51
|
Langendonk RF, Neill DR, Fothergill JL. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front Cell Infect Microbiol 2021; 11:665759. [PMID: 33937104 PMCID: PMC8085337 DOI: 10.3389/fcimb.2021.665759] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
P. aeruginosa is classified as a priority one pathogen by the World Health Organisation, and new drugs are urgently needed, due to the emergence of multidrug-resistant (MDR) strains. Antimicrobial-resistant nosocomial pathogens such as P. aeruginosa pose unwavering and increasing threats. Antimicrobial stewardship has been a challenge during the COVID-19 pandemic, with a majority of those hospitalized with SARS-CoV2 infection given antibiotics as a safeguard against secondary bacterial infection. This increased usage, along with increased handling of sanitizers and disinfectants globally, may further accelerate the development and spread of cross-resistance to antibiotics. In addition, P. aeruginosa is the primary causative agent of morbidity and mortality in people with the life-shortening genetic disease cystic fibrosis (CF). Prolonged periods of selective pressure, associated with extended antibiotic treatment and the actions of host immune effectors, results in widespread adaptive and acquired resistance in P. aeruginosa found colonizing the lungs of people with CF. This review discusses the arsenal of resistance mechanisms utilized by P. aeruginosa, how these operate under high-stress environments such as the CF lung and how their interconnectedness can result in resistance to multiple antibiotic classes. Intrinsic, adaptive and acquired resistance mechanisms will be described, with a focus on how each layer of resistance can serve as a building block, contributing to multi-tiered resistance to antimicrobial activity. Recent progress in the development of anti-resistance adjuvant therapies, targeting one or more of these building blocks, should lead to novel strategies for combatting multidrug resistant P. aeruginosa. Anti-resistance adjuvant therapy holds great promise, not least because resistance against such therapeutics is predicted to be rare. The non-bactericidal nature of anti-resistance adjuvants reduce the selective pressures that drive resistance. Anti-resistance adjuvant therapy may also be advantageous in facilitating efficacious use of traditional antimicrobials, through enhanced penetration of the antibiotic into the bacterial cell. Promising anti-resistance adjuvant therapeutics and targets will be described, and key remaining challenges highlighted. As antimicrobial stewardship becomes more challenging in an era of emerging and re-emerging infectious diseases and global conflict, innovation in antibiotic adjuvant therapy can play an important role in extending the shelf-life of our existing antimicrobial therapeutic agents.
Collapse
Affiliation(s)
- R. Frèdi Langendonk
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
52
|
Wickremasinghe H, Yu HH, Azad MAK, Zhao J, Bergen PJ, Velkov T, Zhou QT, Zhu Y, Li J. Clinically Relevant Concentrations of Polymyxin B and Meropenem Synergistically Kill Multidrug-Resistant Pseudomonas aeruginosa and Minimize Biofilm Formation. Antibiotics (Basel) 2021; 10:405. [PMID: 33918040 PMCID: PMC8069709 DOI: 10.3390/antibiotics10040405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic resistance has severely impaired the treatment of chronic respiratory infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa. Since the reintroduction of polymyxins as a last-line therapy against MDR Gram-negative bacteria, resistance to its monotherapy and recurrent infections continue to be reported and synergistic antibiotic combinations have been investigated. In this study, comprehensive in vitro microbiological evaluations including synergy panel screening, population analysis profiling, time-kill kinetics, anti-biofilm formation and membrane damage analysis studies were conducted to evaluate the combination of polymyxin B and meropenem against biofilm-producing, polymyxin-resistant MDR P. aeruginosa. Two phylogenetically unrelated MDR P. aeruginosa strains, FADDI-PA060 (MIC of polymyxin B [MICpolymyxin B], 64 mg/L; MICmeropenem, 64 mg/L) and FADDI-PA107 (MICpolymyxin B, 32 mg/L; MICmeropenem, 4 mg/L) were investigated. Genome sequencing identified 57 (FADDI-PA060) and 50 (FADDI-PA107) genes predicted to confer resistance to a variety of antimicrobials, as well as multiple virulence factors in each strain. The presence of resistance genes to a particular antibiotic class generally aligned with MIC results. For both strains, all monotherapies of polymyxin B failed with substantial regrowth and biofilm formation. The combination of polymyxin B (16 mg/L)/meropenem (16 mg/L) was most effective, enhancing initial bacterial killing of FADDI-PA060 by ~3 log10 CFU/mL, followed by a prolonged inhibition of regrowth for up to 24 h with a significant reduction in biofilm formation (* p < 0.05). Membrane integrity studies revealed a substantial increase in membrane depolarization and membrane permeability in the surviving cells. Against FADDI-PA107, planktonic and biofilm bacteria were completely eradicated. In summary, the combination of polymyxin B and meropenem demonstrated synergistic bacterial killing while reinstating the efficacy of two previously ineffective antibiotics against difficult-to-treat polymyxin-resistant MDR P. aeruginosa.
Collapse
Affiliation(s)
- Hasini Wickremasinghe
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Heidi H. Yu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Mohammad A. K. Azad
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Jinxin Zhao
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3053, Australia;
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 1047907, USA;
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Jian Li
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| |
Collapse
|
53
|
Kim BO, Jang HJ, Chung IY, Bae HW, Kim ES, Cho YH. Nitrate Respiration Promotes Polymyxin B Resistance in Pseudomonas aeruginosa. Antioxid Redox Signal 2021; 34:442-451. [PMID: 32370551 DOI: 10.1089/ars.2019.7924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims: Polymyxin B (PMB) is known to require reactive oxygen species (ROS) for its bactericidal activity, but the mechanism of PMB resistance in various Pseudomonas aeruginosa strains has been poorly understood. This study examined the role of nitrate respiration (NR) of some P. aeruginosa strains in the PMB resistance. Results: We observed that the minimum inhibitory concentration (MIC) value of PMB against P. aeruginosa PA14 was eightfold reduced (from 2.0 to 0.25 μg/mL) by agitation, but not against P. aeruginosa PAO1 (from 2.0 to 1.0 μg/mL). Transcriptomic and phenotypic analyses using both strains and their NR mutants revealed that the higher NR in PAO1 than in PA14 accounted for the higher MIC value (i.e., PMB resistance) of PAO1, which was sufficient to compromise the antibacterial activity of PMB in Drosophila infections. We also confirmed the contribution of the NR to the PMB resistance is independent of the major catalase (KatA), suggesting that the NR might affect the ROS generation rather than the ROS disintegration. Furthermore, this PMB resistance was relatively common among clinical P. aeruginosa isolates and correlated with higher NR in those strains. Innovation and Conclusion: These results suggest P. aeruginosa strains could display intrinsic resistance to antibiotics in clinical settings and that NR is a crucial factor in the intrinsic antibiotic resistance, and also provide an insight into another key target for successful antibiotic treatment of P. aeruginosa infections. Antioxid. Redox Signal. 34, 442-451.
Collapse
Affiliation(s)
- Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, Korea
| | - Hye-Jeong Jang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, Korea
| | - In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, Korea
| | - Hee-Won Bae
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, Korea
| | - Eun Sook Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, Korea
| |
Collapse
|
54
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
55
|
Savin M, Bierbaum G, Blau K, Parcina M, Sib E, Smalla K, Schmithausen R, Heinemann C, Hammerl JA, Kreyenschmidt J. Colistin-Resistant Enterobacteriaceae Isolated From Process Waters and Wastewater From German Poultry and Pig Slaughterhouses. Front Microbiol 2020; 11:575391. [PMID: 33193188 PMCID: PMC7661462 DOI: 10.3389/fmicb.2020.575391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Due to the high prevalence of colistin-resistant Enterobacteriaceae in poultry and pigs, process waters and wastewater from slaughterhouses were considered as a hotspot for isolates carrying plasmid-encoded, mobilizable colistin resistances (mcr genes). Thus, questions on the effectiveness of wastewater treatment in in-house and municipal wastewater treatment plants (WWTPs) as well as on the diversity of the prevailing isolates, plasmid types, and their transmissibility arise. Process waters and wastewater accruing in the delivery and unclean areas of two poultry and two pig slaughterhouses were screened for the presence of target colistin-resistant bacteria (i.e., Escherichia coli, Klebsiella spp., Enterobacter cloacae complex). In-house and municipal WWTPs (mWWTPs) including receiving waterbodies were investigated as well. Samples taken in the poultry slaughterhouses yielded the highest occurrence of target colistin-resistant Enterobacteriaceae (40.2%, 33/82), followed by mWWTPs (25.0%, 9/36) and pig slaughterhouses (14.9%, 10/67). Recovered isolates exhibited various resistance patterns. The resistance rates using epidemiological cut-off values were higher in comparison to those obtained with clinical breakpoints. Noteworthy, MCR-1-producing Klebsiella pneumoniae and E. coli were detected in scalding waters and preflooders of mWWTPs. A total of 70.8% (46/65) of E. coli and 20.6% (7/34) of K. pneumoniae isolates carried mcr-1 on a variety of transferable plasmids with incompatibility groups IncI1, IncHI2, IncX4, IncF, and IncI2 ranging between 30 and 360 kb. The analyzed isolates carrying mcr-1 on transferable plasmids (n = 53) exhibited a broad diversity, as they were assigned to 25 different XbaI profiles. Interestingly, in the majority of colistin-resistant mcr-negative E. coli and K. pneumoniae isolates non-synonymous polymorphisms in pmrAB were detected. Our findings demonstrated high occurrence of colistin-resistant E. coli and K. pneumoniae carrying mcr-1 on transferrable plasmids in poultry and pig slaughterhouses and indicate their dissemination into surface water.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute of Animal Sciences, University of Bonn, Bonn, Germany.,Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Khald Blau
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Marijo Parcina
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Ricarda Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Jens A Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, Bonn, Germany.,Department of Fresh Produce Logistics, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
56
|
Mattingly AE, Cox KE, Smith R, Melander RJ, Ernst RK, Melander C. Screening an Established Natural Product Library Identifies Secondary Metabolites That Potentiate Conventional Antibiotics. ACS Infect Dis 2020; 6:2629-2640. [PMID: 32810395 DOI: 10.1021/acsinfecdis.0c00259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Health organizations worldwide have warned that we are on the cusp of a "post-antibiotic era," necessitating new approaches to combat antibiotic resistant infections. One such approach is the development of antibiotic adjuvants, which have little or no inherent antibiotic activity at their active concentrations but instead potentiate the activity of antibiotics against antibiotic-resistant bacteria. Recently, we demonstrated that meridianin D, a natural product originally reported to have activity against Staphylococcus aureus and Mycobacterium tuberculosis, possesses the ability to reverse colistin resistance in colistin resistant bacteria. As most natural product screens typically involve screening for only certain activities (anticancer, antiviral, and antimicrobial are typical), we posited that the meridianin D discovery was not unique and there are potentially many natural products that have adjuvant activity. To explore this, the National Cancer Institute (NCI) Natural Product Library Set IV was screened for adjuvant activity using four classes of antibiotics (β-lactams, aminoglycosides, macrolides, and polymyxins) against three bacterial pathogens (methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, and Klebsiella pneumoniae). Sixteen compounds suppressed β-lactam resistance in MRSA, five of which effected a 16-fold reduction in the oxacillin minimum inhibitory concentration (MIC). Two natural products effectively suppressed aminoglycoside resistance in both of the Gram-negative species tested, and no hits were observed with macrolides. In contrast, a larger number of natural product adjuvants were identified when screening against colistin-resistant strains of A. baumannii and K. pneumoniae. Nine compounds reduced the colistin MIC to its breakpoint or lower (up to a 1024-fold reduction). Clorobiocin, novobiocin, and prodigiosin were most effective, reducing the colistin MIC in K. pneumoniae strain B9 to 2 μg/mL at concentrations as low as 0.625, 2.5, and 1.25 μM, respectively. Restored sensitivity to colistin with these compounds does not appear to coincide with known mechanisms of colistin resistance.
