51
|
Comparative ex vivo activity of novel endoperoxides in multidrug-resistant plasmodium falciparum and P. vivax. Antimicrob Agents Chemother 2012; 56:5258-63. [PMID: 22850522 DOI: 10.1128/aac.00283-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The declining efficacy of artemisinin derivatives against Plasmodium falciparum highlights the urgent need to identify alternative highly potent compounds for the treatment of malaria. In Papua Indonesia, where multidrug resistance has been documented against both P. falciparum and P. vivax malaria, comparative ex vivo antimalarial activity against Plasmodium isolates was assessed for the artemisinin derivatives artesunate (AS) and dihydroartemisinin (DHA), the synthetic peroxides OZ277 and OZ439, the semisynthetic 10-alkylaminoartemisinin derivatives artemisone and artemiside, and the conventional antimalarial drugs chloroquine (CQ), amodiaquine (AQ), and piperaquine (PIP). Ex vivo drug susceptibility was assessed in 46 field isolates (25 P. falciparum and 21 P. vivax). The novel endoperoxide compounds exhibited potent ex vivo activity against both species, but significant differences in intrinsic activity were observed. Compared to AS and its active metabolite DHA, all the novel compounds showed lower or equal 50% inhibitory concentrations (IC(50)s) in both species (median IC(50)s between 1.9 and 3.6 nM in P. falciparum and 0.7 and 4.6 nM in P. vivax). The antiplasmodial activity of novel endoperoxides showed different cross-susceptibility patterns in the two Plasmodium species: whereas their ex vivo activity correlated positively with CQ, PIP, AS, and DHA in P. falciparum, the same was not apparent in P. vivax. The current study demonstrates for the first time potent activity of novel endoperoxides against drug-resistant P. vivax. The high activity against drug-resistant strains of both Plasmodium species confirms these compounds to be promising candidates for future artemisinin-based combination therapy (ACT) regimens in regions of coendemicity.
Collapse
|
52
|
Witkowski B, Lelièvre J, Nicolau-Travers ML, Iriart X, Njomnang Soh P, Bousejra-ElGarah F, Meunier B, Berry A, Benoit-Vical F. Evidence for the contribution of the hemozoin synthesis pathway of the murine Plasmodium yoelii to the resistance to artemisinin-related drugs. PLoS One 2012; 7:e32620. [PMID: 22403683 PMCID: PMC3293827 DOI: 10.1371/journal.pone.0032620] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 02/02/2012] [Indexed: 11/19/2022] Open
Abstract
Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia.
Collapse
Affiliation(s)
- Benoit Witkowski
- CNRS, LCC (Laboratoire de Chimie de Coordination), and Université de Toulouse Paul Sabatier, UPS, INPT, LCC, Toulouse, France
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse, and Faculté de Médecine de Rangueil, Université de Toulouse Paul Sabatier, Toulouse, France
| | - Joel Lelièvre
- CNRS, LCC (Laboratoire de Chimie de Coordination), and Université de Toulouse Paul Sabatier, UPS, INPT, LCC, Toulouse, France
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse, and Faculté de Médecine de Rangueil, Université de Toulouse Paul Sabatier, Toulouse, France
| | - Marie-Laure Nicolau-Travers
- CNRS, LCC (Laboratoire de Chimie de Coordination), and Université de Toulouse Paul Sabatier, UPS, INPT, LCC, Toulouse, France
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse, and Faculté de Médecine de Rangueil, Université de Toulouse Paul Sabatier, Toulouse, France
| | - Xavier Iriart
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse, and Faculté de Médecine de Rangueil, Université de Toulouse Paul Sabatier, Toulouse, France
- UMR 152 IRD-UPS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Patrice Njomnang Soh
