Worthen C, Jensen BC, Parsons M. Diverse effects on mitochondrial and nuclear functions elicited by drugs and genetic knockdowns in bloodstream stage Trypanosoma brucei.
PLoS Negl Trop Dis 2010;
4:e678. [PMID:
20454560 PMCID:
PMC2864271 DOI:
10.1371/journal.pntd.0000678]
[Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/23/2010] [Indexed: 01/01/2023] Open
Abstract
Background
The options for treating the fatal disease human African trypanosomiasis are limited to a few drugs that are toxic or facing increasing resistance. New drugs that kill the causative agents, subspecies of Trypanosoma brucei, are therefore urgently needed. Little is known about the cellular mechanisms that lead to death of the pathogenic bloodstream stage.
Methodology/Principal Findings
We therefore conducted the first side by side comparison of the cellular effects of multiple death inducers that target different systems in bloodstream form parasites, including six drugs (pentamidine, prostaglandin D2, quercetin, etoposide, camptothecin, and a tetrahydroquinoline) and six RNAi knockdowns that target distinct cellular functions. All compounds tested were static at low concentrations and killed at high concentrations. Dead parasites were rapidly quantified by forward and side scatter during flow cytometry, as confirmed by ethidium homodimer and esterase staining, making these assays convenient for quantitating parasite death. The various treatments yielded different combinations of defects in mitochondrial potential, reactive oxygen species, cell cycle, and genome segregation. No evidence was seen for phosphatidylserine exposure, a marker of apoptosis. Reduction in ATP levels lagged behind decreases in live cell number. Even when the impact on growth was similar at 24 hours, drug-treated cells showed dramatic differences in their ability to further proliferate, demonstrating differences in the reversibility of effects induced by the diverse compounds.
Conclusions/Significance
Parasites showed different phenotypes depending on the treatment, but none of them were clear predictors of whether apparently live cells could go on to proliferate after drugs were removed. We therefore suggest that clonal proliferation assays may be a useful step in selecting anti-trypanosomal compounds for further development. Elucidating the genetic or biochemical events initiated by the compounds with the most profound effects on subsequent proliferation may identify new means to activate death pathways.
The parasite Trypanosoma brucei causes human African trypanosomiasis, which is fatal unless treated. Currently used drugs are toxic, difficult to administer, and often are no longer effective due to drug resistance. The search for new drugs is long and expensive, and determining which compounds are worth pursuing is a key challenge in that process. In this study we sought to determine whether different compounds elicited different responses in the mammalian-infective stage of the parasite. We also examined whether genetic knockdown of parasite molecules led to similar responses. Our results show that, depending on the treatment, the replication of the parasite genomes, proper division of the cell, and mitochondrial function can be affected. Surprisingly, these different responses were not able to predict which compounds affected the long term proliferative potential of T. brucei. We found that some of the compounds had irreversible effects on the parasites within one day, so that even cells that appeared healthy could not proliferate. We suggest that determining which compounds set the parasites on a one-way journey to death may provide a means of identifying those that could lead to drugs with high efficacy.
Collapse