51
|
Prevalence and Therapeutic Challenges of Fungal Drug Resistance: Role for Plants in Drug Discovery. Antibiotics (Basel) 2020; 9:antibiotics9040150. [PMID: 32244276 PMCID: PMC7235788 DOI: 10.3390/antibiotics9040150] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance is a global issue that threatens the effective practice of modern medicine and global health. The emergence of multidrug-resistant (MDR) fungal strains of Candida auris and azole-resistant Aspergillus fumigatus were highlighted in the Centers for Disease Control and Prevention’s (CDC) 2019 report, Antibiotic Resistance Threats in the United States. Conventional antifungals used to treat fungal infections are no longer as effective, leading to increased mortality. Compounding this issue, there are very few new antifungals currently in development. Plants from traditional medicine represent one possible research path to addressing the issue of MDR fungal pathogens. In this commentary piece, we discuss how medical ethnobotany—the study of how people use plants in medicine—can be used as a guide to identify plant species for the discovery and development of novel antifungal therapies.
Collapse
|
52
|
Penetration of Ibrexafungerp (Formerly SCY-078) at the Site of Infection in an Intra-abdominal Candidiasis Mouse Model. Antimicrob Agents Chemother 2020; 64:AAC.02268-19. [PMID: 31871074 DOI: 10.1128/aac.02268-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/15/2019] [Indexed: 01/17/2023] Open
Abstract
Ibrexafungerp (IBX), formerly SCY-078, is a novel, oral and intravenous, semisynthetic triterpenoid glucan synthase inhibitor in clinical development for treating multiple fungal infections, including invasive candidiasis. Intra-abdominal candidiasis (IAC) is one of the most common types of invasive candidiasis associated with high mortality largely due to poor drug exposure in infected lesions. To better understand the potential of IBX to treat such infections, we investigated its penetration at the site of infection. Using matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) and laser capture microdissection (LCM)-directed high-pressure liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), we investigated tissue distribution and lesion-specific drug exposure of IBX in a clinically relevant IAC mouse model. After a single-dose treatment, IBX quickly distributed into tissues and efficiently accumulated within lesions. Drug concentrations of IBX within the liver abscesses were almost 100-fold higher than the serum concentration. In addition, drug penetration after repeated treatment of IBX was compared with micafungin. IBX exhibited robust and long-lasting lesion penetration after repeated treatment. These data indicate that IBX penetrates into intra-abdominal abscesses highly efficiently and holds promise as a potential therapeutic option for IAC patients.
Collapse
|
53
|
In Vitro Activity of Ibrexafungerp (SCY-078) against Candida auris Isolates as Determined by EUCAST Methodology and Comparison with Activity against C. albicans and C. glabrata and with the Activities of Six Comparator Agents. Antimicrob Agents Chemother 2020; 64:AAC.02136-19. [PMID: 31844005 DOI: 10.1128/aac.02136-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/07/2019] [Indexed: 02/03/2023] Open
Abstract
Ibrexafungerp (SCY-078) is a novel first-in-class antifungal agent targeting glucan synthase. Candida auris is an emerging multidrug-resistant species that has caused outbreaks on five continents. We investigated the in vitro activity of ibrexafungerp against C. auris by applying EUCAST E.Def 7.3.1 methodology. C. albicans and C. glabrata, as well as anidulafungin, micafungin, amphotericin B, fluconazole, voriconazole, and isavuconazole, were included as comparators. Three C. auris reference strains (CBS12372, CBS12373, and CBS10913) and 122 C. auris, 16 C. albicans, and 16 C. glabrata isolates were evaluated. C. albicans ATCC 64548, C. parapsilosis ATCC 22019, and C. krusei ATCC 6258 served as quality control strains. Echinocandin-resistant isolates were fks sequenced. MIC ranges and modal MIC and MIC50 values were determined. Wild-type upper limits (the upper MIC value where the wild-type distribution ends) were determined according to EUCAST principles for setting ECOFFs. Nine repetitions of three QC strains and MICs for C. albicans and C. glabrata yielded narrow MIC ranges with modal MICs in agreement with established EUCAST modal MICs, confirming a robust test performance. The ibrexafungerp MICs against C. auris isolates displayed a Gaussian distribution with a modal MIC (range) of 0.5 mg/liter (0.06 to 2 mg/liter), suggesting uniform susceptibility. Of 122 isolates, 8 were echinocandin resistant and harbored the S639F Fks1 alteration. All but one were fluconazole resistant, and the MIC distributions for voriconazole and isavuconazole were multimodal confirming variable susceptibility. Ibrexafungerp demonstrated promising activity against C. auris, including isolates resistant to echinocandins and/or other agents. The MICs were similar to those reported for the Clinical and Laboratory Standards Institute method, suggesting that a common clinical breakpoint may be appropriate.
