51
|
Yi W, Yang K, Ye J, Long Y, Ke J, Ou H. Triphenyltin degradation and proteomic response by an engineered Escherichia coli expressing cytochrome P450 enzyme. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:29-34. [PMID: 27907843 DOI: 10.1016/j.ecoenv.2016.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Although triphenyltin (TPT) degradation pathway has been determined, information about the enzyme and protein networks involved was severely limited. To this end, a cytochrome P450 hydroxylase (CYP450) gene from Bacillus thuringiensis was cloned and expressed in Escherichia coli BL21 (DE3), namely E. coli pET32a-CYP450, whose dosage at 1gL-1 could degrade 54.6% TPT at 1mgL-1 within 6 d through attacking the carbon-tin bonds of TPT by CYP450. Sequence analysis verified that the CYP450 gene had a 1214bp open reading frame, encoding a protein with 404 amino acids. Proteomic analysis determined that 60 proteins were significantly differentially regulated expression in E. coli pET32a-CYP450 after TPT degradation. The up-regulated proteins enriched in a network related to transport, cell division, biosynthesis of amino acids and secondary metabolites, and microbial metabolism in diverse environments. The current findings demonstrated for the first time that P450 received electrons transferring from NADH could effectively cleave carbon-metal bonds.
Collapse
Affiliation(s)
- Wenying Yi
- Key Laboratory of Environmental Exposure and Health of Guangzhou City, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Kunliang Yang
- Key Laboratory of Environmental Exposure and Health of Guangzhou City, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jinshao Ye
- Key Laboratory of Environmental Exposure and Health of Guangzhou City, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China; Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek 94598, CA, USA.
| | - Yan Long
- Key Laboratory of Environmental Exposure and Health of Guangzhou City, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jing Ke
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek 94598, CA, USA
| | - Huase Ou
- Key Laboratory of Environmental Exposure and Health of Guangzhou City, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
52
|
N'Diaye AR, Leclerc C, Kentache T, Hardouin J, Poc CD, Konto-Ghiorghi Y, Chevalier S, Lesouhaitier O, Feuilloley MGJ. Skin-bacteria communication: Involvement of the neurohormone Calcitonin Gene Related Peptide (CGRP) in the regulation of Staphylococcus epidermidis virulence. Sci Rep 2016; 6:35379. [PMID: 27739485 PMCID: PMC5064375 DOI: 10.1038/srep35379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023] Open
Abstract
Staphylococci can sense Substance P (SP) in skin, but this molecule is generally released by nerve terminals along with another neuropeptide, Calcitonin Gene Related Peptide (CGRP). In this study, we investigated the effects of αCGRP on Staphylococci. CGRP induced a strong stimulation of Staphylococcus epidermidis virulence with a low threshold (<10−12 M) whereas Staphylococcus aureus was insensitive to CGRP. We observed that CGRP-treated S. epidermidis induced interleukin 8 release by keratinocytes. This effect was associated with an increase in cathelicidin LL37 secretion. S. epidermidis displayed no change in virulence factors secretion but showed marked differences in surface properties. After exposure to CGRP, the adherence of S. epidermidis to keratinocytes increased, whereas its internalization and biofilm formation activity were reduced. These effects were correlated with an increase in surface hydrophobicity. The DnaK chaperone was identified as the S. epidermidis CGRP-binding protein. We further showed that the effects of CGRP were blocked by gadolinium chloride (GdCl3), an inhibitor of MscL mechanosensitive channels. In addition, GdCl3 inhibited the membrane translocation of EfTu, the Substance P sensor. This work reveals that through interaction with specific sensors S. epidermidis integrates different skin signals and consequently adapts its virulence.
