of Chemistry and ‡Division of Pharmacology, Department of Medicine, University of Cape Town, Private Bag,
Rondebosch 7701, South Africa
| | - Melvin A. Ambele
- Department of Chemistry and ‡Division of Pharmacology, Department of Medicine, University of Cape Town, Private Bag,
Rondebosch 7701, South Africa
| | - Dale Taylor
- Department of Chemistry and ‡Division of Pharmacology, Department of Medicine, University of Cape Town, Private Bag,
Rondebosch 7701, South Africa
| | - Peter J. Smith
- Department of Chemistry and ‡Division of Pharmacology, Department of Medicine, University of Cape Town, Private Bag,
Rondebosch 7701, South Africa
| | - Heinrich C. Hoppe
- Department of Chemistry and ‡Division of Pharmacology, Department of Medicine, University of Cape Town, Private Bag,
Rondebosch 7701, South Africa
| | - Timothy J. Egan
- Department of Chemistry and ‡Division of Pharmacology, Department of Medicine, University of Cape Town, Private Bag,
Rondebosch 7701, South Africa
| |
Collapse
|
78
|
Li Y, de Kock C, Smith PJ, Guzgay H, Hendricks DT, Naran K, Mizrahi V, Warner DF, Chibale K, Smith GS. Synthesis, Characterization, and Pharmacological Evaluation of Silicon-Containing Aminoquinoline Organometallic Complexes As Antiplasmodial, Antitumor, and Antimycobacterial Agents. Organometallics 2012. [DOI: 10.1021/om300945c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yiqun Li
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Carmen de Kock
- Division of Pharmacology, Department
of Medicine, University of Cape Town, K45,
OMB, Groote Schuur Hospital, Observatory 7925, South Africa
| | - Peter J. Smith
- Division of Pharmacology, Department
of Medicine, University of Cape Town, K45,
OMB, Groote Schuur Hospital, Observatory 7925, South Africa
| | - Hajira Guzgay
- Division of Medical Biochemistry, Department
of Clinical and Laboratory Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Denver T. Hendricks
- Division of Medical Biochemistry, Department
of Clinical and Laboratory Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Krupa Naran
- MRC/NHLS/UCT Molecular Mycobacteriology Research
Unit, DST/NRF Centre of Excellence for Biomedical TB Research, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research
Unit, DST/NRF Centre of Excellence for Biomedical TB Research, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Digby F. Warner
- MRC/NHLS/UCT Molecular Mycobacteriology Research
Unit, DST/NRF Centre of Excellence for Biomedical TB Research, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Gregory S. Smith
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
79
|
Ambele MA, Egan TJ. Neutral lipids associated with haemozoin mediate efficient and rapid β-haematin formation at physiological pH, temperature and ionic composition. Malar J 2012; 11:337. [PMID: 23043460 PMCID: PMC3479076 DOI: 10.1186/1475-2875-11-337] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/03/2012] [Indexed: 11/10/2022] Open
Abstract
Background The malaria parasite disposes of host-derived ferrihaem (iron(III)protoporphyrin IX, Fe(III)PPIX) by conversion to crystalline haemozoin in close association with neutral lipids. Lipids mediate synthetic haemozoin (β-haematin) formation very efficiently. However, the effect on reaction rates of concentrations of lipid, Fe(III)PPIX and physiologically relevant ions and biomolecules are unknown. Methods Lipid emulsions containing Fe(III)PPIX were prepared in aqueous medium (pH 4.8, 37°C) to mediate β-haematin formation. The reaction was quenched at various times and free Fe(III)PPIX measured colorimetrically as a pyridine complex and the kinetics and yields analysed. Products were also characterized by FTIR, TEM and electron diffraction. Autofluorescence was also used to monitor β-haematin formation by confocal microscopy. Results At fixed Fe(III)PPIX concentration, β-haematin yields remained constant with decreasing lipid concentration until a cut-off ratio was reached whereupon efficiency decreased dramatically. For the haemozoin-associated neutral lipid blend (NLB) and monopalmitoylglycerol (MPG), this occurred below a lipid/Fe(III)PPIX (L/H) ratio of 0.54. Rate constants were found to increase with L/H ratio above the cut-off. At 16 μM MPG, Fe(III)PPIX concentration could be raised until the L/H ratio reached the same ratio before a sudden decline in yield was observed. MPG-mediated β-haematin formation was relatively insensitive to biologically relevant cations (Na+, K+, Mg2+, Ca2+), or anions (H2PO4−, HCO3−, ATP, 2,3-diphosphoglycerate, glutathione). Confocal microscopy demonstrated β-haematin formation occurs in association with the lipid particles. Conclusions Kinetics of β-haematin formation have shown that haemozoin-associated neutral lipids alone are capable of mediating β-haematin formation at adequate rates under physiologically realistic conditions of ion concentrations to account for haemozoin formation.
Collapse
Affiliation(s)
- Melvin A Ambele
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | | |
Collapse
|
80
|
Thomas V, Góis A, Ritts B, Burke P, Hänscheid T, McDonnell G. A novel way to grow hemozoin-like crystals in vitro and its use to screen for hemozoin inhibiting antimalarial compounds. PLoS One 2012; 7:e41006. [PMID: 22815894 PMCID: PMC3399802 DOI: 10.1371/journal.pone.0041006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/15/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hemozoin crystals are normally formed in vivo by Plasmodium parasites to detoxify free heme released after hemoglobin digestion during its intraerythrocytic stage. Inhibition of hemozoin formation by various drugs results in free heme concentration toxic for the parasites. As a consequence, in vitro assays have been developed to screen and select candidate antimalarial drugs based on their capacity to inhibit hemozoin formation. In this report we describe new ways to form hemozoin-like crystals that were incidentally discovered during research in the field of prion inactivation. METHODS We investigated the use of a new assay based on naturally occurring "self-replicating" particles and previously described as presenting resistance to decontamination comparable to prions. The nature of these particles was determined using electron microscopy, Maldi-Tof analysis and X-ray diffraction. They were compared to synthetic hemozoin and to hemozoin obtained from Plasmodium falciparum. We then used the assay to evaluate the capacity of various antimalarial and anti-prion compounds to inhibit "self-replication" (crystallisation) of these particles. RESULTS We identified these particles as being similar to ferriprotoporphyrin IX crystal and confirmed the ability of these particles to serve as nuclei for growth of new hemozoin-like crystals (HLC). HLC are morphologically similar to natural and synthetic hemozoin. Growth of HLC in a simple assay format confirmed inhibition by quinolines antimalarials at potencies described in the literature. Interestingly, artemisinins and tetracyclines also seemed to inhibit HLC growth. CONCLUSIONS The described HLC assay is simple and easy to perform and may have the potential to be used as an additional tool to screen antimalarial drugs for their hemozoin inhibiting activity. As already described by others, drugs that inhibit hemozoin crystal formation have also the potential to inhibit misfolded proteins assemblies formation.
Collapse
Affiliation(s)
| | - Ana Góis
- Unidade de Microbiologia Molecular e Infecção, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisbon, Portugal
| | - Bruce Ritts
- STERIS Corporation, St. Louis, Missouri, United States of America
| | - Peter Burke
- STERIS Corporation, Mentor, Ohio, United States of America
- * E-mail:
| | - Thomas Hänscheid
- Unidade de Microbiologia Molecular e Infecção, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisbon, Portugal
| | | |
Collapse
|