51
|
Shenoy A, El-Nahal W, Walker M, Chopra T, Townsend G, Heysell S, Eby J. Management of a Mycobacterium immunogenum infection of a peritoneal dialysis catheter site. Infection 2018; 46:875-880. [PMID: 30132250 DOI: 10.1007/s15010-018-1199-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
Abstract
Mycobacterium immunogenum is a member of the rapidly growing non-tuberculous mycobacteria and is a relatively new species identified within this group. An 81-year-old immune-competent male was diagnosed with M. immunogenum infection of his peritoneal dialysis catheter exit site and surrounding soft tissue. To our knowledge, this is the first reported case of M. immunogenum infection of a peritoneal catheter. Treatment included catheter removal, local surgical debridement, and combination antimicrobial therapy. Herein, we review literature describing antibiotic management of M. immunogenum, an organism for which optimal therapy is not defined.
Collapse
Affiliation(s)
- Abhishek Shenoy
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Walid El-Nahal
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - McCall Walker
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Tushar Chopra
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, 22908, USA.,Division of Nephrology, University of Virginia Health System, Charlottesville, VA, USA
| | - Gregory Townsend
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, 22908, USA.,Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA, USA
| | - Scott Heysell
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Joshua Eby
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, 22908, USA.,Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
52
|
Lamb GS, Starke JR. Mycobacterium abscessus Infections in Children: A Review of Current Literature. J Pediatric Infect Dis Soc 2018; 7:e131-e144. [PMID: 29897511 DOI: 10.1093/jpids/piy047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
Abstract
There is limited literature on Mycobacterium abscessus infections in children and limited data about its diagnosis and management. The incidence of infections due to M abscessus appears to be increasing in certain populations and can be a significant cause of morbidity and mortality.Management of these infections is challenging and relies on combination antimicrobial therapy and debridement of diseased tissue, depending on the site and extent of disease. Treatment regimens often are difficult to tolerate, and the antimicrobials used can cause significant adverse effects, particularly given the long duration of therapy needed.This review summarizes the literature and includes information from our own institution's experience on pediatric M abscessus infections including the epidemiology, transmission, clinical manifestations, and the management of these infections. Adult data have been used where there are limited pediatric data. Further studies regarding epidemiology and risk factors, clinical presentation, optimal treatment, and outcomes in children are necessary.
Collapse
|
53
|
Rifabutin Acts in Synergy and Is Bactericidal with Frontline Mycobacterium abscessus Antibiotics Clarithromycin and Tigecycline, Suggesting a Potent Treatment Combination. Antimicrob Agents Chemother 2018; 62:AAC.00283-18. [PMID: 29760147 PMCID: PMC6105836 DOI: 10.1128/aac.00283-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/30/2018] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium abscessus is a rapidly emerging mycobacterial pathogen causing dangerous pulmonary infections. Because these bacteria are intrinsically multidrug resistant, treatment options are limited and have questionable efficacy. The current treatment regimen relies on a combination of antibiotics, including clarithromycin paired with amikacin and either imipenem or cefoxitin. Tigecycline may be added when triple therapy is ineffective. We initially screened a library containing the majority of clinically available antibiotics for anti-M. abscessus activity. The screen identified rifabutin, which was then investigated for its interactions with M. abscessus antibiotics used in drug regimens. Combination of rifabutin with either clarithromycin or tigecycline generated synergistic anti-M. abscessus activity, dropping the rifabutin MIC below concentrations found in the lung. Importantly, these combinations generated bactericidal activity. The triple combination of clarithromycin, tigecycline, and rifabutin was also synergistic, and clinically relevant concentrations had a sterilizing effect on M. abscessus cultures. We suggest that combinations including rifabutin should be further investigated for treatment of M. abscessus pulmonary infections.