Collapse
|
54
|
Silva LN, de Mello TP, de Souza Ramos L, Branquinha MH, Dos Santos ALS. New and Promising Chemotherapeutics for Emerging Infections Involving Drug-resistant Non-albicans Candida Species. Curr Top Med Chem 2020; 19:2527-2553. [PMID: 31654512 DOI: 10.2174/1568026619666191025152412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Fungal infections are a veritable public health problem worldwide. The increasing number of patient populations at risk (e.g. transplanted individuals, cancer patients, and HIV-infected people), as well as the use of antifungal agents for prophylaxis in medicine, have favored the emergence of previously rare or newly identified fungal species. Indeed, novel antifungal resistance patterns have been observed, including environmental sources and the emergence of simultaneous resistance to different antifungal classes, especially in Candida spp., which are known for the multidrug-resistance (MDR) profile. In order to circumvent this alarming scenario, the international researchers' community is engaged in discovering new, potent, and promising compounds to be used in a near future to treat resistant fungal infections in hospital settings on a global scale. In this context, many compounds with antifungal action from both natural and synthetic sources are currently under clinical development, including those that target either ergosterol or β(1,3)-D-glucan, presenting clear evidence of pharmacologic/pharmacokinetic advantages over currently available drugs against these two well-known fungal target structures. Among these are the tetrazoles VT-1129, VT-1161, and VT-1598, the echinocandin CD101, and the glucan synthase inhibitor SCY-078. In this review, we compiled the most recent antifungal compounds that are currently in clinical trials of development and described the potential outcomes against emerging and rare Candida species, with a focus on C. auris, C. dubliniensis, C. glabrata, C. guilliermondii, C. haemulonii, and C. rugosa. In addition to possibly overcoming the limitations of currently available antifungals, new investigational chemical agents that can enhance the classic antifungal activity, thereby reversing previously resistant phenotypes, were also highlighted. While novel and increasingly MDR non-albicans Candida species continue to emerge worldwide, novel strategies for rapid identification and treatment are needed to combat these life-threatening opportunistic fungal infections.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís Pereira de Mello
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia de Souza Ramos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta Helena Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
55
|
Rauseo AM, Coler-Reilly A, Larson L, Spec A. Hope on the Horizon: Novel Fungal Treatments in Development. Open Forum Infect Dis 2020; 7:ofaa016. [PMID: 32099843 PMCID: PMC7031074 DOI: 10.1093/ofid/ofaa016] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
The treatment of invasive fungal infections remains challenging due to limitations in currently available antifungal therapies including toxicity, interactions, restricted routes of administration, and drug resistance. This review focuses on novel therapies in clinical development, including drugs and a device. These drugs have novel mechanisms of action to overcome resistance, and some offer new formulations providing distinct advantages over current therapies to improve safety profiles and reduce interactions. Among agents that target the cell wall, 2 glucan synthesis inhibitors are discussed (rezafungin and ibrexafungerp), as well as fosmanogepix and nikkomycin Z. Agents that target the cell membrane include 3 fourth-generation azoles, oral encochleated amphotericin B, and aureobasidin A. Among agents with intracellular targets, we will review olorofim, VL-2397, T-2307, AR-12, and MGCD290. In addition, we will describe neurapheresis, a device used as adjunctive therapy for cryptococcosis. With a field full of novel treatments for fungal infections, the future looks promising.