Collapse
Affiliation(s)
- Anne E. Mattingly
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Karlie E. Cox
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Richard Smith
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, Maryland 21201, United States
| | - Roberta J. Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, Maryland 21201, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
57
|
Koutsianos D, Athanasiou LV, Dimitriou T, Nikolaidis M, Tsadila C, Amoutzias G, Mossialos D, Koutoulis KC. Antibiotic Resistance Patterns and mcr-1 Detection in Avian Pathogenic Escherichia coli Isolates from Commercial Layer and Layer Breeder Flocks Demonstrating Colibacillosis in Greece. Microb Drug Resist 2020; 27:710-720. [PMID: 32955987 DOI: 10.1089/mdr.2020.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objectives: The aim of this study was to investigate the antimicrobial resistance (AMR) patterns of Escherichia coli strains isolated from poultry flocks suffering from colibacillosis in Greece and to detect the presence of the mcr-1 gene in isolates being phenotypically resistant to colistin. Results: A total of 150 E. coli strains were isolated from commercial layers and layer breeder flocks in Greece and tested for antimicrobial susceptibility. A high level of susceptibility was revealed for cephalosporins, neomycin, and colistin. Susceptibility varied for other antimicrobials (tetracycline, doxycycline, lincospectin, trimethoprim/sulfamethoxazole, enrofloxacin, amoxicillin), whereas no susceptibility was reported for macrolides, tiamulin, lincomycin, oxacillin. Concerning colistin resistance, 20 E. coli strains were found to be phenotypically resistant (13 strains showed intermediate resistance pattern and 7 strains fully resistance trait). Further investigation was performed by PCR, which has revealed the presence of the mcr-1 gene in one phenotypically colistin-resistant isolate. Conclusion: AMR is prevalent in layer poultry production, including resistance against colistin confirmed by the presence of the mcr-1 gene.
Collapse
Affiliation(s)
- Dimitrios Koutsianos
- Department of Poultry Diseases and Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Labrini V Athanasiou
- Department of Medicine, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Tilemachos Dimitriou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christina Tsadila
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Grigorios Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantinos C Koutoulis
- Department of Poultry Diseases and Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| |
Collapse
|
58
|
Yin Q, Wu S, Wu L, Wang Z, Mu Y, Zhang R, Dong C, Zhou B, Zhao B, Zheng J, Sun Y, Cheng X, Yang L. A novel in silico antimicrobial peptide DP7 combats MDR Pseudomonas aeruginosa and related biofilm infections. J Antimicrob Chemother 2020; 75:3248-3259. [PMID: 32737484 DOI: 10.1093/jac/dkaa308] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Antimicrobial peptides are promising alternative antimicrobial agents to combat MDR. DP7, an antimicrobial peptide designed in silico, possesses broad-spectrum antimicrobial activities and immunomodulatory effects. However, the effects of DP7 against Pseudomonas aeruginosa and biofilm infection remain largely unexplored.
Objectives
To assess (i) the antimicrobial activity of DP7 against MDR P. aeruginosa; and (ii) the antibiofilm activity against biofilm infection. Also, to preliminarily investigate the possible antimicrobial mode of action.
Methods
The MICs of DP7 for 104 clinical P. aeruginosa strains (including 57 MDR strains) and the antibiofilm activity were determined. RNA-Seq, genome sequencing and cell morphology were conducted. Both acute and chronic biofilm infection mouse models were established. Two mutants, resulting from point mutations associated with LPS and biofilms, were constructed to investigate the potential mode of action.
Results
DP7, at 8–32 mg/L, inhibited the growth of clinical P. aeruginosa strains and, at 64 mg/L, reduced biofilm formation by 43% to 68% in vitro. In acute lung infection, 0.5 mg/kg DP7 exhibited a 70% protection rate and reduced bacterial colonization by 50% in chronic infection. DP7 mainly suppressed gene expression involving LPS and outer membrane proteins and disrupted cell wall structure. Genome sequencing of the DP7-resistant strain DP7R revealed four SNPs controlling LPS and biofilm production. gshA44 and wbpJ139 mutants displayed LPS reduction and motility deficiency, conferring the reduction of LPS and biofilm biomass of strain DP7R and indicating that LPS was a potential target of DP7.
Conclusions
These results demonstrate that DP7 may hold potential as an effective antimicrobial agent against MDR P. aeruginosa and related infections.
Collapse
Affiliation(s)
- Qi Yin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041, People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Avenue, Nanshan Section, Shenzhen 518060, People’s Republic of China
| | - Siwen Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041, People’s Republic of China
| | - Lei Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041, People’s Republic of China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041, People’s Republic of China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041, People’s Republic of China
| | - Chunyan Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041, People’s Republic of China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041, People’s Republic of China
| | - Binyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041, People’s Republic of China
| | - Jiajun Zheng
- Stomatology Department, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Ying Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041, People’s Republic of China
| | - Xingjun Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041, People’s Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041, People’s Republic of China
| |
Collapse
|
59
|
Shamina OV, Kryzhanovskaya OA, Lazareva AV, Alyabieva NM, Mayanskiy NA. Colistin resistance of carbapenem-resistant Klebsiella pneumoniae strains: molecular mechanisms and bacterial fitness. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The increasing use of colistin in the clinic has led to the emergence and spread of colistin resistance. According to the literature, antibiotic resistance can have a metabolic cost, resulting in poor adaptation and survival, i.e. reduced bacterial fitness. The aim of this study was to investigate molecular mechanisms underlying resistance to colistin and their effect on the bacterial fitness of carbapenem-resistant (carba-R) strains of K. pneumoniae isolated from the patients of Moscow hospitals in 2012–2017. Of 159 analyzed carba-R isolates, 71 (45%) were resistant to colistin (minimum inhibitory concentration over 2 mg/L). By conducting Sanger sequencing, we were able to identify the mechanisms underlying colistin resistance in 26 (37%) isolates. Growth curves were constructed by measuring optical density at 600 nm wavelength for 15 hours. The competitive growth of colistin-resistant (col-R) K. pneumoniae isolates was assessed relative to the colistin-susceptible (col-S) isolate. Col-R and col-S cultures harvested in the exponential phase were combined at the ratio of 1:1, incubated in the Luria-Bertani medium and plated onto Luria-Bertani agar plates with 10 mg/L colistin and without it. The competition index was calculated as the ratio of grown col-R and col-S colonies. Resistance to colistin did not affect the growth kinetics of K. pneumoniae, but did reduce the competitive ability of the bacteria as compared to the col-S isolates. However, some col-R isolates were more competitive than the col-S strains of the same sequence type. Further research is needed to elucidate the effects of colistin resistance on bacterial fitness.
Collapse
Affiliation(s)
- OV Shamina
- National Medical Research Center for Children's Health, Moscow, Russia
| | - OA Kryzhanovskaya
- National Medical Research Center for Children's Health, Moscow, Russia
| | - AV Lazareva
- National Medical Research Center for Children's Health, Moscow, Russia
| | - NM Alyabieva
- National Medical Research Center for Children's Health, Moscow, Russia
| | - NA Mayanskiy
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
60
|
Samantha A, Vrielink A. Lipid A Phosphoethanolamine Transferase: Regulation, Structure and Immune Response. J Mol Biol 2020; 432:5184-5196. [PMID: 32353363 DOI: 10.1016/j.jmb.2020.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/23/2023]
Abstract
A wide variety of antibiotics are targeted to the bacterial membrane due to its unique arrangement and composition relative to the host mammalian membranes. By modification of their membranes, some gram-negative pathogens resist the action of antibiotics. Lipid A phosphoethanolamine transferase (EptA) is an intramembrane enzyme that modifies the lipid A portion of lipopolysaccharide/lipooligosaccharide by the addition of phosphoethanolamine. This modification reduces the overall net-negative charge of the outer membrane of some gram-negative bacteria, conferring resistance to polymyxin. This resistance mechanism has resulted in a global public health issue due to the increased use of polymyxin as last-resort antibiotic treatments against multi-drug-resistant pathogens. Studies show that, without EptA, pathogenic bacteria become more sensitive to polymyxin and to clearance by the host immune system, suggesting the importance of this target enzyme for the development of novel therapeutic agents. In this review, EptA will be discussed comprehensively. Specifically, this review will cover the regulation of eptA expression by the two component systems PmrA/PmrB and PhoP/PhoQ, the site of modification on lipid A, the structure and catalytic mechanism of EptA in comparison to MCR-1 and Escherichia coli alkaline phosphatase, and the host immune system's response to lipid A modification by EptA. The overarching aim of this review is to provide a comprehensive overview of polymyxin resistance mediated by EptA.