Collapse
|
54
|
Wankar J, Bonvicini F, Benkovics G, Marassi V, Malanga M, Fenyvesi E, Gentilomi GA, Reschiglian P, Roda B, Manet I. Widening the Therapeutic Perspectives of Clofazimine by Its Loading in Sulfobutylether β-Cyclodextrin Nanocarriers: Nanomolar IC50 Values against MDR S. epidermidis. Mol Pharm 2018; 15:3823-3836. [DOI: 10.1021/acs.molpharmaceut.8b00321] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jitendra Wankar
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, 40129 Bologna, Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | | | - Valentina Marassi
- Department of Chemistry “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- byFlow Srl, Via Caduti della Via Fani 11/b, 40127 Bologna, Italy
| | - Milo Malanga
- CycloLab, Cyclodextrin R&D Ltd., H1097 Budapest, Hungary
| | - Eva Fenyvesi
- CycloLab, Cyclodextrin R&D Ltd., H1097 Budapest, Hungary
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Microbiology Unit, St Orsola Malpighi University Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- byFlow Srl, Via Caduti della Via Fani 11/b, 40127 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- byFlow Srl, Via Caduti della Via Fani 11/b, 40127 Bologna, Italy
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
55
|
Novel Mutations Associated with Clofazimine Resistance in Mycobacterium abscessus. Antimicrob Agents Chemother 2018; 62:AAC.00544-18. [PMID: 29712660 DOI: 10.1128/aac.00544-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus is a major nontuberculous mycobacterial (NTM) pathogen and is responsible for about 80% of all pulmonary infections caused by rapidly growing mycobacteria. Clofazimine is an effective drug active against M. abscessus, but the mechanism of resistance to clofazimine in M. abscessus is unknown. To investigate the molecular basis of clofazimine resistance in M. abscessus, we isolated 29 M. abscessus mutants resistant to clofazimine and subjected them to whole-genome sequencing to identify possible mutations associated with clofazimine resistance. We found that mutations in the MAB_2299c gene (which encodes a possible transcriptional regulatory protein), MAB_1483, and MAB_0540 are most commonly associated with clofazimine resistance. In addition, mutations in MAB_0416c, MAB_4099c, MAB_2613, MAB_0409, and MAB_1426 were also associated with clofazimine resistance but less frequently. Two identical mutations which are likely to be polymorphisms unrelated to clofazimine resistance were found in MAB_4605c and MAB_4323 in 13 mutants. We conclude that mutations in MAB_2299c, MAB_1483, and MAB_0540 are the major mechanisms of clofazimine resistance in M. abscessus Future studies are needed to address the role of the identified mutations in clofazimine resistance in M. abscessus Our findings have implications for understanding mechanisms of resistance to clofazimine and for rapid detection of clofazimine resistance in this organism.
Collapse
|
56
|
Wu ML, Aziz DB, Dartois V, Dick T. NTM drug discovery: status, gaps and the way forward. Drug Discov Today 2018; 23:1502-1519. [PMID: 29635026 DOI: 10.1016/j.drudis.2018.04.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022]
Abstract
Incidence of pulmonary diseases caused by non-tuberculous mycobacteria (NTM), relatives of Mycobacterium tuberculosis, is increasing at an alarming rate, surpassing tuberculosis in many countries. Current chemotherapies require long treatment times and the clinical outcomes are often disappointing. There is an urgent medical need to discover and develop new, more-efficacious anti-NTM drugs. In this review, we summarize the current status of NTM drug development, and highlight knowledge gaps and scientific obstacles in NTM drug discovery. We propose strategies to reduce biological uncertainties and to begin to populate a NTM drug pipeline with attractive leads and drug candidates.
Collapse
Affiliation(s)
- Mu-Lu Wu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Dinah B Aziz
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, USA
| | - Thomas Dick
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, USA.
| |
Collapse
|
57
|
Abstract
Mycobacterium abscessus complex (MAbsC) disease in lung transplant recipients is increasingly being recognized as an important cause of graft function decline and suboptimal outcomes. Lung transplant recipients appear to be at the highest risk of MAbsC among solid organ transplant recipients, as they have more intense immunosuppression, and the organisms preferentially inhabit the lungs. MAbsC is the most resistant species of rapidly growing mycobacteria and difficult to treat, causing considerable mortality and morbidity in immunocompetent and immunosuppressed patients. Herein we describe the risk factors, epidemiology, clinical features, diagnostics, and treatment strategies of MAbsC in lung transplant candidates and recipients.
Collapse
|
58
|
Sabin AP, Ferrieri P, Kline S. Mycobacterium abscessus Complex Infections in Children: A Review. Curr Infect Dis Rep 2017; 19:46. [PMID: 28983867 PMCID: PMC5821427 DOI: 10.1007/s11908-017-0597-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Infections in children with Mycobacterium abscessus complex represent a particular challenge for clinicians. Increasing incidence of these infections worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. Published medical literature was reviewed, with emphasis on material published in the past 5 years. RECENT FINDINGS Increasing availability of new diagnostic tools, such as matrix-assisted laser desorption ionization-time of flight mass spectrometry and custom PCRs, has provided unique insights into the subspecies within the complex and improved diagnostic certainty. Microbiological review of all recent isolates at the University of Minnesota Medical Center was also conducted, with description of the antimicrobial sensitivity patterns encountered in our center, and compared with those published from other centers in the recent literature. A discussion of conventional antimicrobial treatment regimens, alongside detailed description of the relevant antimicrobials, is derived from recent publications. Antimicrobial therapy, combined with surgical intervention in some cases, remains the mainstay of pediatric care. Ongoing questions remain regarding the transmission mechanics, immunologic vulnerabilities exploited by these organisms in the host, and the optimal antimicrobial regimens necessary to enable a reliable cure. Updated treatment guidelines based on focused clinical studies in children and accounting especially for the immunocompromised children at greatest risk are very much needed.