Collapse
Affiliation(s)
- Adriana M Rauseo
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Lindsey Larson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
56
|
Abstract
Antifungal therapy is a critical component of patient management for invasive fungal diseases. Yet, therapeutic choices are limited as only a few drug classes are available to treat systemic disease, and some infecting strains are resistant to one or more drug classes. The ideal antifungal inhibits a fungal-specific essential target not present in human cells to avoid off-target toxicities. The fungal cell wall is an ideal drug target because its integrity is critical to cell survival and a majority of biosynthetic enzymes and wall components is unique to fungi. Among currently approved antifungal agents and those in clinical development, drugs targeting biosynthetic enzymes of the cell wall show safe and efficacious antifungal properties, which validates the cell wall as a target. The echinocandins, which inhibit β-1,3-glucan synthase, are recommended as first-line therapy for Candida infections. Newer cell wall-active drugs in clinical development encompass next-generation glucan synthase inhibitors including a novel echinocandin and an enfumafungin, an inhibitor of Gwt1, a key component of GPI anchor protein biosynthesis, and a classic inhibitor of chitin biosynthesis. As the cell wall is rich in potential drug discovery targets, it is primed to help deliver the next generation of antifungal drugs.
Collapse
Affiliation(s)
- David S Perlin
- Center for Discovery and Innovation, 340 Kingsland Street, Nutley, 07110, USA.
| |
Collapse
|
57
|
Cotner SE, Dawson KL. New Options in Antifungal Therapy: New Drugs, Inhaled Antifungals, and Management of Resistant Pathogens. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2019. [DOI: 10.1007/s40506-019-00208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
58
|
Lima SL, Colombo AL, de Almeida Junior JN. Fungal Cell Wall: Emerging Antifungals and Drug Resistance. Front Microbiol 2019; 10:2573. [PMID: 31824443 PMCID: PMC6881460 DOI: 10.3389/fmicb.2019.02573] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
The cell wall is an essential component in fungal homeostasis. The lack of a covering wall in human cells makes this component an attractive target for antifungal development. The host environment and antifungal stress can lead to cell wall modifications related to drug resistance. Antifungals targeting the cell wall including the new β-D-glucan synthase inhibitor ibrexafungerp and glycosyl-phosphatidyl Inositol (GPI) anchor pathway inhibitor fosmanogepix are promising weapons against antifungal resistance. The fosmanogepix shows strong in vitro activity against the multidrug-resistant species Candida auris, Fusarium solani, and Lomentospora prolificans. The alternative carbon sources in the infection site change the cell wall β-D-glucan and chitin composition, leading to echinocandin and amphotericin resistance. Candida populations that survive echinocandin exposure develop tolerance and show high chitin content in the cell wall, while fungal species such as Aspergillus flavus with a higher β-D-glucan content may show amphotericin resistance. Therefore understanding fungal cell dynamics has become important not only for host-fungal interactions, but also treatment of fungal infections. This review summarizes recent findings regarding antifungal therapy and development of resistance related to the fungal cell wall of the most relevant human pathogenic species.
Collapse
Affiliation(s)
- Soraia L Lima
- Laboratório Especial de Micologia, Disciplina de Infectologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arnaldo L Colombo
- Laboratório Especial de Micologia, Disciplina de Infectologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João N de Almeida Junior
- Central Laboratory Division, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
59
|
Van Daele R, Spriet I, Wauters J, Maertens J, Mercier T, Van Hecke S, Brüggemann R. Antifungal drugs: What brings the future? Med Mycol 2019; 57:S328-S343. [PMID: 31292663 DOI: 10.1093/mmy/myz012] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/11/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
The high burden and growing prevalence of invasive fungal infections (IFIs), the toxicity and interactions associated with current antifungal drugs, as well as the increasing resistance, ask for the development of new antifungal drugs, preferably with a novel mode of action. Also, the availability of oral or once-weekly alternatives would enable ambulatory treatment resulting in an improved patient's comfort and therapy adherence. However, only one new azole and two new posaconazole-formulations were marketed over the last decade. This review focuses on the antifungal drugs in the pipeline undergoing clinical evaluation. First, the newest azole, isavuconazole, with its improved safety profile and reduction in DDIs, will be discussed. Moreover, there are two glucan synthase inhibitors (GSIs) in the antifungal pipeline: rezafungin (CD101), a long-acting echinocandin with an improved stability that enables once weekly administration, and SCY-078, an orally available GSI with efficacy against azole- and echinocandin resistant isolates. A new oral formulation of amphotericin B will also be presented. Moreover, the first representative of a new antifungal class, the orotomides, with a broad spectrum and no cross-resistance with current antifungal classes, will be discussed. Finally, an overview of other antifungals that are still in earlier clinical development phases, is provided.