Collapse
Affiliation(s)
- Awa R N'Diaye
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| | - Camille Leclerc
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| | - Takfarinas Kentache
- Laboratory of Polymers, Biopolymers and Surfaces, CNRS UMR 6270, Normandie Université, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Laboratory of Polymers, Biopolymers and Surfaces, CNRS UMR 6270, Normandie Université, Mont-Saint-Aignan, France
| | - Cecile Duclairoir Poc
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironnement, LMSM, EA 4312, Normandie Université, Evreux, France
| |
Collapse
|
53
|
Proper Control of Caulobacter crescentus Cell Surface Adhesion Requires the General Protein Chaperone DnaK. J Bacteriol 2016; 198:2631-42. [PMID: 27044628 DOI: 10.1128/jb.00027-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/30/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Growth in a surface-attached bacterial community, or biofilm, confers a number of advantages. However, as a biofilm matures, high-density growth imposes stresses on individual cells, and it can become less advantageous for progeny to remain in the community. Thus, bacteria employ a variety of mechanisms to control attachment to and dispersal from surfaces in response to the state of the environment. The freshwater oligotroph Caulobacter crescentus can elaborate a polysaccharide-rich polar organelle, known as the holdfast, which enables permanent surface attachment. Holdfast development is strongly inhibited by the small protein HfiA; mechanisms that control HfiA levels in the cell are not well understood. We have discovered a connection between the essential general protein chaperone, DnaK, and control of C. crescentus holdfast development. C. crescentus mutants partially or completely lacking the C-terminal substrate binding "lid" domain of DnaK exhibit enhanced bulk surface attachment. Partial or complete truncation of the DnaK lid domain increases the probability that any single cell will develop a holdfast by 3- to 10-fold. These results are consistent with the observation that steady-state levels of an HfiA fusion protein are significantly diminished in strains that lack the entire lid domain of DnaK. While dispensable for growth, the lid domain of C. crescentus DnaK is required for proper chaperone function, as evidenced by observed dysregulation of HfiA and holdfast development in strains expressing lidless DnaK mutants. We conclude that DnaK is an important molecular determinant of HfiA stability and surface adhesion control. IMPORTANCE Regulatory control of cell adhesion ensures that bacterial cells can transition between free-living and surface-attached states. We define a role for the essential protein chaperone, DnaK, in the control of Caulobacter crescentus cell adhesion. C. crescentus surface adhesion is mediated by an envelope-attached organelle known as the holdfast. Holdfast development is tightly controlled by HfiA, a small protein inhibitor that directly interacts with a WecG/TagA-family glycosyltransferase required for holdfast biosynthesis. We demonstrate that the C-terminal lid domain of DnaK is not essential for growth but is necessary for proper control of HfiA levels in the cell and for control of holdfast adhesin development.
Collapse
|
54
|
In vitro activity of plant extracts against biofilm-producing food-related bacteria. Int J Food Microbiol 2016; 238:33-39. [PMID: 27591384 DOI: 10.1016/j.ijfoodmicro.2016.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/31/2016] [Accepted: 08/15/2016] [Indexed: 01/10/2023]
Abstract
The identification of effective antimicrobial agents also active on biofilms is a topic of crucial importance in food and industrial environment. For that purpose methanol extracts of Turkish plants, Ficus carica L., Juglans regia L., Olea europaea L., Punica granatum L. and Rhus coriaria L., were investigated. Among the extracts, P. granatum L. and R. coriaria L. showed the best antibacterial activity with minimum inhibitory concentrations (MIC) of 78-625μg/ml for Listeria monocytogenes and Staphylococcus aureus and 312-1250μg/ml for Escherichia coli and Pseudomonas aeruginosa. SubMICs produced a significant biofilm inhibition equal to 80-60% for L. monocytogenes and 90-80% for S. aureus. The extracts showed also the highest polyphenol content and the strongest antioxidant activity. Bioassay-guided and HPLC procedures demonstrated the presence of apigenin 4'-O-β-glucoside in P. granatum L. and myricetrin and quercitrin in R. coriaria L. Antigenotoxicity of plant extracts was also observed The present findings promote the value-adding of P. granatum L. and R. coriaria L. leaves as natural antimicrobial/antioxidant agents for control of food-related bacterial biofilms.
Collapse
|
55
|
Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant Natural Products Targeting Bacterial Virulence Factors. Chem Rev 2016; 116:9162-236. [PMID: 27437994 DOI: 10.1021/acs.chemrev.6b00184] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Karine Rigon Zimmer
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Instituto Nacional do Semiárido , Campina Grande, Paraı́ba 58429-970, Brazil
| | - Danielle Silva Trentin
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| |
Collapse
|
56
|
Hara H, Takahashi T, Serada S, Fujimoto M, Ohkawara T, Nakatsuka R, Harada E, Nishigaki T, Takahashi Y, Nojima S, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Miyata H, Nakajima K, Takiguchi S, Morii E, Mori M, Doki Y, Naka T. Overexpression of glypican-1 implicates poor prognosis and their chemoresistance in oesophageal squamous cell carcinoma. Br J Cancer 2016; 115:66-75. [PMID: 27310703 PMCID: PMC4931380 DOI: 10.1038/bjc.2016.183] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022] Open
Abstract
Background: Despite the recent improvements in multimodal therapies for oesophageal squamous cell carcinoma (ESCC), the prognosis remains poor. The identification of suitable biomarkers for predicting the prognosis and chemo-sensitivity is required to develop targeted treatments and improve treatment results. Methods: Proteins highly expressed in ESCC cell lines compared with normal oesophageal cell lines were screened by isobaric tag for relative and absolute quantitation (iTRAQ). We identified glypican-1 (GPC1) as a novel molecule. The clinicopathological characteristics of GPC1 were evaluated by immunohistochemistry using ESCC specimens, and clinical parameters were assessed. The correlation between GPC1 expression levels and chemo-sensitivity were analysed in vitro. Results: In the immunohistochemical assessment of 175 ESCC patients, 98.8% expressed GPC1. These patients demonstrated significantly poorer prognosis compared with patients with low-GPC1 expression by survival assay (P<0.001). Higher chemoresistance was observed in the GPC1 high-expression group. GPC1 expression levels positively correlated with chemo-sensitivity against cis-Diammineplatinum (II) dichloride (CDDP), and are potentially associated with anti-apoptotic function based on alterations in the MAPK downstream signalling pathway and Bcl-2 family member proteins. Conclusions: GPC1 is an independent prognostic factor in ESCC and is a critical molecule for altering the threshold of chemoresistance to CDDP.