Collapse
Affiliation(s)
- Arick P Sabin
- Department of Medicine, Division of Infectious Diseases and International Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC # 250, Minneapolis, MN, 55455, USA
| | - Patricia Ferrieri
- Department of Laboratory Medicine and Pathology and Department of Pediatrics, Division of Infectious Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Susan Kline
- Department of Medicine, Division of Infectious Diseases and International Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC # 250, Minneapolis, MN, 55455, USA.
| |
Collapse
|
59
|
Ruth MM, van Ingen J. New insights in the treatment of nontuberculous mycobacterial pulmonary disease. Future Microbiol 2017; 12:1109-1112. [PMID: 28972416 DOI: 10.2217/fmb-2017-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mike Marvin Ruth
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
60
|
Low JL, Wu ML, Aziz DB, Laleu B, Dick T. Screening of TB Actives for Activity against Nontuberculous Mycobacteria Delivers High Hit Rates. Front Microbiol 2017; 8:1539. [PMID: 28861054 PMCID: PMC5559473 DOI: 10.3389/fmicb.2017.01539] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
The prevalence of lung disease due to infections with nontuberculous mycobacteria (NTM) has been increasing and surpassed tuberculosis (TB) in some countries. Treatment outcomes are often unsatisfactory, highlighting an urgent need for new anti-NTM medications. Although NTM in general do not respond well to TB specific drugs, the similarities between NTM and Mycobacterium tuberculosis at the molecular and cell structural level suggest that compound libraries active against TB could be leveraged for NTM drug discovery. Here we tested this hypothesis. The Pathogen Box from the Medicines for Malaria Venture (MMV) is a collection of 400 diverse drug-like compounds, among which 129 are known to be active against M. tuberculosis. By screening this compound collection against two NTM species, Mycobacterium abscessus and Mycobacterium avium, we showed that indeed the hit rates for NTM among TB active compounds is significantly higher compared to compounds that are not active against TB. MIC/dose response confirmation identified 10 top hits. Bactericidal activity determination demonstrated attractive potency for a subset of the confirmed hits. In vivo pharmacokinetic profiling showed that some of the compounds present reasonable starting points for medicinal chemistry programs. Three of the top hits were oxazolidinones, suggesting the potential for repositioning this class of protein synthesis inhibitors to replace linezolid which suffers from low potency. Two hits were inhibitors of the trehalose monomycolate transporter MmpL3, suggesting that this transmembrane protein may be an attractive target for NTM. Other hits are predicted to target a range of functions, including cell division (FtsZ), DNA gyrase (GyrB), dihydrofolate reductase, RNA polymerase and ABC transporters. In conclusion, our study showed that screening TB active compounds for activity against NTM resulted in high hit rates, suggesting that this may be an attractive approach to kick start NTM drug discovery projects. In addition, the work identified a series of novel high value NTM hits with associated candidate targets which can be followed up in hit-to-lead projects for the discovery of new NTM antibiotics.
Collapse
Affiliation(s)
- Jian Liang Low
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Mu-Lu Wu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Dinah Binte Aziz
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Benoît Laleu
- Medicines for Malaria VentureGeneva, Switzerland
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore.,New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New JerseyNewark, NJ, United States
| |
Collapse
|
61
|
McGuffin SA, Pottinger PS, Harnisch JP. Clofazimine in Nontuberculous Mycobacterial Infections: A Growing Niche. Open Forum Infect Dis 2017; 4:ofx147. [PMID: 30202770 PMCID: PMC6124512 DOI: 10.1093/ofid/ofx147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022] Open
Abstract
Infection secondary to rapidly growing mycobacteria (RGM) is associated with significant morbidity and mortality, especially in individuals with underlying structural lung disease or immune compromise. Such infections, particularly those caused by the Mycobacterium abscessus group, are challenging to treat due to high virulence, antibiotic resistance, and the lack of effective and tolerable therapies. Although novel antimycobacterials are under development, clofazimine-a drug historically administered as part of multidrug therapy regimens for Mycobacterium leprae-holds promise as a chemotherapeutic for the treatment of RGM. The history, pharmacologic properties of clofazimine, as well as in vitro and in vivo studies against RGM are described here and highlight a potential new niche for an old drug.