- CNRS, LCC (Laboratoire de Chimie de Coordination), and Université de Toulouse Paul Sabatier, UPS, INPT, LCC, Toulouse, France
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse, and Faculté de Médecine de Rangueil, Université de Toulouse Paul Sabatier, Toulouse, France
| | - Fatima Bousejra-ElGarah
- CNRS, LCC (Laboratoire de Chimie de Coordination), and Université de Toulouse Paul Sabatier, UPS, INPT, LCC, Toulouse, France
| | - Bernard Meunier
- CNRS, LCC (Laboratoire de Chimie de Coordination), and Université de Toulouse Paul Sabatier, UPS, INPT, LCC, Toulouse, France
- Palumed, Castanet-Tolosan, France
| | - Antoine Berry
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse, and Faculté de Médecine de Rangueil, Université de Toulouse Paul Sabatier, Toulouse, France
- UMR 152 IRD-UPS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire de Chimie de Coordination), and Université de Toulouse Paul Sabatier, UPS, INPT, LCC, Toulouse, France
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Toulouse, and Faculté de Médecine de Rangueil, Université de Toulouse Paul Sabatier, Toulouse, France
- * E-mail:
| |
Collapse
|
53
|
Slack RD, Jacobine AM, Posner GH. Antimalarial peroxides: advances in drug discovery and design. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00277a] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
54
|
Mazuz ML, Haynes R, Shkap V, Fish L, Wollkomirsky R, Leibovich B, Molad T, Savitsky I, Golenser J. Neospora caninum: in vivo and in vitro treatment with artemisone. Vet Parasitol 2011; 187:99-104. [PMID: 22260899 DOI: 10.1016/j.vetpar.2011.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 12/08/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
Abstract
Neosporosis caused by Neospora caninum has global economic, clinical, and epidemiological impacts, mainly in the cattle industry. Currently, there is no useful drug for treatment of neosporosis. This publication is the first to describe the significant benefits that artemisone has on Neospora infections both in vitro and in vivo. Artemisone is a new semi-synthetic 10-alkylamino artemisinin that is superior to other artemisinin derivatives in terms of its significantly higher antimalarial activity, its tolerance in vivo, lack of detectable neurotoxic potential, improved in vivo pharmacokinetics and metabolic stability. Low micromolar concentrations of artemisone inhibited in vitro Neospora development. Prophylactic and post-infection treatment profoundly reduced the number of infected cells and parasites per cell. In the in vivo gerbil model, a non-toxic dose prevented typical cerebral symptoms, in most animals. There were no signs of clinical symptoms and brain PCR was negative. Most treated gerbils produced high specific antibody titer and were protected against a challenge. Overall, artemisone could be considered as a future drug for neosporosis.
Collapse
Affiliation(s)
- Monica L Mazuz
- Division of Parasitology, Kimron Veterinary Institute, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Tilley L, Charman SA, Vennerstrom JL. Semisynthetic Artemisinin and Synthetic Peroxide Antimalarials. NEGLECTED DISEASES AND DRUG DISCOVERY 2011. [DOI: 10.1039/9781849733496-00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Since the discovery of the endoperoxide sesquiterpene lactone artemisinin, numerous second-generation semisynthetic artemisinins and synthetic peroxides have been prepared and tested for their antimalarial properties. Using a case-study approach, we describe the discovery of the investigational semisynthetic artemisinins artelinic acid (8) and artemisone (9), and the structurally diverse synthetic peroxides arteflene (10), fenozan B07 (11), arterolane (12), PA1103/SAR116242 (13), and RKA182 (14).