Collapse
Affiliation(s)
- Hisashi Hara
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tomoharu Ohkawara
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Rie Nakatsuka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Emi Harada
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takahiko Nishigaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yusuke Takahashi
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Miyata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
57
|
Sugimoto S, Okuda KI, Miyakawa R, Sato M, Arita-Morioka KI, Chiba A, Yamanaka K, Ogura T, Mizunoe Y, Sato C. Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy. Sci Rep 2016; 6:25889. [PMID: 27180609 PMCID: PMC4867632 DOI: 10.1038/srep25889] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/25/2016] [Indexed: 02/04/2023] Open
Abstract
Biofilms are complex communities of microbes that attach to biotic or abiotic surfaces causing chronic infectious diseases. Within a biofilm, microbes are embedded in a self-produced soft extracellular matrix (ECM), which protects them from the host immune system and antibiotics. The nanoscale visualisation of delicate biofilms in liquid is challenging. Here, we develop atmospheric scanning electron microscopy (ASEM) to visualise Gram-positive and -negative bacterial biofilms immersed in aqueous solution. Biofilms cultured on electron-transparent film were directly imaged from below using the inverted SEM, allowing the formation of the region near the substrate to be studied at high resolution. We visualised intercellular nanostructures and the exocytosis of membrane vesicles, and linked the latter to the trafficking of cargos, including cytoplasmic proteins and the toxins hemolysin and coagulase. A thick dendritic nanotube network was observed between microbes, suggesting multicellular communication in biofilms. A universal immuno-labelling system was developed for biofilms and tested on various examples, including S. aureus biofilms. In the ECM, fine DNA and protein networks were visualised and the precise distribution of protein complexes was determined (e.g., straight curli, flagella, and excreted cytoplasmic molecular chaperones). Our observations provide structural insights into bacteria-substratum interactions, biofilm development and the internal microbe community.
Collapse
Affiliation(s)
- Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.,Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Ken-Ichi Okuda
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.,Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Reina Miyakawa
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Mari Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Ken-Ichi Arita-Morioka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Akio Chiba
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kunitoshi Yamanaka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Yoshimitsu Mizunoe
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.,Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Chikara Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
58
|
Okamatsu G, Komatsu T, Ono Y, Inoue H, Uchide T, Onaga T, Endoh D, Kitazawa T, Hiraga T, Uno Y, Teraoka H. Characterization of feline cytochrome P450 2B6. Xenobiotica 2016; 47:93-102. [DOI: 10.3109/00498254.2016.1145754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gaku Okamatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Tetsuya Komatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Yuka Ono
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Hiroki Inoue
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Tsuyoshi Uchide
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Takenori Onaga
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Daiji Endoh
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Takeo Hiraga
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| |
Collapse
|
59
|
Fan D, Liu C, Liu L, Zhu L, Peng F, Zhou Q. Large-scale gene expression profiling reveals physiological response to deletion of chaperone dnaKJ in Escherichia coli. Microbiol Res 2016; 186-187:27-36. [PMID: 27242140 DOI: 10.1016/j.micres.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 11/18/2022]
Abstract
Chaperone DnaK and its co-chaperone DnaJ plays various essential roles such as in assisting in the folding of nascent peptides, preventing protein aggregation and maintaining cellular protein homeostasis. Global transcriptional changes in vivo associated with deletion of dnaKJ were monitored using DNA microarray to elucidate the role of DnaKJ at the transcriptional level. Microarray profiling and bioinformatics analysis revealed that a few chaperone and protease genes, stress-related genes and genes involved in the tricarboxylic acid cycle and oxidative phosphorylation were up-regulated, whereas various transporter genes, pentose phosphate pathway and transcriptional regulation related genes were down-regulated. This study is the first to systematically analyze the alterations at the transcriptional level in vivo in deletion of dnaKJ. Fatty acid methyl esters analysis indicated that the amount of unsaturated fatty acid sharply increased and subcellular location prediction analysis showed a marked decrease in transcription of inner-membrane protein genes, which might have triggered the development of aberrant cell shape and susceptibility for some antibiotics in the ΔdnaKJ strain.