Collapse
Affiliation(s)
- Ariela Samantha
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.
| |
Collapse
|
61
|
Allobawi R, Ghelani DP, Schneider-Futschik EK. Metabolomic Description of Ivacaftor Elevating Polymyxin B Mediated Antibacterial Activity in Cystic Fibrosis Pseudomonas aeruginosa. ACS Pharmacol Transl Sci 2020; 3:433-443. [PMID: 32566909 DOI: 10.1021/acsptsci.0c00030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 02/08/2023]
Abstract
We have demonstrated that ivacaftor displays synergistic antibacterial activity in combination with polymyxin B against polymyxin-resistant Pseudomonas aeruginosa that commonly colonizes the lungs of people with cystic fibrosis (CF). However, the underlying mechanism(s) remain unclear. In the present study, we employed untargeted metabolomics to investigate the synergistic killing mechanism of polymyxin B in combination with ivacaftor against a polymyxin-susceptible P. aeruginosa FADDI-PA111 (polymyxin B MIC = 2 mg/L) and a polymyxin-resistant CF P. aeruginosa FADDI-PA006 (polymyxin B MIC = 8 mg/L). Metabolites were extracted at 3 h after treatments with polymyxin B alone (2 μg/mL for FADDI-PA111 and 4 μg/mL FADDI-PA006 P. aeruginosa), ivacaftor alone (8 μg/mL), and in combination. Polymyxin B monotherapy induced significant perturbations in the glycerophospholipid and fatty acid metabolism pathways against FADDI-PA111 and to a lesser extent in FADDI-PA006. In both strains, treatment with ivacaftor alone induced more pronounced perturbations in glycerophospholipid and fatty acid metabolism pathways than that with polymyxin B alone. This highlights the unique antimicrobial mode of action of ivacaftor. Pathway analysis revealed that in combination treatment, polymyxin B mediated killing is elevated by ivacaftor, largely due to the inhibition of cell envelope biogenesis via suppression of key membrane lipid metabolites (e.g., sn-glycerol 3-phosphate and sn-glycero-3-phosphoethanolamine) as well as perturbations in peptidoglycan and lipopolysaccharide biosynthesis. Furthermore, significant perturbations in the levels of amino sugars and nucleotide sugars, glycolysis, the tricarboxylic acid cycle, and pyrimidine ribonucleotide biogenesis were observed with the combination treatment. These findings provide novel mechanistic information on the synergistic antibacterial activity of polymyxin-ivacaftor combination.
Collapse
Affiliation(s)
- Rafah Allobawi
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Drishti P Ghelani
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elena K Schneider-Futschik
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
62
|
Huang J, Li C, Song J, Velkov T, Wang L, Zhu Y, Li J. Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB. Future Microbiol 2020; 15:445-459. [PMID: 32250173 DOI: 10.2217/fmb-2019-0322] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymyxins (polymyxin B and colistin) are last-line antibiotics against multidrug-resistant Gram-negative pathogens. Polymyxin resistance is increasing worldwide, with resistance most commonly regulated by two-component systems such as PmrAB and PhoPQ. This review discusses the regulatory mechanisms of PhoPQ and PmrAB in mediating polymyxin resistance, from receiving an external stimulus through to activation of genes responsible for lipid A modifications. By analyzing the reported nonsynonymous substitutions in each two-component system, we identified the domains that are critical for polymyxin resistance. Notably, for PmrB 71% of resistance-conferring nonsynonymous mutations occurred in the HAMP (present in histidine kinases, adenylate cyclases, methyl accepting proteins and phosphatase) linker and DHp (dimerization and histidine phosphotransfer) domains. These results enhance our understanding of the regulatory mechanisms underpinning polymyxin resistance and may assist with the development of new strategies to minimize resistance emergence.
Collapse
Affiliation(s)
- Jiayuan Huang
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Jiangning Song
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne 3010, Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Zhu
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| |
Collapse
|
63
|
Acquisition of Colistin Resistance Links Cell Membrane Thickness Alteration with a Point Mutation in the lpxD Gene in Acinetobacter baumannii. Antibiotics (Basel) 2020; 9:antibiotics9040164. [PMID: 32268563 PMCID: PMC7235794 DOI: 10.3390/antibiotics9040164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/04/2023] Open
Abstract
Acinetobacter baumannii is one of the most common causes of nosocomial infections in intensive care units. Its ability to acquire diverse mechanisms of resistance limits the therapeutic choices for its treatment. This especially concerns colistin, which has been reused recently as a last-resort drug against A. baumannii. Here, we explored the impact of gaining colistin resistance on the susceptibility of A. baumannii to other antibiotics and linked colistin resistance acquisition to a gene mutation in A. baumannii. The susceptibility of 95 A. baumannii isolates revealed that 89 isolates were multi-drug resistance (MDR), and nine isolates were resistant to colistin. Subsequently, three isolates, i.e., MS48, MS50, and MS64, exhibited different resistance patterns when colistin resistance was induced and gained resistance to almost all tested antibiotics. Upon TEM examination, morphological alterations were reported for all induced isolates and a colistin-resistant clinical isolate (MS34Col-R) compared to the parental sensitive strains. Finally, genetic alterations in PmrB and LpxACD were assessed, and a point mutation in LpxD was identified in the MS64Col-R and MS34Col-R mutants, corresponding to Lys117Glu substitution in the lipid-binding domain. Our findings shed light on the implications of using colistin in the treatment of A. baumannii, especially at sub-minimum inhibitory concentrations concentrations, since cross-resistance to other classes of antibiotics may emerge, beside the rapid acquisition of resistance against colistin itself due to distinct genetic events.
Collapse
|
64
|
The Efflux Pump MexXY/OprM Contributes to the Tolerance and Acquired Resistance of Pseudomonas aeruginosa to Colistin. Antimicrob Agents Chemother 2020; 64:AAC.02033-19. [PMID: 31964794 DOI: 10.1128/aac.02033-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
The intrinsic resistance of Pseudomonas aeruginosa to polymyxins in part relies on the addition of 4-amino-4-deoxy-l-arabinose (Ara4N) molecules to the lipid A of lipopolysaccharide (LPS), through induction of operon arnBCADTEF-ugd (arn) expression. As demonstrated previously, at least three two-component regulatory systems (PmrAB, ParRS, and CprRS) are able to upregulate this operon when bacteria are exposed to colistin. In the present study, gene deletion experiments with the bioluminescent strain PAO1::lux showed that ParRS is a key element in the tolerance of P. aeruginosa to this last-resort antibiotic (i.e., resistance to early drug killing). Other loci of the ParR regulon, such as those encoding the efflux proteins MexXY (mexXY), the polyamine biosynthetic pathway PA4773-PA4774-PA4775, and Ara4N LPS modification process (arnBCADTEF-ugd), also contribute to the bacterial tolerance in an intricate way with ParRS. Furthermore, we found that both stable upregulation of the arn operon and drug-induced ParRS-dependent overexpression of the mexXY genes accounted for the elevated resistance of pmrB mutants to colistin. Deletion of the mexXY genes in a constitutively activated ParR mutant of PAO1 was associated with significantly increased expression of the genes arnA, PA4773, and pmrA in the absence of colistin exposure, thereby highlighting a functional link between the MexXY/OprM pump, the PA4773-PA4774-PA4775 pathway, and Ara4N-based modification of LPS. The role played by MexXY/OprM in the adaptation of P. aeruginosa to polymyxins opens new perspectives for restoring the susceptibility of resistant mutants through the use of efflux inhibitors.
Collapse
|
65
|
Cogen JD, Kahl BC, Maples H, McColley SA, Roberts JA, Winthrop KL, Morris AM, Holmes A, Flume PA, VanDevanter DR, Waters V, Muhlebach MS, Elborn JS, Saiman L, Bell SC. Finding the relevance of antimicrobial stewardship for cystic fibrosis. J Cyst Fibros 2020; 19:511-520. [PMID: 32122785 DOI: 10.1016/j.jcf.2020.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/29/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Antimicrobials have undoubtedly improved the lives of people with CF, but important antimicrobial-related toxicities and the emergence of antimicrobial-resistant bacteria associated with their use must be considered. Antimicrobial stewardship (AMS) is advocated across the spectrum of healthcare to promote the appropriate use of antimicrobials to preserve their current effectiveness and to optimise treatment, and it is clear that AMS strategies are applicable to and can benefit both non-CF and CF populations. This perspective explores the definition and components of an AMS program, the current evidence for AMS, and the reasons why AMS is a challenging concept in the provision of CF care. We also discuss the elements of CF care which align with AMS programs and principles and propose research priorities for AMS in CF.
Collapse
Affiliation(s)
- Jonathan D Cogen
- Division of Pulmonary & Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Holly Maples
- Department of Pharmacy Practice, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - Susanna A McColley
- Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research and School of Pharmacy, The University of Queensland, Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia; Division of Anaesthesiology, Critical Care, Emergency and Pain Medicine, Nîmes University Hospital, University of Montpelier, Nîmes France
| | - Kevin L Winthrop
- Oregon Health and Science University School of Medicine and Public Health, Portland, Oregon, USA
| | - Andrew M Morris
- Division of Infectious Diseases, Department of Medicine, Sinai Health, University Health Network, and University of Toronto, Toronto, Canada
| | - Alison Holmes
- National Institute for Health Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London, UK
| | | | - Donald R VanDevanter
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland OH, USA
| | - Valerie Waters
- Division of Infectious Diseases, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Marianne S Muhlebach
- Department of Pediatrics, Division Pulmonology, University of North Carolina at Chapel Hill, NC, USA
| | - J Stuart Elborn
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Lisa Saiman
- Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, NY, USA
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, and QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | |
Collapse
|
66
|
Abd Alamer IS, Tomah AA, Li B, Zhang JZ. Isolation, Identification and Characterization of Rhizobacteria Strains for Biological Control of Bacterial Wilt (Ralstonia solanacearum) of Eggplant in China. AGRICULTURE 2020; 10:37. [DOI: 10.3390/agriculture10020037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Bacterial wilt of eggplant is the most destructive disease caused by Ralstonia solanacearum throughout the world. Eleven bacterial strains with high antagonistic activity were obtained from 245 rhizobacteria. Based on analysis of morphology, 16S rRNA sequences, fatty acid profiles, gyrA and rpoB genes, they were identified as Pseudomonas putida (IMA3), Paenibacillus polymyxa (IMA5), Bacillus cereus (IMA4, IMA7 and IMA11) and the “operational group Bacillus amyloliquefaciens” (IMA1, IMA2, IMA6, IMA8, IMA9 and IMA10). The lipopeptide compounds produced by each strain also were determined. The biocontrol tests demonstrated that co-inoculation by strain IMA5 and the pathogen gave the greatest biocontrol efficiency of 87.0% and 69.2% 30 and 40 days after co-inoculation, respectively. Plant growth promotion tests revealed that IMA5 markedly promoted eggplant growth, enhancing aboveground seedling length and biomass by 60.8% and by 107.6% and underground root length and biomass by 33.0% and 69.2%, respectively. Hence, strain IMA5 could be considered for developing potential biocontrol agents and for promoting plant growth characteristics, to aid the management of the pathogen R. solanacearum in eggplants.