Collapse
Affiliation(s)
- Ruth Van Daele
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.,Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Johan Maertens
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.,Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Toine Mercier
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.,Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Sam Van Hecke
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Roger Brüggemann
- Pharmacy Department, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
60
|
In Vitro Activity of Ibrexafungerp, a Novel Glucan Synthase Inhibitor against Candida glabrata Isolates with FKS Mutations. Antimicrob Agents Chemother 2019; 63:AAC.01692-19. [PMID: 31481447 DOI: 10.1128/aac.01692-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
Ibrexafungerp is a first-in-class glucan synthase inhibitor. In vitro activity was determined for 89 Candida glabrata isolates with molecularly identified FKS1 or FKS2 mutations conferring resistance to the echinocandins. All isolates were resistant to at least one echinocandin (i.e., anidulafungin, caspofungin, or micafungin) by broth microdilution. Results for ibrexafungerp were compared with those for each echinocandin. Ibrexafungerp had good activity against all echinocandin-resistant C. glabrata isolates.
Collapse
|
61
|
Activity of a novel 1,3-beta-D-glucan Synthase Inhibitor, Ibrexafungerp (formerly SCY-078), Against Candida glabrata. Antimicrob Agents Chemother 2019:AAC.01510-19. [PMID: 31570395 DOI: 10.1128/aac.01510-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ibrexafungerp (formerly SCY-078), a novel glucan synthase inhibitor with oral availability, was evaluated for activity against Candida glabrata Susceptibility of clinical strains to Ibrexafungerp was determined by microdilution and time kill assays. The MIC range against wild type strains was 1-2 μg/mL. IBX was also active against the majority of echinocandin-resistant strains. Time kill studies showed a 4 to 6-log reduction in growth at concentrations of 0.25 to 4 μg/ml at 24 and 48 hr.
Collapse
|
62
|
In Vitro Activity of APX001A (Manogepix) and Comparator Agents against 1,706 Fungal Isolates Collected during an International Surveillance Program in 2017. Antimicrob Agents Chemother 2019; 63:AAC.00840-19. [PMID: 31182527 DOI: 10.1128/aac.00840-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022] Open
Abstract
Current antifungal agents cover a majority of opportunistic fungal pathogens; however, breakthrough invasive fungal infections continue to occur and increasingly involve relatively uncommon yeasts and molds, which often exhibit decreased susceptibility. APX001A (manogepix) is a first-in-class small-molecule inhibitor of the conserved fungal Gwt1 protein. This enzyme is required for acylation of inositol during glycosylphosphatidylinositol anchor biosynthesis. APX001A is active against the major fungal pathogens, i.e., Candida (except Candida krusei), Aspergillus, and hard-to-treat molds, including Fusarium and Scedosporium In this study, we tested APX001A and comparators against 1,706 contemporary clinical fungal isolates collected in 2017 from 68 medical centers in North America (37.3%), Europe (43.4%), the Asia-Pacific region (12.7%), or Latin America (6.6%). Among the isolates tested, 78.5% were Candida spp., 3.9% were non-Candida yeasts, including 30 (1.8%) Cryptococcus neoformans var. grubii isolates, 14.7% were Aspergillus spp., and 2.9% were other molds. All isolates were tested by CLSI reference broth microdilution. APX001A (MIC50, 0.008 μg/ml; MIC90, 0.06 μg/ml) was the most active agent tested against Candida sp. isolates; corresponding anidulafungin, micafungin, and fluconazole MIC90 values were 16- to 64-fold higher. Similarly, APX001A (MIC50, 0.25 μg/ml; MIC90, 0.5 μg/ml) was ≥8-fold more active than anidulafungin, micafungin, and fluconazole against C. neoformans var. grubii Against Aspergillus spp., AXP001A (50% minimal effective concentration [MEC50], 0.015 μg/ml; MEC90, 0.03 μg/ml) was comparable in activity to anidulafungin and micafungin. Aspergillus isolates (>98%) exhibited a wild-type phenotype for the mold-active triazoles (itraconazole, posaconazole, and voriconazole). APX001A was highly active against uncommon species of Candida, non-Candida yeasts, and rare molds, including 11 isolates of Scedosporium spp. (MEC values, 0.015 to 0.06 μg/ml). APX001A demonstrated potent in vitro activity against recent fungal isolates, including echinocandin- and fluconazole-resistant strains. The extended spectrum of APX001A was also notable for its potency against many less common but antifungal-resistant strains. Further studies are in progress to evaluate the clinical utility of the methyl phosphate prodrug, APX001, in difficult-to-treat resistant fungal infections.