Collapse
Affiliation(s)
- Leann Tilley
- Department of Biochemistry and Centre of Excellence for Coherent X-rayScience, La Trobe University Melbourne, Victoria 3086 Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052 Australia
| | - Jonathan L. Vennerstrom
- College of Pharmacy University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha NE USA
| |
Collapse
|
56
|
Synthesis of artemiside and its effects in combination with conventional drugs against severe murine malaria. Antimicrob Agents Chemother 2011; 56:163-73. [PMID: 22006004 DOI: 10.1128/aac.05006-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This research describes the use of novel antimalarial combinations of the new artemisinin derivative artemiside, a 10-alkylamino artemisinin. It is a stable, highly crystalline compound that is economically prepared from dihydroartemisinin in a one-step process. Artemiside activity was more pronounced than that of any antimalarial drug in use, both in Plasmodium falciparum culture and in vivo in a murine malaria model depicting cerebral malaria (CM). In vitro high-throughput testing of artemiside combinations revealed a large number of conventional antimalarial drugs with which it was additive. Following monotherapy in mice, individual drugs reduced parasitemias to nondetectable levels. However, after a period of latency, parasites again were seen and eventually all mice became terminally ill. Treatment with individual drugs did not prevent CM in mice with recrudescent malaria, except for piperaquine at high concentrations. Even when CM was prevented, the mice developed later of severe anemia. In contrast, most of the mice treated with drug combinations survived. A combination of artemiside and mefloquine or piperaquine may confer an optimal result because of the longer half life of both conventional drugs. The use of artemiside combinations revealed a significant safety margin of the effective artemiside doses. Likewise, a combination of 1.3 mg/kg of body weight artemiside and 10 mg/kg piperaquine administered for 3 days from the seventh day postinfection was completely curative. It appears possible to increase drug concentrations in the combination therapy without reaching toxic levels. Using the drug combinations as little as 1 day before the expected death of control animals, we could prevent further parasite development and death due to CM or anemic malaria. Earlier treatment may prevent cognitive dysfunctions which might occur after recovery from CM.
Collapse
|
57
|
Pharmacokinetics and ex vivo antimalarial activity of artesunate-azithromycin in healthy volunteers. Antimicrob Agents Chemother 2011; 55:4412-5. [PMID: 21730120 DOI: 10.1128/aac.00365-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 18 male healthy subjects, artesunate (200 mg)-azithromycin (1,500 mg) daily for 3 days was found to be well tolerated, with only mild gastrointestinal disturbances reported. The pharmacokinetic properties of artesunate-azithromycin given in combination are comparable to those of the drugs given alone. Artesunate and its major active metabolite, dihydroartemisinin, are responsible for most of the ex vivo antimalarial activity, with a delayed contribution by azithromycin.
Collapse
|
58
|
Rocha E Silva LF, Silva Pinto AC, Pohlit AM, Quignard ELJ, Vieira PPR, Tadei WP, Chaves FCM, Samonek JF, Lima CAJ, Costa MRF, Alecrim MDGC, Andrade-Neto VF. In vivo and in vitro antimalarial activity of 4-nerolidylcatechol. Phytother Res 2011; 25:1181-8. [PMID: 21302338 DOI: 10.1002/ptr.3424] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 01/03/2011] [Accepted: 01/05/2011] [Indexed: 11/10/2022]
Abstract
4-Nerolidylcatechol (4-NC) isolated from Piper peltatum L. (Piperaceae) was evaluated for in vitro antiplasmodial activity against Plasmodium falciparum (cultures of both standard CQR (K1) and CQS (3D7) strains and two Amazonian field isolates) and for in vivo antimalarial activity using the Plasmodium berghei-murine model. 4-NC exhibits significant in vitro and moderate in vivo antiplasmodial activity. 4-NC administered orally and subcutaneously at doses of 200, 400 and 600 mg/kg/day suppressed the growth of P. berghei by up to 63% after four daily treatments (days 1-4). Also, 4-NC exhibited important in vitro antiplasmodial activity against both standard and field P. falciparum strains in which 50% inhibition of parasite growth (IC(50) ) was produced at concentrations of 0.05-2.11 μg/mL and depended upon the parasite strain. Interestingly, healthy (non-infected) mice that received 4-NC orally presented (denatured) blood plasma which exhibited significant in vitro activity against P. falciparum. This is evidence that mouse metabolism allows 4-NC or active metabolites to enter the blood. Further chemical and pharmacological studies are necessary to confirm the potential of 4-NC as a new antimalarial prototype.