Collapse
|
62
|
Clofazimine-Containing Regimen for the Treatment of Mycobacterium abscessus Lung Disease. Antimicrob Agents Chemother 2017; 61:AAC.02052-16. [PMID: 28348153 DOI: 10.1128/aac.02052-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/20/2017] [Indexed: 11/20/2022] Open
Abstract
Patients with lung disease caused by Mycobacterium abscessus subsp. abscessus (here M. abscessus) typically have poor treatment outcomes. Although clofazimine (CFZ) has been increasingly used in the treatment of M. abscessus lung disease in clinical practice, there are no reported data on its effectiveness for this disease. This study sought to evaluate the clinical efficacy of a CFZ-containing regimen for the treatment of M. abscessus lung disease. We performed a retrospective review of the medical records of 42 patients with M. abscessus lung disease who were treated with CFZ-containing regimens between November 2013 and January 2015. CFZ was administered in combination with other antibiotics as an initial antibiotic regimen in 15 (36%) patients (initial treatment group), and it was added to an existing antibiotic regimen for refractory M. abscessus lung disease in 27 (64%) patients (salvage treatment group). Overall, there was an 81% treatment response rate based on symptoms and a 31% response rate based on radiographic findings. Conversion to culture-negative sputum samples was achieved in 10 (24%) patients after CFZ-containing antibiotic treatment, and during treatment, there were significant decreases in the positivity of semiquantitative sputum cultures for acid-fast bacilli in both the initial (P = 0.018) and salvage (P = 0.001) treatment groups. Our study suggests that CFZ-containing regimens may improve treatment outcomes in patients with M. abscessus lung disease and that a prospective evaluation of CFZ in M. abscessus lung disease is warranted.
Collapse
|
63
|
Zhang S, Shi W, Feng J, Zhang W, Zhang Y. Varying effects of common tuberculosis drugs on enhancing clofazimine activity in vitro. Emerg Microbes Infect 2017; 6:e28. [PMID: 28442751 PMCID: PMC5457683 DOI: 10.1038/emi.2017.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Shuo Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.,Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Wanliang Shi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jie Feng
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
64
|
Cholo MC, Mothiba MT, Fourie B, Anderson R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother 2016; 72:338-353. [PMID: 27798208 DOI: 10.1093/jac/dkw426] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drug-resistant (DR)-TB is the major challenge confronting the global TB control programme, necessitating treatment with second-line anti-TB drugs, often with limited therapeutic efficacy. This scenario has resulted in the inclusion of Group 5 antibiotics in various therapeutic regimens, two of which promise to impact significantly on the outcome of the therapy of DR-TB. These are the 're-purposed' riminophenazine, clofazimine, and the recently approved diarylquinoline, bedaquiline. Although they differ structurally, both of these lipophilic agents possess cationic amphiphilic properties that enable them to target and inactivate essential ion transporters in the outer membrane of Mycobacterium tuberculosis. In the case of bedaquiline, the primary target is the key respiratory chain enzyme F1/F0-ATPase, whereas clofazimine is less selective, apparently inhibiting several targets, which may underpin the extremely low level of resistance to this agent. This review is focused on similarities and differences between clofazimine and bedaquiline, specifically in respect of molecular mechanisms of antimycobacterial action, targeting of quiescent and metabolically active organisms, therapeutic efficacy in the clinical setting of DR-TB, resistance mechanisms, pharmacodynamics, pharmacokinetics and adverse events.
Collapse
Affiliation(s)
- Moloko C Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Maborwa T Mothiba
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ronald Anderson
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
65
|
Abstract
Treatment of non-tuberculous mycobacterial lung disease (NTM-LD) is challenging for several reasons including the relative resistance of NTM to currently available drugs and the difficulty in tolerating prolonged treatment with multiple drugs. Yet-to-be-done, large, multicenter, prospective randomized studies to establish the best regimens will also be arduous because multiple NTM species are known to cause human lung disease, differences in virulence and response to treatment between different species and strains within a species will make randomization more difficult, the need to distinguish relapse from a new infection, and the difficulty in adhering to the prescribed treatment due to intolerance, toxicity, and/or drug-drug interactions, often necessitating modification of therapeutic regimens. Furthermore, the out-of-state resident status of many patients seen at the relatively few centers that care for large number of NTM-LD patients pose logistical issues in monitoring response to treatment. Thus, current treatment regimens for NTM-LD is largely based on small case series, retrospective analyses, and guidelines based on expert opinions. It has been nearly 10 years since the publication of a consensus guideline for the treatment of NTM-LD. This review is a summary of the available evidence on the treatment of the major NTM-LD until more definitive studies and guidelines become available.