Collapse
Affiliation(s)
- Dongjie Fan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin 150080, China.
| | - Lushan Liu
- Department of Emergency, Beijing Bo'ai Hospital, 10 Jiaomen North Road, Fengtai District, Beijing, 100068, China; China Rehabilitation Research Center, Capital Medical University, Beijing 100068, China
| | - Lingxiang Zhu
- National Research Institute for Family Planning (NRIFP), Beijing 100081, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan430072, China; Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan 430072, China
| | - Qiming Zhou
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin 150080, China.
| |
Collapse
|
60
|
Mori M, Jeelani G, Masuda Y, Sakai K, Tsukui K, Waluyo D, Tarwadi, Watanabe Y, Nonaka K, Matsumoto A, Ōmura S, Nozaki T, Shiomi K. Identification of natural inhibitors of Entamoeba histolytica cysteine synthase from microbial secondary metabolites. Front Microbiol 2015; 6:962. [PMID: 26441896 PMCID: PMC4568418 DOI: 10.3389/fmicb.2015.00962] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Amebiasis is a common worldwide diarrheal disease, caused by the protozoan parasite, Entamoeba histolytica. Metronidazole has been a drug of choice against amebiasis for decades despite its known side effects and low efficacy against asymptomatic cyst carriers. E. histolytica is also capable of surviving sub-therapeutic levels of metronidazole in vitro. Novel drugs with different mode of action are therefore urgently needed. The sulfur assimilatory de novo L-cysteine biosynthetic pathway is essential for various cellular activities, including the proliferation and anti-oxidative defense of E. histolytica. Since the pathway, consisting of two reactions catalyzed by serine acetyltransferase (SAT) and cysteine synthase (CS, O-acetylserine sulfhydrylase), does not exist in humans, it is a rational drug target against amebiasis. To discover inhibitors against the CS of E. histolytica (EhCS), the compounds of Kitasato Natural Products Library were screened against two recombinant CS isozymes: EhCS1 and EhCS3. Nine compounds inhibited EhCS1 and EhCS3 with IC50 values of 0.31-490 μM. Of those, seven compounds share a naphthoquinone moiety, indicating the structural importance of the moiety for binding to the active site of EhCS1 and EhCS3. We further screened >9,000 microbial broths for CS inhibition and purified two compounds, xanthofulvin and exophillic acid from fungal broths. Xanthofulvin inhibited EhCS1 and EhCS3. Exophillic acid showed high selectivity against EhCS1, but exhibited no inhibition against EhCS3. In vitro anti-amebic activity of the 11 EhCS inhibitors was also examined. Deacetylkinamycin C and nanaomycin A showed more potent amebicidal activity with IC50 values of 18 and 0.8 μM, respectively, in the cysteine deprived conditions. The differential sensitivity of trophozoites against deacetylkinamycin C in the presence or absence of L-cysteine in the medium and the IC50 values against EhCS suggest the amebicidal effect of deacetylkinamycin C is due to CS inhibition.
Collapse
Affiliation(s)
- Mihoko Mori
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious DiseasesTokyo, Japan
| | - Yui Masuda
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Kazunari Sakai
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Kumiko Tsukui
- Department of Parasitology, National Institute of Infectious DiseasesTokyo, Japan
| | - Danang Waluyo
- Biotech Center, Badan Pengkajian Dan Penerapan TeknologiBanten, Indonesia
| | - Tarwadi
- Biotech Center, Badan Pengkajian Dan Penerapan TeknologiBanten, Indonesia
| | - Yoshio Watanabe
- Research and Development Division, MicroBiopharm Japan Co. LtdIwata, Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Atsuko Matsumoto
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious DiseasesTokyo, Japan
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukuba, Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| |
Collapse
|
61
|
Ruer S, Pinotsis N, Steadman D, Waksman G, Remaut H. Virulence-targeted Antibacterials: Concept, Promise, and Susceptibility to Resistance Mechanisms. Chem Biol Drug Des 2015; 86:379-99. [DOI: 10.1111/cbdd.12517] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Ségolène Ruer
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - David Steadman
- Wolfson Institute for Biomedical Research (WIBR); UCL; London WC1E 6BT UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - Han Remaut
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| |
Collapse
|