Collapse
|
59
|
Artemisone uptake in Plasmodium falciparum-infected erythrocytes. Antimicrob Agents Chemother 2010; 55:550-6. [PMID: 21135191 DOI: 10.1128/aac.01216-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisone is one of the most promising artemisinin derivatives in clinical trials. Previous studies with radiolabeled artemisinin and dihydroartemisinin have measured uptake in Plasmodium falciparum-infected erythrocytes. Uptake is much greater in infected than in uninfected erythrocytes, but the relative contributions of transport, binding, and metabolism to this process still await definition. In this study, we characterized mechanisms by which [(14)C]artemisone is taken up into uninfected and P. falciparum-infected human erythrocytes in vitro. Radiolabeled artemisone rapidly enters uninfected erythrocytes without much exceeding extracellular concentrations. Unlabeled artemisone does not compete in this process. Radiolabeled artemisone is concentrated greatly by a time- and temperature-dependent mechanism in infected erythrocytes. This uptake is abrogated by unlabeled artemisone. In addition, the uptake of artemisone into three subcellular fractions, and its distribution into these fractions, is examined as a function of parasite maturation. These data are relevant to an understanding of the mechanisms of action of this important class of drugs.
Collapse
|
60
|
A golden phoenix arising from the herbal nest — A review and reflection on the study of antimalarial drug Qinghaosu. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11458-010-0214-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
61
|
Waknine-Grinberg JH, Hunt N, Bentura-Marciano A, McQuillan JA, Chan HW, Chan WC, Barenholz Y, Haynes RK, Golenser J. Artemisone effective against murine cerebral malaria. Malar J 2010; 9:227. [PMID: 20691118 PMCID: PMC2928250 DOI: 10.1186/1475-2875-9-227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/09/2010] [Indexed: 11/12/2022] Open
Abstract
Background Artemisinins are the newest class of drug approved for malaria treatment. Due to their unique mechanism of action, rapid effect on Plasmodium, and high efficacy in vivo, artemisinins have become essential components of malaria treatment. Administration of artemisinin derivatives in combination with other anti-plasmodials has become the first-line treatment for uncomplicated falciparum malaria. However, their efficiency in cases of cerebral malaria (CM) remains to be determined. Methods The efficacy of several artemisinin derivatives for treatment of experimental CM was evaluated in ICR or C57BL/6 mice infected by Plasmodium berghei ANKA. Both mouse strains serve as murine models for CM. Results Artemisone was the most efficient drug tested, and could prevent death even when administered at relatively late stages of cerebral pathogenesis. No parasite resistance to artemisone was detected in recrudescence. Co-administration of artemisone together with chloroquine was more effective than monotherapy with either drug, and led to complete cure. Artemiside was even more effective than artemisone, but this substance has yet to be submitted to preclinical toxicological evaluation. Conclusions Altogether, the results support the use of artemisone for combined therapy of CM.
Collapse
Affiliation(s)
- Judith H Waknine-Grinberg
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Sevene E, González R, Menéndez C. Current knowledge and challenges of antimalarial drugs for treatment and prevention in pregnancy. Expert Opin Pharmacother 2010; 11:1277-93. [PMID: 20408744 DOI: 10.1517/14656561003733599] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IMPORTANCE OF THE FIELD Malaria infection during pregnancy is a major public health problem worldwide, with 50 million pregnancies exposed to the infection every year. Approximately 25,000 maternal deaths and between 75,000 and 200,000 infant deaths could be prevented each year by effective malaria control in pregnancy. Antimalarial drug treatment and prevention has been hampered by the appearance of drug resistance, which has been a particular problem in pregnancy due to the inherent safety issues. AREAS COVERED IN THIS REVIEW New antimalarial drugs and combinations are being studied but there is not yet sufficient information on their efficacy or, more importantly, on their safety in pregnancy. This article provides an overview of the relevance of the topic and reviews the current antimalarial drugs recommended for pregnancy, as well as the guidelines for both treatment and prevention in women living in endemic areas and for travellers. WHAT THE READER WILL GAIN Updated information on the drugs currently used for malaria treatment and prevention in pregnancy, including new drugs under development, is provided. The gaps on efficacy and safety information for use during pregnancy are also discussed. TAKE HOME MESSAGE Prevention and case management of malaria during pregnancy is based on risk-benefit criteria and poses one of the greatest challenges to current malaria control.