Collapse
|
66
|
Ryu YJ, Koh WJ, Daley CL. Diagnosis and Treatment of Nontuberculous Mycobacterial Lung Disease: Clinicians' Perspectives. Tuberc Respir Dis (Seoul) 2016; 79:74-84. [PMID: 27066084 PMCID: PMC4823187 DOI: 10.4046/trd.2016.79.2.74] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 01/10/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) are emerging pathogens that affect both immunocompromised and immunocompetent patients. The incidence and prevalence of NTM lung disease are increasing worldwide and rapidly becoming a major public health problem. For the diagnosis of NTM lung disease, patients suspected to have NTM lung disease are required to meet all clinical and microbiologic criteria. The development of molecular methods allows the characterization of new species and NTM identification at a subspecies level. Even after the identification of NTM species from respiratory specimens, clinicians should consider the clinical significance of such findings. Besides the limited options, treatment is lengthy and varies by species, and therefore a challenge. Treatment may be complicated by potential toxicity with discouraging outcomes. The decision to start treatment for NTM lung disease is not easy and requires careful individualized analysis of risks and benefits. Clinicians should be alert to those unique aspects of NTM lung disease concerning diagnosis with advanced molecular methods and treatment with limited options. Current recommendations and recent advances for diagnosis and treatment of NTM lung disease are summarized in this article.
Collapse
Affiliation(s)
- Yon Ju Ryu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, CO, USA
| |
Collapse
|
67
|
Abstract
Pulmonary infections are the most frequent diseases caused by nontuberculous mycobacteria (NTM). Common causative organisms of pulmonary infection are slowly growing mycobacteria including Mycobacterium avium complex and Mycobacterium kansasii, and rapidly growing mycobacteria including Mycobacterium abscessus complex. Clinical concern has been raised over the increasing incidence of NTM lung disease combined with the poor treatment outcomes of these chronic infectious diseases. Since treatment guidelines of the American Thoracic Society/Infectious Disease Society of America were published in 2007 there have been continuous efforts to improve the outcomes of NTM lung disease, albeit slowly and with limitations. Here, we focus on recent advances in the antibiotic treatment of NTM lung disease.
Collapse
Affiliation(s)
- Young Ae Kang
- a Division of Pulmonology, Department of Internal Medicine , Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine , Seoul , South Korea
| | - Won-Jung Koh
- b Division of Pulmonary and Critical Care Medicine, Department of Medicine , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , South Korea
| |
Collapse
|
68
|
El-Sherbeni AA, El-Kadi AOS. Repurposing Resveratrol and Fluconazole To Modulate Human Cytochrome P450-Mediated Arachidonic Acid Metabolism. Mol Pharm 2016; 13:1278-88. [PMID: 26918316 DOI: 10.1021/acs.molpharmaceut.5b00873] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 (P450) enzymes metabolize arachidonic acid (AA) to several biologically active epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs). Repurposing clinically-approved drugs could provide safe and readily available means to control EETs and HETEs levels in humans. Our aim was to determine how to significantly and selectively modulate P450-AA metabolism in humans by clinically-approved drugs. Liquid chromatography-mass spectrometry was used to determine the formation of 15 AA metabolites by human recombinant P450 enzymes, as well as human liver and kidney microsomes. CYP2C19 showed the highest EET-forming activity, while CYP1B1 and CYP2C8 showed the highest midchain HETE-forming activities. CYP1A1 and CYP4 showed the highest subterminal- and 20-HETE-forming activity, respectively. Resveratrol and fluconazole produced the most selective and significant modulation of hepatic P450-AA metabolism, comparable to investigational agents. Monte Carlo simulations showed that 90% of human population would experience a decrease by 6-22%, 16-39%, and 16-35% in 16-, 18-, and 20-HETE formation, respectively, after 2.5 g daily of resveratrol, and by 22-31% and 14-23% in 8,9- and 14,15-EET formation after 50 mg of fluconazole. In conclusion, clinically-approved drugs can provide selective and effective means to modulate P450-AA metabolism, comparable to investigational drugs. Resveratrol and fluconazole are good candidates to be repurposed as new P450-based treatments.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| |
Collapse
|