Collapse
|
67
|
Hong J, Jiang H, Hu J, Wang L, Liu R. Transcriptome Analysis Reveals the Resistance Mechanism of Pseudomonas aeruginosa to Tachyplesin I. Infect Drug Resist 2020; 13:155-169. [PMID: 32021330 PMCID: PMC6970625 DOI: 10.2147/idr.s226687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background Tachyplesin I is a cationic antimicrobial peptide with a typical cyclic antiparallel β-sheet structure. We previously demonstrated that long-term continuous exposure to increased concentration of tachyplesin I can induce resistant Gram-negative bacteria. However, no significant information is available about the resistance mechanism of Pseudomonas aeruginosa (P. aeruginosa) to tachyplesin I. Materials and Methods In this study, the global gene expression profiling of P. aeruginosa strain PA-99 and P. aeruginosa CGMCC1.2620 (PA1.2620) was conducted using transcriptome sequencing. For this purpose, outer membrane permeability and outer membrane proteins (OMPs) were further analyzed. Results Transcriptome sequencing detected 672 upregulated and 787 downregulated genes, covering Clusters of Orthologous Groups (COGs) of P. aeruginosa strain PA-99 compared with PA1.2620. Totally, 749 differentially expressed genes (DEGs) were assigned to 98 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and among them, a two-component regulatory system, a beta-lactam resistance system, etc. were involved in some known genes resistant to drugs. Additionally, we further attempted to indicate whether the resistance mechanism of P. aeruginosa to tachyplesin I was associated with the changes of outer membrane permeability and OMPs. Conclusion Our results indicated that P. aeruginosa resistant to tachyplesin I was mainly related to reduced entry of tachyplesin I into the bacterial cell due to overexpression of efflux pump, in addition to a decrease of outer membrane permeability. Our findings were also validated by pathway enrichment analysis and quantitative reverse transcription polymerase chain reaction (RT-qPCR). This study may provide a promising guidance for understanding the resistance mechanism of P. aeruginosa to tachyplesin I.
Collapse
Affiliation(s)
- Jun Hong
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan 467036, People's Republic of China.,Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan 467036, People's Republic of China
| | - Honghao Jiang
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan 467036, People's Republic of China
| | - Jianye Hu
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan 467036, People's Republic of China
| | - Lianzhe Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan 467036, People's Republic of China
| | - Ruifang Liu
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan 467036, People's Republic of China
| |
Collapse
|
68
|
Draft Genome Sequence of a Pseudomonas aeruginosa Sequence Type 3351 Strain Exhibiting High-Level Resistance to Polymyxins in a Pediatric Patient with Cystic Fibrosis in Mexico. Microbiol Resour Announc 2020; 9:9/2/e01261-19. [PMID: 31919170 PMCID: PMC6952656 DOI: 10.1128/mra.01261-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present the draft genome sequence of a Pseudomonas aeruginosa isolate (strain CF16053) belonging to a novel sequence type (ST), ST3351, isolated from a pediatric patient with cystic fibrosis (CF). CF16053 shows high-level resistance to polymyxins associated with mutations in the pmrB gene. Biofilm, pyoverdine, exotoxin A, and type III secretion system (T3SS) genes were identified. Here, we present the draft genome sequence of a Pseudomonas aeruginosa isolate (strain CF16053) belonging to a novel sequence type (ST), ST3351, isolated from a pediatric patient with cystic fibrosis (CF). CF16053 shows high-level resistance to polymyxins associated with mutations in the pmrB gene. Biofilm, pyoverdine, exotoxin A, and type III secretion system (T3SS) genes were identified.
Collapse
|
69
|
Hernando-Amado S, Sanz-García F, Martínez JL. Antibiotic Resistance Evolution Is Contingent on the Quorum-Sensing Response in Pseudomonas aeruginosa. Mol Biol Evol 2020; 36:2238-2251. [PMID: 31228244 DOI: 10.1093/molbev/msz144] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Different works have explored independently the evolution toward antibiotic resistance and the role of eco-adaptive mutations in the adaptation to a new habitat (as the infected host) of bacterial pathogens. However, knowledge about the connection between both processes is still limited. We address this issue by comparing the evolutionary trajectories toward antibiotic resistance of a Pseudomonas aeruginosa lasR defective mutant and its parental wild-type strain, when growing in presence of two ribosome-targeting antibiotics. Quorum-sensing lasR defective mutants are selected in P. aeruginosa populations causing chronic infections. Further, we observed they are also selected in vitro as a first adaptation for growing in culture medium. By using experimental evolution and whole-genome sequencing, we found that the evolutionary trajectories of P. aeruginosa in presence of these antibiotics are different in lasR defective and in wild-type backgrounds, both at the phenotypic and the genotypic levels. Recreation of a set of mutants in both genomic backgrounds (either wild type or lasR defective) allowed us to determine the existence of negative epistatic interactions between lasR and antibiotic resistance determinants. These epistatic interactions could lead to mutual contingency in the evolution of antibiotic resistance when P. aeruginosa colonizes a new habitat in presence of antibiotics. If lasR mutants are selected first, this would constraint antibiotic resistance evolution. Conversely, when resistance mutations (at least those studied in the present work) are selected, lasR mutants may not be selected in presence of antibiotics. These results underlie the importance of contingency and epistatic interactions in modulating antibiotic resistance evolution.
Collapse
|
70
|
Survey on Some Carbapenems and Colistin Resistance Genes Among Pseudomonas aeruginosa Isolates from Burn and Cystic Fibrosis Patients, Tehran, Iran. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.93651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
71
|
Resistance and Heteroresistance to Colistin in Pseudomonas aeruginosa Isolates from Wenzhou, China. Antimicrob Agents Chemother 2019; 63:AAC.00556-19. [PMID: 31383654 DOI: 10.1128/aac.00556-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/28/2019] [Indexed: 01/26/2023] Open
Abstract
The goal was to investigate the mechanisms of colistin resistance and heteroresistance in Pseudomonas aeruginosa clinical isolates. Colistin resistance was determined by the broth microdilution method. Colistin heteroresistance was evaluated by population analysis profiling. Time-kill assays were also conducted. PCR sequencing was performed to detect the resistance genes among (hetero)resistant isolates, and quantitative real-time PCR assays were performed to determine their expression levels. Pulsed-field gel electrophoresis and multilocus sequence typing were performed. Lipid A characteristics were determined via matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS). Two resistant isolates and 9 heteroresistant isolates were selected in this study. Substitutions in PmrB were detected in 2 resistant isolates. Among heteroresistant isolates, 8 of 9 heteroresistant isolates had nonsynonymous PmrB substitutions, and 2 isolates, including 1 with a PmrB substitution, had PhoQ alterations. Correspondingly, the expression levels of pmrA or phoP were upregulated in PmrB- or PhoQ-substituted isolates. One isolate also found alterations in ParRS and CprRS. The transcript levels of the pmrH gene were observed to increase across all investigated isolates. MALDI-TOF MS showed additional 4-amino-4-deoxy-l-arabinose (l-Ara4N) moieties in lipid A profiles in (hetero)resistant isolates. In conclusion, both colistin resistance and heteroresistance in P. aeruginosa in this study mainly involved alterations of the PmrAB regulatory system. There were strong associations between mutations in specific genetic loci for lipid A synthesis and regulation of modifications to lipid A. The transition of colistin heteroresistance to resistance should be addressed in future clinical surveillance.
Collapse
|
72
|
Production of Norspermidine Contributes to Aminoglycoside Resistance in pmrAB Mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01044-19. [PMID: 31383668 DOI: 10.1128/aac.01044-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
Emergence of resistance to polymyxins in Pseudomonas aeruginosa is mainly due to mutations in two-component systems that promote the addition of 4-amino-4-deoxy-l-arabinose to the lipopolysaccharide (LPS) through upregulation of operon arnBCADTEF-ugd (arn) expression. Here, we demonstrate that mutations occurring in different domains of histidine kinase PmrB or in response regulator PmrA result in coresistance to aminoglycosides and colistin. All seventeen clinical strains tested exhibiting such a cross-resistance phenotype were found to be pmrAB mutants. As shown by gene deletion experiments, the decreased susceptibility of the mutants to aminoglycosides was independent from operon arn but required the efflux system MexXY-OprM and the products of three genes, PA4773-PA4774-PA4775, that are cotranscribed and activated with genes pmrAB Gene PA4773 (annotated as speD2 in the PAO1 genome) and PA4774 (speE2) are predicted to encode enzymes involved in biosynthesis of polyamines. Comparative analysis of cell surface extracts of an in vitro selected pmrAB mutant, called AB16.2, and derivatives lacking PA4773, PA4774, and PA4775 revealed that these genes were needed for norspermidine production via a pathway that likely uses 1,3-diaminopropane, a precursor of polyamines. Altogether, our results suggest that norspermidine decreases the self-promoted uptake pathway of aminoglycosides across the outer membrane and, thereby, potentiates the activity of efflux pump MexXY-OprM.
Collapse
|
73
|
Fong K, Tremblay DM, Delaquis P, Goodridge L, Levesque RC, Moineau S, Suttle CA, Wang S. Diversity and Host Specificity Revealed by Biological Characterization and Whole Genome Sequencing of Bacteriophages Infecting Salmonella enterica. Viruses 2019; 11:v11090854. [PMID: 31540091 PMCID: PMC6783827 DOI: 10.3390/v11090854] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Phages infecting members of the opportunistic human pathogen, Salmonella enterica, are widespread in natural environments and offer a potential source of agents that could be used for controlling populations of this bacterium; yet, relatively little is known about these phages. Here we describe the isolation and characterization of 45 phages of Salmonella enterica from disparate geographic locations within British Columbia, Canada. Host-range profiling revealed host-specific patterns of susceptibility and resistance, with several phages identified that have a broad-host range (i.e., able to lyse >40% of bacterial hosts tested). One phage in particular, SE13, is able to lyse 51 out of the 61 Salmonella strains tested. Comparative genomic analyses also revealed an abundance of sequence diversity in the sequenced phages. Alignment of the genomes grouped the phages into 12 clusters with three singletons. Phages within certain clusters exhibited extraordinarily high genome homology (>98% nucleotide identity), yet between clusters, genomes exhibited a span of diversity (<50% nucleotide identity). Alignment of the major capsid protein also supported the clustering pattern observed with alignment of the whole genomes. We further observed associations between genomic relatedness and the site of isolation, as well as genetic elements related to DNA metabolism and host virulence. Our data support the knowledge framework for phage diversity and phage-host interactions that are required for developing phage-based applications for various sectors, including biocontrol, detection and typing.