Collapse
|
63
|
SCY-078, a Novel Fungicidal Agent, Demonstrates Distribution to Tissues Associated with Fungal Infections during Mass Balance Studies with Intravenous and Oral [ 14C]SCY-078 in Albino and Pigmented Rats. Antimicrob Agents Chemother 2019; 63:AAC.02119-18. [PMID: 30478166 DOI: 10.1128/aac.02119-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/06/2018] [Indexed: 01/25/2023] Open
Abstract
SCY-078, a fungicidal β-1,3-glucan synthesis inhibitor administered as intravenous or oral [14C]SCY-078 to rats, was distributed primarily into tissues associated with invasive fungal disease (kidney, lung, liver, spleen, bone marrow, muscle, vaginal tissue, and skin) to levels exceeding those in plasma. Oral fraction absorbed was ∼40%. Elimination was primarily via bile and feces (∼90%) and urine (∼1.5%). Mean half-time was ∼8 h. Quantitative whole-body autoradiography showed a rapid distribution at 8 h and elimination by 168 h postdose.
Collapse
|
64
|
Kuhnert E, Li Y, Lan N, Yue Q, Chen L, Cox RJ, An Z, Yokoyama K, Bills GF. Enfumafungin synthase represents a novel lineage of fungal triterpene cyclases. Environ Microbiol 2018; 20:3325-3342. [PMID: 30051576 DOI: 10.1111/1462-2920.14333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023]
Abstract
Enfumafungin is a glycosylated fernene-type triterpenoid produced by the fungus Hormonema carpetanum. Its potent antifungal activity, mediated by its interaction with β-1,3-glucan synthase and the fungal cell wall, has led to its development into the semi-synthetic clinical candidate, ibrexafungerp (=SCY-078). We report on the preliminary identification of the enfumafungin biosynthetic gene cluster (BGC) based on genome sequencing, phylogenetic reconstruction, gene disruption, and cDNA sequencing studies. Enfumafungin synthase (efuA) consists of a terpene cyclase domain (TC) fused to a glycosyltransferase (GT) domain and thus represents a novel multifunctional enzyme. Moreover, the TC domain bears a phylogenetic relationship to bacterial squalene-hopene cyclases (SHC) and includes a typical DXDD motif within the active centre suggesting that efuA evolved from SHCs. Phylogenetic reconstruction of the GT domain indicated that this portion of the fusion gene originated from fungal sterol GTs. Eleven genes flanking efuA are putatively involved in the biosynthesis, regulation, transport and self-resistance of enfumafungin and include an acetyltransferase, three P450 monooxygenases, a dehydrogenase, a desaturase and a reductase. A hypothetical scheme for enfumafungin assembly is proposed in which the E-ring is oxidatively cleaved to yield the four-ring system of enfumafungin. EfuA represents the first member of a widespread lineage of fungal SHCs.