Collapse
Affiliation(s)
- Esperança Sevene
- Eduardo Mondlane University, Faculty of Medicine, CIMed, Maputo, Mozambique.
| | | | | |
Collapse
|
63
|
In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents. Cancer Chemother Pharmacol 2010; 67:569-77. [DOI: 10.1007/s00280-010-1355-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 04/30/2010] [Indexed: 11/25/2022]
|
64
|
Garah FBE, Stigliani JL, Coslédan F, Meunier B, Robert A. Docking Studies of Structurally Diverse Antimalarial Drugs Targeting PfATP6: No Correlation between in silico Binding Affinity and in vitro Antimalarial Activity. ChemMedChem 2009; 4:1469-79. [DOI: 10.1002/cmdc.200900200] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
65
|
Li Y, Zhang Q, Wittlin S, Jin HX, Wu Y. Synthesis and in vitro antimalarial activity of spiro-analogues of peroxyplakoric acids. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
66
|
Progress in the development of peroxide-based anti-parasitic agents. Drug Discov Today 2009; 14:793-803. [DOI: 10.1016/j.drudis.2009.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 03/05/2009] [Accepted: 05/12/2009] [Indexed: 11/24/2022]
|
67
|
Artemisone and artemiside control acute and reactivated toxoplasmosis in a murine model. Antimicrob Agents Chemother 2009; 53:4450-6. [PMID: 19635951 DOI: 10.1128/aac.00502-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunocompromised patients are at risk of developing toxoplasmosis, and although chemotherapy is available, standard treatments are often complicated by severe side effects. Artemisinin is a new highly potent antimalarial drug that has activity against Toxoplasma gondii in vitro. However, artemisinin derivatives have previously been ineffective in vivo using a rat model of toxoplasmosis. In the present study, the efficacy of several new artemisinin derivates was investigated for treatment of mice infected with the parasite Toxoplasma gondii. Artemiside and artemisone displayed better inhibition than either artemisinin or artesunate against the parasite in vitro. Artemiside and artemisone treatment controlled parasite replication in vivo, and mice survived the acute infection. In a murine model of reactivated toxoplasmosis, both drugs increased survival, although artemiside was more effective. These results indicate that these newer derivatives of artemisinin may have potential for treatment of toxoplasmosis.
Collapse
|
68
|
Evaluation of artemisone combinations in Aotus monkeys infected with Plasmodium falciparum. Antimicrob Agents Chemother 2009; 53:3592-4. [PMID: 19506062 DOI: 10.1128/aac.00471-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisone (single oral dose, 10 mg/kg of body weight) cured nonimmune Aotus monkeys of their Plasmodium falciparum infections when combined with mefloquine (single oral dose, 5 and 10 mg/kg but not 2.5 mg/kg). In combination with amodiaquine (20 mg/kg/day), artemisone (10 mg/kg/day) given orally for 3 days cured all infected monkeys. Three days of treatment with artemisone (30 mg/kg/day) and clindamycin (100 mg/kg/day) was also curative.
Collapse
|
69
|
Hodel E, Zanolari B, Mercier T, Biollaz J, Keiser J, Olliaro P, Genton B, Decosterd L. A single LC–tandem mass spectrometry method for the simultaneous determination of 14 antimalarial drugs and their metabolites in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:867-86. [DOI: 10.1016/j.jchromb.2009.02.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 01/16/2009] [Accepted: 02/01/2009] [Indexed: 01/14/2023]
|
70
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2009. [DOI: 10.1002/pds.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|