Collapse
Affiliation(s)
- Karen Fong
- Food, Nutrition and Health, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Denise M Tremblay
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Pascal Delaquis
- Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Lawrence Goodridge
- Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Sylvain Moineau
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Curtis A Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology, and Botany, and the Institute for Oceans and Fisheries, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Siyun Wang
- Food, Nutrition and Health, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
74
|
Clark ST, Guttman DS, Hwang DM. Diversification of Pseudomonas aeruginosa within the cystic fibrosis lung and its effects on antibiotic resistance. FEMS Microbiol Lett 2019; 365:4834010. [PMID: 29401362 DOI: 10.1093/femsle/fny026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
The evolution and diversification of bacterial pathogens within human hosts represent potential barriers to the diagnosis and treatment of life-threatening infections. Tremendous genetic and phenotypic diversity is characteristic of host adaptation in strains of Pseudomonas aeruginosa that infect the airways of individuals with chronic lung diseases and prove to be extremely difficult to eradicate. In this MiniReview, we examine recent advances in understanding within-host diversity and antimicrobial resistance in P. aeruginosa populations from the lower airways of individuals with the fatal genetic disease cystic fibrosis and the potential impacts that this diversity may have on detecting and interpreting antimicrobial susceptibility within these populations.
Collapse
Affiliation(s)
- Shawn T Clark
- Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT - MaRS Centre, Toronto, Ontario M5G 1L7, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.,Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - David M Hwang
- Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT - MaRS Centre, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
75
|
Mutations in pmrB Confer Cross-Resistance between the LptD Inhibitor POL7080 and Colistin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.00511-19. [PMID: 31235628 PMCID: PMC6709506 DOI: 10.1128/aac.00511-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/18/2019] [Indexed: 01/23/2023] Open
Abstract
Pseudomonas aeruginosa is a major bacterial pathogen associated with a rising prevalence of antibiotic resistance. We evaluated the resistance mechanisms of P. aeruginosa against POL7080, a species-specific, first-in-class antibiotic in clinical trials that targets the lipopolysaccharide transport protein LptD. We isolated a series of POL7080-resistant strains with mutations in the two-component sensor gene pmrB. Pseudomonas aeruginosa is a major bacterial pathogen associated with a rising prevalence of antibiotic resistance. We evaluated the resistance mechanisms of P. aeruginosa against POL7080, a species-specific, first-in-class antibiotic in clinical trials that targets the lipopolysaccharide transport protein LptD. We isolated a series of POL7080-resistant strains with mutations in the two-component sensor gene pmrB. Transcriptomic and confocal microscopy studies support a resistance mechanism shared with colistin, involving lipopolysaccharide modifications that mitigate antibiotic cell surface binding.
Collapse
|
76
|
Futoma-Kołoch B, Bugla-Płoskońska G, Dudek B, Dorotkiewicz-Jach A, Drulis-Kawa Z, Gamian A. Outer Membrane Proteins of Salmonella as Potential Markers of Resistance to Serum, Antibiotics and Biocides. Curr Med Chem 2019; 26:1960-1978. [PMID: 30378478 DOI: 10.2174/0929867325666181031130851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/13/2018] [Accepted: 08/14/2018] [Indexed: 01/05/2023]
Abstract
Salmonellosis continues to be a significant worldwide health problem. Despite rapid progress in identifying mechanisms of Salmonella virulence and resistance to chemicals, our knowledge of these mechanisms remains limited. Furthermore, it appears that the resistance to antibiotics can be amplified by ubiquitous usage of the disinfectants (biocides), both by industry and by ordinary households. Salmonella, as other Gram-negative bacteria possess outer membrane proteins (OMPs), which participate in maintaining cell integrity, adapting to environment, and interacting with infected host. Moreover, the OMPs may also contribute to resistance to antibacterials. This review summarizes the role of OMPs in Salmonella serum resistance, antibiotics resistance and cross-resistance to biocides. Although collected data do not allow to assign OMPs as markers of the Salmonella susceptibility to the above-mentioned factors, some of these proteins retain a dominant presence in certain types of resistance.
Collapse
Affiliation(s)
- Bożena Futoma-Kołoch
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Agata Dorotkiewicz-Jach
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
77
|
The Essential Role of Hypermutation in Rapid Adaptation to Antibiotic Stress. Antimicrob Agents Chemother 2019; 63:AAC.00744-19. [PMID: 31036684 DOI: 10.1128/aac.00744-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022] Open
Abstract
A common outcome of antibiotic exposure in patients and in vitro is the evolution of a hypermutator phenotype that enables rapid adaptation by pathogens. While hypermutation is a robust mechanism for rapid adaptation, it requires trade-offs between the adaptive mutations and the more common "hitchhiker" mutations that accumulate from the increased mutation rate. Using quantitative experimental evolution, we examined the role of hypermutation in driving the adaptation of Pseudomonas aeruginosa to colistin. Metagenomic deep sequencing revealed 2,657 mutations at ≥5% frequency in 1,197 genes and 761 mutations in 29 endpoint isolates. By combining genomic information, phylogenetic analyses, and statistical tests, we showed that evolutionary trajectories leading to resistance could be reliably discerned. In addition to known alleles such as pmrB, hypermutation allowed identification of additional adaptive alleles with epistatic relationships. Although hypermutation provided a short-term fitness benefit, it was detrimental to overall fitness. Alarmingly, a small fraction of the colistin-adapted population remained colistin susceptible and escaped hypermutation. In a clinical population, such cells could play a role in reestablishing infection upon withdrawal of colistin. We present here a framework for evaluating the complex evolutionary trajectories of hypermutators that applies to both current and emerging pathogen populations.
Collapse
|
78
|
Tierney AR, Rather PN. Roles of two-component regulatory systems in antibiotic resistance. Future Microbiol 2019; 14:533-552. [PMID: 31066586 DOI: 10.2217/fmb-2019-0002] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Two-component regulatory systems (TCSs) are a major mechanism by which bacteria sense and respond to changes in their environment. TCSs typically consist of two proteins that bring about major regulation of the cell genome through coordinated action mediated by phosphorylation. Environmental conditions that activate TCSs are numerous and diverse and include exposure to antibiotics as well as conditions inside a host. The resulting regulatory action often involves activation of antibiotic defenses and changes to cell physiology that increase antibiotic resistance. Examples of resistance mechanisms enacted by TCSs contained in this review span those found in both Gram-negative and Gram-positive species and include cell surface modifications, changes in cell permeability, increased biofilm formation, and upregulation of antibiotic-degrading enzymes.
Collapse
Affiliation(s)
- Aimee Rp Tierney
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Philip N Rather
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA.,Research Service, Department of Veterans' Affairs, Atlanta VA Health Care System, Decatur, GA, 30033 USA
| |
Collapse
|
79
|
Molchanova N, Wang H, Hansen PR, Høiby N, Nielsen HM, Franzyk H. Antimicrobial Activity of α-Peptide/β-Peptoid Lysine-Based Peptidomimetics Against Colistin-Resistant Pseudomonas aeruginosa Isolated From Cystic Fibrosis Patients. Front Microbiol 2019; 10:275. [PMID: 30842761 PMCID: PMC6391360 DOI: 10.3389/fmicb.2019.00275] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/01/2019] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa infection is a predominant cause of morbidity and mortality in patients with cystic fibrosis infection and with a compromised immune system. Emergence of bacterial resistance renders existing antibiotics inefficient, and therefore discovery of new antimicrobial agents is highly warranted. In recent years, numerous studies have demonstrated that antimicrobial peptides (AMPs) constitute potent agents against a range of pathogenic bacteria. However, AMPs possess a number of drawbacks such as susceptibility to proteolytic degradation with ensuing low bioavailability. To circumvent these undesired properties of AMPs unnatural amino acids or altered backbones have been incorporated to provide stable peptidomimetics with retained antibacterial activity. Here, we report on antimicrobial α-peptide/β-peptoid lysine-based peptidomimetics that exhibit high potency against clinical drug-resistant P. aeruginosa strains obtained from cystic fibrosis patients. These clinical strains possess phoQ and/or pmrB mutations that confer high resistance to colistin, the last-resort antibiotic for treatment of infections caused by P. aeruginosa. The lead peptidomimetic LBP-2 demonstrated a 12-fold improved anti-pseudomonal activity as compared to colistin sulfate as well as favorable killing kinetics, similar antibiofilm activity, and moderate cytotoxicity.
Collapse
Affiliation(s)
- Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hengzhuang Wang
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne M Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
80
|
Bianconi I, D'Arcangelo S, Esposito A, Benedet M, Piffer E, Dinnella G, Gualdi P, Schinella M, Baldo E, Donati C, Jousson O. Persistence and Microevolution of Pseudomonas aeruginosa in the Cystic Fibrosis Lung: A Single-Patient Longitudinal Genomic Study. Front Microbiol 2019; 9:3242. [PMID: 30692969 PMCID: PMC6340092 DOI: 10.3389/fmicb.2018.03242] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Background: During its persistence in cystic fibrosis (CF) airways, P. aeruginosa develops a series of phenotypic changes by the accumulation of pathoadaptive mutations. A better understanding of the role of these mutations in the adaptive process, with particular reference to the development of multidrug resistance (MDR), is essential for future development of novel therapeutic approaches, including the identification of new drug targets and the implementation of more efficient antibiotic therapy. Although several whole-genome sequencing studies on P. aeruginosa CF lineages have been published, the evolutionary trajectories in relation to the development of antimicrobial resistance remain mostly unexplored to date. In this study, we monitored the adaptive changes of P. aeruginosa during its microevolution in the CF airways to provide an innovative, genome-wide picture of mutations and persistent phenotypes and to point out potential novel mechanisms allowing survival in CF patients under antibiotic therapy. Results: We obtained whole genome sequences of 40 P. aeruginosa clinical CF strains isolated at Trentino Regional Support CF Centre (Rovereto, Italy) from a single CF patient over an 8-year period (2007-2014). Genotypic analysis of the P. aeruginosa isolates revealed a clonal population dominated by the Sequence Type 390 and three closely related variants, indicating that all members of the population likely belong to the same clonal lineage and evolved from a common ancestor. While the majority of early isolates were susceptible to most antibiotics tested, over time resistant phenotypes increased in the persistent population. Genomic analyses of the population indicated a correlation between the evolution of antibiotic resistance profiles and phylogenetic relationships, and a number of putative pathoadaptive variations were identified. Conclusion: This study provides valuable insights into the within-host adaptation and microevolution of P. aeruginosa in the CF lung and revealed the emergence of an MDR phenotype over time, which could not be comprehensively explained by the variations found in known resistance genes. Further investigations on uncharacterized variations disclosed in this study should help to increase our understanding of the development of MDR phenotype and the poor outcome of antibiotic therapies in many CF patients.