Collapse
Affiliation(s)
- Eric Kuhnert
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Leibniz University Hannover, Institute for Organic Chemistry and BMWZ, Hannover, Germany
| | - Yan Li
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Lan
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qun Yue
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Chen
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Russell J Cox
- Leibniz University Hannover, Institute for Organic Chemistry and BMWZ, Hannover, Germany
| | - Zhiqiang An
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kenichi Yokoyama
- Duke University School of Medicine, Department of Biochemistry, Durham, NC, USA
| | - Gerald F Bills
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
65
|
Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata. JOURNAL OF FUNGI (BASEL, SWITZERLAND) 2018; 4:jof4030105. [PMID: 30200517 PMCID: PMC6162769 DOI: 10.3390/jof4030105] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022]
Abstract
Candida glabrata has thoroughly adapted to successfully colonize human mucosal membranes and survive in vivo pressures. prior to and during antifungal treatment. Out of all the medically relevant Candida species, C. glabrata has emerged as a leading cause of azole, echinocandin, and multidrug (MDR: azole + echinocandin) adaptive resistance. Neither mechanism of resistance is intrinsic to C. glabrata, since stable genetic resistance depends on mutation of drug target genes, FKS1 and FKS2 (echinocandin resistance), and a transcription factor, PDR1, which controls expression of major drug transporters, such as CDR1 (azole resistance). However, another hallmark of C. glabrata is the ability to withstand drug pressure both in vitro and in vivo prior to stable "genetic escape". Additionally, these resistance events can arise within individual patients, which underscores the importance of understanding how this fungus is adapting to its environment and to drug exposure in vivo. Here, we explore the evolution of echinocandin resistance as a multistep model that includes general cell stress, drug adaptation (tolerance), and genetic escape. The extensive genetic diversity reported in C. glabrata is highlighted.
Collapse
|
66
|
Hori Y, Shibuya K. Role of FKS Gene in the Susceptibility of Pathogenic Fungi to Echinocandins. Med Mycol J 2018; 59:E31-E40. [PMID: 29848909 DOI: 10.3314/mmj.18.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Echinocandins are antifungal agents that specifically inhibit the biosynthesis of 1,3-β-D-glucan, a major structural component of fungal cell walls. Echinocandins are recommended as first-line or alternative/salvage therapy for candidiasis and aspergillosis in antifungal guidelines of various countries. Resistance to echinocandins has been reported in recent years. The mechanism of echinocandin resistance involves amino acid substitutions in hot spot regions of the FKS gene product, the catalytic subunit of 1,3-β-D-glucan synthase. This resistance mechanism contributes to not only acquired resistance in Candida spp., but also inherent resistance in some pathogenic fungi. An understanding of the echinocandin resistance mechanism is important to develop both effective diagnosis and treatment options for echinocandin-resistant fungal diseases.
Collapse
Affiliation(s)
- Yasuhiro Hori
- Department of Surgical Pathology, Toho University School of Medicine
| | - Kazutoshi Shibuya
- Department of Surgical Pathology, Toho University School of Medicine
| |
Collapse
|
67
|
Evaluation of the Antifungal Activity of the Novel Oral Glucan Synthase Inhibitor SCY-078, Singly and in Combination, for the Treatment of Invasive Aspergillosis. Antimicrob Agents Chemother 2018; 62:AAC.00244-18. [PMID: 29610204 PMCID: PMC5971594 DOI: 10.1128/aac.00244-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Invasive aspergillosis remains a major cause of death among the immunocompromised population and those receiving long-term immunosuppressive therapy. In light of increased azole resistance, variable outcomes with existing echinocandin monotherapy and combination therapy, and persistent high mortality rates, new antifungal agents for the treatment of invasive aspergillosis are clearly needed. SCY-078 is the first-in-class triterpenoid antifungal, a novel class of glucan synthase inhibitors with broad in vitro and in vivo activity against a broad spectrum of Candida and Aspergillus species. In vitro testing of clinical strains of Aspergillus fumigatus and non-fumigatus Aspergillus strains showed that SCY-078 had potent fungistatic activity (minimum effective concentration for 90% of strains tested = 0.125 μg/ml) compared with the activities of amphotericin B (MIC90 = 8 μg/ml) and voriconazole (MIC90 = 2 μg/ml). Testing of SCY-078 in combination with isavuconazole or voriconazole demonstrated synergistic activity against the majority of the azole-susceptible strains tested, and SCY-078 in combination with amphotericin B was synergistic against the azole-susceptible strains, as well as one known resistant cyp51A mutant. SCY-078 may be an important additional antifungal for first-line or salvage monotherapy or combination treatment of invasive aspergillosis.
Collapse
|