Collapse
Affiliation(s)
- Irene Bianconi
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | | | - Alfonso Esposito
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Mattia Benedet
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Elena Piffer
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Grazia Dinnella
- Trentino Cystic Fibrosis Support Centre, Rovereto Hospital, Rovereto, Italy
| | - Paola Gualdi
- Operative Unit of Clinical Pathology, Rovereto Hospital, Rovereto, Italy
| | - Michele Schinella
- Operative Unit of Clinical Pathology, Rovereto Hospital, Rovereto, Italy
| | - Ermanno Baldo
- Trentino Cystic Fibrosis Support Centre, Rovereto Hospital, Rovereto, Italy
| | - Claudio Donati
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
81
|
Moffatt JH, Harper M, Boyce JD. Mechanisms of Polymyxin Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:55-71. [PMID: 31364071 DOI: 10.1007/978-3-030-16373-0_5] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymyxin antibiotics are increasingly being used as last-line therapeutic options against a number of multidrug resistant bacteria. These antibiotics show strong bactericidal activity against a range of Gram-negative bacteria, but with the increased use of these antibiotics resistant strains are emerging at an alarming rate. Furthermore, some Gram-negative species, such as Neisseria meningitidis, Proteus mirabilis and Burkholderia spp., are intrinsically resistant to the action of polymyxins. Most identified polymyxin resistance mechanisms in Gram-negative bacteria involve changes to the lipopolysaccharide (LPS) structure, as polymyxins initially interact with the negatively charged lipid A component of LPS. The controlled addition of positively charged residues such as 4-amino-L-arabinose, phosphoethanolamine and/or galactosamine to LPS results in a reduced negative charge on the bacterial surface and therefore reduced interaction between the polymyxin and the LPS. Polymyxin resistant species produce LPS that intrinsically contains one or more of these additions. While the genes necessary for most of these additions are chromosomally encoded, plasmid-borne phosphoethanolamine transferases (mcr-1 to mcr-8) have recently been identified and these plasmids threaten to increase the rate of dissemination of clinically relevant colistin resistance. Uniquely, Acinetobacter baumannii can also become highly resistant to polymyxins via spontaneous mutations in the lipid A biosynthesis genes lpxA, lpxC or lpxD such that they produce no LPS or lipid A. A range of other non-LPS-dependent polymyxin resistance mechanisms has also been identified in bacteria, but these generally result in only low levels of resistance. These include increased anionic capsular polysaccharide production in Klebsiella pneumoniae, expression of efflux systems such as MtrCDE in N. meningitidis, and altered expression of outer membrane proteins in a small number of species.
Collapse
Affiliation(s)
- Jennifer H Moffatt
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia
| | - Marina Harper
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia
| | - John D Boyce
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia. .,Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia.
| |
Collapse
|
82
|
Sanz-García F, Hernando-Amado S, Martínez JL. Mutational Evolution of Pseudomonas aeruginosa Resistance to Ribosome-Targeting Antibiotics. Front Genet 2018; 9:451. [PMID: 30405685 PMCID: PMC6200844 DOI: 10.3389/fgene.2018.00451] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023] Open
Abstract
The present work examines the evolutionary trajectories of replicate Pseudomonas aeruginosa cultures in presence of the ribosome-targeting antibiotics tobramycin and tigecycline. It is known that large number of mutations across different genes - and therefore a large number of potential pathways - may be involved in resistance to any single antibiotic. Thus, evolution toward resistance might, to a large degree, rely on stochasticity, which might preclude the use of predictive strategies for fighting antibiotic resistance. However, the present results show that P. aeruginosa populations evolving in parallel in the presence of antibiotics (either tobramycin or tigecycline) follow a set of trajectories that present common elements. In addition, the pattern of resistance mutations involved include common elements for these two ribosome-targeting antimicrobials. This indicates that mutational evolution toward resistance (and perhaps other properties) is to a certain degree deterministic and, consequently, predictable. These findings are of interest, not just for P. aeruginosa, but in understanding the general rules involved in the evolution of antibiotic resistance also. In addition, the results indicate that bacteria can evolve toward higher levels of resistance to antibiotics against which they are considered to be intrinsically resistant, as tigecycline in the case of P. aeruginosa and that this may confer cross-resistance to other antibiotics of therapeutic value. Our results are particularly relevant in the case of patients under empiric treatment with tigecycline, which frequently suffer P. aeruginosa superinfections.
Collapse
Affiliation(s)
| | - Sara Hernando-Amado
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José L. Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
83
|
Widely Used Benzalkonium Chloride Disinfectants Can Promote Antibiotic Resistance. Appl Environ Microbiol 2018; 84:AEM.01201-18. [PMID: 29959242 DOI: 10.1128/aem.01201-18] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/23/2018] [Indexed: 01/15/2023] Open
Abstract
While the misuse of antibiotics has clearly contributed to the emergence and proliferation of resistant bacterial pathogens, with major health consequences, it remains less clear if the widespread use of disinfectants, such as benzalkonium chlorides (BAC), a different class of biocides than antibiotics, has contributed to this problem. Here, we provide evidence that exposure to BAC coselects for antibiotic-resistant bacteria and describe the underlying genetic mechanisms. After inoculation with river sediment, BAC-fed bioreactors selected for several bacterial taxa, including the opportunistic pathogen Pseudomonas aeruginosa, that were more resistant to several antibiotics than their counterparts in a control (no BAC) bioreactor. A metagenomic analysis of the bioreactor microbial communities, confirmed by gene cloning experiments with the derived isolates, suggested that integrative and conjugative elements encoding a BAC efflux pump together with antibiotic resistance genes were responsible for these results. Furthermore, the exposure of the P. aeruginosa isolates to increasing concentrations of BAC selected for mutations in pmrB (polymyxin resistance) and physiological adaptations that contributed to a higher tolerance to polymyxin B and other antibiotics. The physiological adaptations included the overexpression of mexCD-oprJ multidrug efflux pump genes when BAC was added in the growth medium at subinhibitory concentrations. Collectively, our results demonstrated that disinfectants promote antibiotic resistance via several mechanisms and highlight the need to remediate (degrade) disinfectants in nontarget environments to further restrain the spread of antibiotic-resistant bacteria.IMPORTANCE Benzalkonium chlorides (BAC) are biocides broadly used in disinfectant solutions. Disinfectants are widely used in food processing lines, domestic households, and pharmaceutical products and are typically designed to have a different mode of action than antibiotics to avoid interfering with the use of the latter. Whether exposure to BAC makes bacteria more resistant to antibiotics remains an unresolved issue of obvious practical consequences for public health. Using an integrated approach that combines metagenomics of natural microbial communities with gene cloning experiments with isolates and experimental evolution assays, we show that the widely used benzalkonium chloride disinfectants promote clinically relevant antibiotic resistance. Therefore, more attention should be given to the usage of these disinfectants, and their fate in nontarget environments should be monitored more tightly.
Collapse
|
84
|
Kłodzińska SN, Molchanova N, Franzyk H, Hansen PR, Damborg P, Nielsen HM. Biopolymer nanogels improve antibacterial activity and safety profile of a novel lysine-based α-peptide/β-peptoid peptidomimetic. Eur J Pharm Biopharm 2018; 128:1-9. [DOI: 10.1016/j.ejpb.2018.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/25/2022]
|
85
|
Abstract
ABSTRACT
The nonfermenting bacteria belonging to
Acinetobacter
spp. and
Pseudomonas
spp. are capable of colonizing both humans and animals and can also be opportunistic pathogens. More specifically, the species
Acinetobacter baumannii
and
Pseudomonas aeruginosa
have been recurrently reported as multidrug-resistant and even pandrug-resistant in clinical isolates. Both species were categorized among the ESKAPE pathogens, ESKAPE standing for
Enterococcus faecium
,
Staphylococcus aureus
,
Klebsiella pneumoniae
,
A. baumannii
,
P. aeruginosa
, and
Enterobacter
species. These six pathogens are the major cause of nosocomial infections in the United States and are a threat all over the world because of their capacity to become increasingly resistant to all available antibiotics.
A. baumannii
and
P. aeruginosa
are both intrinsically resistant to many antibiotics due to complementary mechanisms, the main ones being the low permeability of their outer membrane, the production of the AmpC beta-lactamase, and the production of several efflux systems belonging to the resistance-nodulation-cell division family. In addition, they are both capable of acquiring multiple resistance determinants, such as beta-lactamases or carbapenemases. Even if such enzymes have rarely been identified in bacteria of animal origin, they may sooner or later spread to this reservoir. The goal of this article is to give an overview of the resistance phenotypes described in these pathogens and to provide a comprehensive analysis of all data that have been reported on
Acinetobacter
spp. and
Pseudomonas
spp. from animal hosts.
Collapse
|
86
|
Genomic and Transcriptomic Insights into How Bacteria Withstand High Concentrations of Benzalkonium Chloride Biocides. Appl Environ Microbiol 2018; 84:AEM.00197-18. [PMID: 29654181 DOI: 10.1128/aem.00197-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022] Open
Abstract
Benzalkonium chlorides (BAC) are commonly used biocides in broad-spectrum disinfectant solutions. How microorganisms cope with BAC exposure remains poorly understood, despite its importance for disinfection and disinfectant-induced antibiotic resistance. To provide insights into these issues, we exposed two isolates of an opportunistic pathogen, Pseudomonas aeruginosa, to increasing concentrations of BAC. One isolate was preadapted to BAC, as it originated from a bioreactor fed with subinhibitory concentrations of BAC for 3 years, while the other originated from a bioreactor that received no BAC. Replicated populations of both isolates were able to survive high concentrations of BAC, up to 1,200 and 1,600 mg/liter for the non- and preadapted strains, respectively, exceeding typical application doses. Transcriptome sequencing (RNA-seq) analysis revealed upregulation of efflux pump genes and decreased expression of porins related to BAC transport as well as reduced growth rate. Increased expression of spermidine (a polycation) synthase genes and mutations in the pmrB (polymyxin resistance) gene, which cause a reduction in membrane negative charge, suggested that a major adaptation to exposure to the cationic surfactant BAC was to actively stabilize cell surface charge. Collectively, these results revealed that P. aeruginosa adapts to BAC exposure by a combination of mechanisms and provided genetic markers to monitor BAC-resistant organisms that may have applications in the practice of disinfection.IMPORTANCE BAC are widely used as biocides in disinfectant solutions, food-processing lines, domestic households, and health care facilities. Due to their wide use and mode of action, there has been rising concern that BAC may promote antibiotic resistance. Consistent with this idea, at least 40 outbreaks have been attributed to infection by disinfectant- and antibiotic-resistant pathogens such as P. aeruginosa However, the underlying molecular mechanisms that bacteria use to deal with BAC exposure remain poorly elucidated. Elucidating these mechanisms may be important for monitoring and limiting the spread of disinfectant-resistant pathogens. Using an integrated approach that combined genomics and transcriptomics with physiological characterization of BAC-adapted isolates, this study provided a comprehensive understanding of the BAC resistance mechanisms in P. aeruginosa Our findings also revealed potential genetic markers to detect and monitor the abundance of BAC-resistant pathogens across clinical or environmental settings. This work contributes new knowledge about high concentrations of benzalkonium chlorides disinfectants-resistance mechanisms at the whole-cell genomic and transcriptomic level.
Collapse
|
87
|
Alterations of Metabolic and Lipid Profiles in Polymyxin-Resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.02656-17. [PMID: 29632014 DOI: 10.1128/aac.02656-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa presents a global medical challenge, and polymyxins are a key last-resort therapeutic option. Unfortunately, polymyxin resistance in P. aeruginosa has been increasingly reported. The present study was designed to define metabolic differences between paired polymyxin-susceptible and -resistant P. aeruginosa strains using untargeted metabolomics and lipidomics analyses. The metabolomes of wild-type P. aeruginosa strain K ([PAK] polymyxin B MIC, 1 mg/liter) and its paired pmrB mutant strains, PAKpmrB6 and PAKpmrB12 (polymyxin B MICs of 16 mg/liter and 64 mg/liter, respectively) were characterized using liquid chromatography-mass spectrometry, and metabolic differences were identified through multivariate and univariate statistics. PAKpmrB6 and PAKpmrB12, which displayed lipid A modifications with 4-amino-4-deoxy-l-arabinose, showed significant perturbations in amino acid and carbohydrate metabolism, particularly the intermediate metabolites from 4-amino-4-deoxy-l-arabinose synthesis and the methionine salvage cycle pathways. The genomics result showed a premature termination (Y275stop) in speE (encoding spermidine synthase) in PAKpmrB6, and metabolomics data revealed a decreased intracellular level of spermidine in PAKpmrB6 compared to that in PAKpmrB12 Our results indicate that spermidine may play an important role in high-level polymyxin resistance in P. aeruginosa Interestingly, both pmrB mutants had decreased levels of phospholipids, fatty acids, and acyl-coenzyme A compared to those in the wild-type PAK. Moreover, the more resistant PAKpmrB12 mutant exhibited much lower levels of phospholipids than the PAKpmrB6 mutant, suggesting that the decreased phospholipid level was associated with polymyxin resistance. In summary, this study provides novel mechanistic information on polymyxin resistance in P. aeruginosa and highlights its impacts on bacterial metabolism.
Collapse
|
88
|
López-Causapé C, Cabot G, Del Barrio-Tofiño E, Oliver A. The Versatile Mutational Resistome of Pseudomonas aeruginosa. Front Microbiol 2018; 9:685. [PMID: 29681898 PMCID: PMC5897538 DOI: 10.3389/fmicb.2018.00685] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022] Open
Abstract
One of the most striking features of Pseudomonas aeruginosa is its outstanding capacity for developing antimicrobial resistance to nearly all available antipseudomonal agents through the selection of chromosomal mutations, leading to the failure of the treatment of severe hospital-acquired or chronic infections. Recent whole-genome sequencing (WGS) data obtained from in vitro assays on the evolution of antibiotic resistance, in vivo monitoring of antimicrobial resistance development, analysis of sequential cystic fibrosis isolates, and characterization of widespread epidemic high-risk clones have provided new insights into the evolutionary dynamics and mechanisms of P. aeruginosa antibiotic resistance, thus motivating this review. Indeed, the analysis of the WGS mutational resistome has proven to be useful for understanding the evolutionary dynamics of classical resistance pathways and to describe new mechanisms for the majority of antipseudomonal classes, including β-lactams, aminoglycosides, fluoroquinolones, or polymixins. Beyond addressing a relevant scientific question, the analysis of the P. aeruginosa mutational resistome is expected to be useful, together with the analysis of the horizontally-acquired resistance determinants, for establishing the antibiotic resistance genotype, which should correlate with the antibiotic resistance phenotype and as such, it should be useful for the design of therapeutic strategies and for monitoring the efficacy of administered antibiotic treatments. However, further experimental research and new bioinformatics tools are still needed to overcome the interpretation limitations imposed by the complex interactions (including those leading to collateral resistance or susceptibility) between the 100s of genes involved in the mutational resistome, as well as the frequent difficulties for differentiating relevant mutations from simple natural polymorphisms.
Collapse
Affiliation(s)
- Carla López-Causapé
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Gabriel Cabot
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Ester Del Barrio-Tofiño
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
89
|
Evolution of the Pseudomonas aeruginosa Aminoglycoside Mutational Resistome In Vitro and in the Cystic Fibrosis Setting. Antimicrob Agents Chemother 2018; 62:AAC.02583-17. [PMID: 29437613 DOI: 10.1128/aac.02583-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/26/2018] [Indexed: 01/28/2023] Open
Abstract
Inhaled administration of high doses of aminoglycosides is a key maintenance treatment of Pseudomonas aeruginosa chronic respiratory infections in cystic fibrosis (CF). We analyzed the dynamics and mechanisms of stepwise high-level tobramycin resistance development in vitro and compared the results with those of isogenic pairs of susceptible and resistant clinical isolates. Resistance development correlated with fusA1 mutations in vitro and in vivo. pmrB mutations, conferring polymyxin resistance, were also frequently selected in vitro In contrast, mutational overexpression of MexXY, a hallmark of aminoglycoside resistance in CF, was not observed in in vitro evolution experiments.
Collapse
|
90
|
Clinical Validation of SensiTest Colistin, a Broth Microdilution-Based Method To Evaluate Colistin MICs. J Clin Microbiol 2018; 56:JCM.01523-17. [PMID: 29343542 DOI: 10.1128/jcm.01523-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
The global spread of multidrug-resistant Gram-negative bacteria has led to the return of colistin for treating severe infections. Recently, different plasmid-mediated genes conferring resistance to this drug were described and reported worldwide. International committees (EUCAST/CLSI) reevaluated inconsistencies surrounding colistin antimicrobial susceptibility testing (AST), concluding that broth microdilution (BMD) should serve as the reference method for AST. The development of an accurate, reproducible commercial test based on BMD is therefore highly desirable. SensiTest Colistin (STC), a BMD-based compact 4-test panel containing the lyophilized antibiotic in 7 2-fold dilutions (0.25 to 16 μg/ml) was here compared with the EUCAST-CLSI standard reference method (BMD) and, for some isolates, with the automated Phoenix 100 system (PHX). A total of 353 bacterial strains were evaluated by two different laboratories; 137 isolates were resistant to colistin (19 were intrinsically resistant, 83 harbored the mcr-1 gene). Essential agreement (EA) between STC and BMD was obtained for 339 out of the 353 strains tested (96.0%). Overall categorical agreement was obtained for 349 out of the 353 strains analyzed (98.9%). Two major errors (MEs; 0.93%) and two very major errors (VMEs; 1.46%) were documented. STC appeared to be a simple but highly reliable test with good reproducibility even with panels stored at room temperature or at 35°C. Moreover, STC showed a good performance with strains carrying the mcr-1 gene, with a 98.8% EA. As the secondary endpoint of our study, VMEs for PHX were documented for 6 isolates (10%).
Collapse
|
91
|
Segev-Zarko LA, Kapach G, Josten M, Klug YA, Sahl HG, Shai Y. Deficient Lipid A Remodeling by the arnB Gene Promotes Biofilm Formation in Antimicrobial Peptide Susceptible Pseudomonas aeruginosa. Biochemistry 2018. [PMID: 29518324 DOI: 10.1021/acs.biochem.8b00149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug resistant bacteria possess various mechanisms that can sense environmental stresses such as antibiotics and antimicrobial peptides and rapidly respond to defend themselves. Two known defense strategies are biofilm formation and lipopolysaccharide (LPS) modification. Though LPS modifications are observed in biofilm-embedded bacteria, their effect on biofilm formation is unknown. Using biochemical and biophysical methods coupled with confocal microscopy, atomic force microscopy, and transmission electron microscopy, we show that biofilm formation is promoted in a Pseudomonas aeruginosa PAO1 strain with a loss of function mutation in the arnB gene. This loss of function prevents the addition of the positively charged sugar 4-amino-4-deoxy-l-arabinose to lipid A of LPS under restrictive magnesium conditions. The data reveal that the arnB mutant, which is susceptible to antimicrobial peptides, forms a biofilm that is more robust than that of the wild type. This is in line with the observations that the arnB mutant exhibits outer surface properties such as hydrophobicity and net negative charge that promote the formation of biofilms. Moreover, when grown under Mg2+ limitation, both the wild type and the arnB mutant exhibited a reduction in the level of membrane-bound polysaccharides. The data suggest that the loss of polysaccharides exposes the membrane and alters its biophysical properties, which in turn leads to more biofilm formation. In summary, we show for the first time that blocking a specific lipid A modification promotes biofilm formation, suggesting a trade-off between LPS remodeling and resistance mechanisms of biofilm formation.
Collapse
Affiliation(s)
- Li-Av Segev-Zarko
- Department of Biomolecular Sciences , The Weizmann Institute of Science , Rehovot , Israel
| | - Gal Kapach
- Department of Biomolecular Sciences , The Weizmann Institute of Science , Rehovot , Israel
| | - Michaele Josten
- Institute of Medical Microbiology, Immunology and Parasitology , University of Bonn , Bonn , Germany
| | - Yoel Alexander Klug
- Department of Biomolecular Sciences , The Weizmann Institute of Science , Rehovot , Israel
| | - Hans-Georg Sahl
- Institute of Medical Microbiology, Immunology and Parasitology , University of Bonn , Bonn , Germany
| | - Yechiel Shai
- Department of Biomolecular Sciences , The Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
92
|
Bakthavatchalam YD, Pragasam AK, Biswas I, Veeraraghavan B. Polymyxin susceptibility testing, interpretative breakpoints and resistance mechanisms: An update. J Glob Antimicrob Resist 2018; 12:124-136. [DOI: 10.1016/j.jgar.2017.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
|
93
|
Aminoarabinosylation of Lipid A Is Critical for the Development of Colistin Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.01820-17. [PMID: 29263076 DOI: 10.1128/aac.01820-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid A aminoarabinosylation is invariably associated with colistin resistance in Pseudomonas aeruginosa; however, the existence of alternative aminoarabinosylation-independent colistin resistance mechanisms in this bacterium has remained elusive. By combining reverse genetics with experimental evolution assays, we demonstrate that a functional lipid A aminoarabinosylation pathway is critical for the acquisition of colistin resistance in reference and clinical P. aeruginosa isolates. This highlights lipid A aminoarabinosylation as a promising target for the design of colistin adjuvants against P. aeruginosa.
Collapse
|
94
|
Han ML, Velkov T, Zhu Y, Roberts KD, Le Brun AP, Chow SH, Gutu AD, Moskowitz SM, Shen HH, Li J. Polymyxin-Induced Lipid A Deacylation in Pseudomonas aeruginosa Perturbs Polymyxin Penetration and Confers High-Level Resistance. ACS Chem Biol 2018; 13:121-130. [PMID: 29182311 DOI: 10.1021/acschembio.7b00836] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polymyxins are last-line antibiotics against life-threatening multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance is increasingly reported, leaving a total lack of therapies. Using lipidomics and transcriptomics, we discovered that polymyxin B induced lipid A deacylation via pagL in both polymyxin-resistant and -susceptible Pseudomonas aeruginosa. Our results demonstrated that the deacylation of lipid A is an "innate immunity" response to polymyxins and a key compensatory mechanism to the aminoarabinose modification to confer high-level polymyxin resistance in P. aeruginosa. Furthermore, cutting-edge neutron reflectometry studies revealed that an assembled outer membrane (OM) with the less hydrophobic penta-acylated lipid A decreased polymyxin B penetration, compared to the hexa-acylated form. Polymyxin analogues with enhanced hydrophobicity displayed superior penetration into the tail regions of the penta-acylated lipid A OM. Our findings reveal a previously undiscovered mechanism of polymyxin resistance, wherein polymyxin-induced lipid A remodeling affects the OM packing and hydrophobicity, perturbs polymyxin penetration, and thereby confers high-level resistance.
Collapse
Affiliation(s)
- Mei-Ling Han
- Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
- Monash
Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yan Zhu
- Monash
Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Kade D. Roberts
- Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Anton P. Le Brun
- Australian
Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee
DC, New South Wales 2232, Australia
| | - Seong Hoong Chow
- Monash
Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Alina D. Gutu
- Department
of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts United States
| | | | - Hsin-Hui Shen
- Monash
Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department
of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jian Li
- Monash
Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
95
|
Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 2018; 364:3828290. [PMID: 28510688 PMCID: PMC5812489 DOI: 10.1093/femsle/fnx104] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen capable of infecting a broad range of hosts, in addition to thriving in a broad range of environmental conditions outside of hosts. With this versatility comes the need to tightly regulate its genome to optimise its gene expression and behaviour to the prevailing conditions. Two-component systems (TCSs) comprising sensor kinases and response regulators play a major role in this regulation. This minireview discusses the growing number of TCSs that have been implicated in the virulence of P. aeruginosa, with a special focus on the emerging theme of multikinase networks, which are networks comprising multiple sensor kinases working together, sensing and integrating multiple signals to decide upon the best response. The networks covered in depth regulate processes such as the switch between acute and chronic virulence (GacS network), the Cup fimbriae (Roc network and Rcs/Pvr network), the aminoarabinose modification of lipopolysaccharide (a network involving the PhoQP and PmrBA TCSs), twitching motility and virulence (a network formed from the Chp chemosensory pathway and the FimS/AlgR TCS), and biofilm formation (Wsp chemosensory pathway). In addition, we highlight the important interfaces between these systems and secondary messenger signals such as cAMP and c-di-GMP.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Emma C Stevenson
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| |
Collapse
|
96
|
Del Barrio-Tofiño E, López-Causapé C, Cabot G, Rivera A, Benito N, Segura C, Montero MM, Sorlí L, Tubau F, Gómez-Zorrilla S, Tormo N, Durá-Navarro R, Viedma E, Resino-Foz E, Fernández-Martínez M, González-Rico C, Alejo-Cancho I, Martínez JA, Labayru-Echverria C, Dueñas C, Ayestarán I, Zamorano L, Martinez-Martinez L, Horcajada JP, Oliver A. Genomics and Susceptibility Profiles of Extensively Drug-Resistant Pseudomonas aeruginosa Isolates from Spain. Antimicrob Agents Chemother 2017; 61:AAC.01589-17. [PMID: 28874376 PMCID: PMC5655108 DOI: 10.1128/aac.01589-17] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/27/2017] [Indexed: 02/08/2023] Open
Abstract
This study assessed the molecular epidemiology, resistance mechanisms, and susceptibility profiles of a collection of 150 extensively drug-resistant (XDR) Pseudomonas aeruginosa clinical isolates obtained from a 2015 Spanish multicenter study, with a particular focus on resistome analysis in relation to ceftolozane-tazobactam susceptibility. Broth microdilution MICs revealed that nearly all (>95%) of the isolates were nonsusceptible to piperacillin-tazobactam, ceftazidime, cefepime, aztreonam, imipenem, meropenem, and ciprofloxacin. Most of them were also resistant to tobramycin (77%), whereas nonsusceptibility rates were lower for ceftolozane-tazobactam (31%), amikacin (7%), and colistin (2%). Pulsed-field gel electrophoresis-multilocus sequence typing (PFGE-MLST) analysis revealed that nearly all of the isolates belonged to previously described high-risk clones. Sequence type 175 (ST175) was detected in all 9 participating hospitals and accounted for 68% (n = 101) of the XDR isolates, distantly followed by ST244 (n = 16), ST253 (n = 12), ST235 (n = 8), and ST111 (n = 2), which were detected only in 1 to 2 hospitals. Through phenotypic and molecular methods, the presence of horizontally acquired carbapenemases was detected in 21% of the isolates, mostly VIM (17%) and GES enzymes (4%). At least two representative isolates from each clone and hospital (n = 44) were fully sequenced on an Illumina MiSeq. Classical mutational mechanisms, such as those leading to the overexpression of the β-lactamase AmpC or efflux pumps, OprD inactivation, and/or quinolone resistance-determining regions (QRDR) mutations, were confirmed in most isolates and correlated well with the resistance phenotypes in the absence of horizontally acquired determinants. Ceftolozane-tazobactam resistance was not detected in carbapenemase-negative isolates, in agreement with sequencing data showing the absence of ampC mutations. The unique set of mutations responsible for the XDR phenotype of ST175 clone documented 7 years earlier were found to be conserved, denoting the long-term persistence of this specific XDR lineage in Spanish hospitals. Finally, other potentially relevant mutations were evidenced, including those in penicillin-binding protein 3 (PBP3), which is involved in β-lactam (including ceftolozane-tazobactam) resistance, and FusA1, which is linked to aminoglycoside resistance.
Collapse
Affiliation(s)
- Ester Del Barrio-Tofiño
- Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Carla López-Causapé
- Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Gabriel Cabot
- Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Alba Rivera
- Department of Microbiology and Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Natividad Benito
- Department of Microbiology and Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Concepción Segura
- Laboratory de Referència de Catalunya and Department of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR)-Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - María Milagro Montero
- Laboratory de Referència de Catalunya and Department of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR)-Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Luisa Sorlí
- Laboratory de Referència de Catalunya and Department of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR)-Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Fe Tubau
- Department of Microbiology and Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Department of Microbiology and Infectious Diseases, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Nuria Tormo
- Department of Microbiology and Infectious Diseases, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Raquel Durá-Navarro
- Department of Microbiology and Infectious Diseases, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Esther Viedma
- Department of Microbiology and Infectious Diseases, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Elena Resino-Foz
- Department of Microbiology and Infectious Diseases, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Fernández-Martínez
- Department of Microbiology and Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Instituto de Investigacion Valdecilla (IDIVAL), Santander, Spain
| | - Claudia González-Rico
- Department of Microbiology and Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Instituto de Investigacion Valdecilla (IDIVAL), Santander, Spain
| | - Izaskun Alejo-Cancho
- Department of Microbiology and Infectious Diseases, Hospital Universitari Clínic, Barcelona, Spain
| | - Jose Antonio Martínez
- Department of Microbiology and Infectious Diseases, Hospital Universitari Clínic, Barcelona, Spain
| | | | - Carlos Dueñas
- Department of Microbiology and Infectious Diseases, Hospital Universitario de Burgos, Burgos, Spain
| | - Ignacio Ayestarán
- Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Laura Zamorano
- Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luis Martinez-Martinez
- Unit of Microbiology, Hospital Universitario Reina Sofía, Departament of Microbiology, University of Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Juan Pablo Horcajada
- Laboratory de Referència de Catalunya and Department of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR)-Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Antonio Oliver
- Department of Microbiology, Intensive Care Unit and Unidad de Investigación, Hospital Universitari Son Espases, Instituto de Investigación Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
97
|
Synergy between Active Efflux and Outer Membrane Diffusion Defines Rules of Antibiotic Permeation into Gram-Negative Bacteria. mBio 2017; 8:mBio.01172-17. [PMID: 29089426 PMCID: PMC5666154 DOI: 10.1128/mbio.01172-17] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gram-negative bacteria are notoriously resistant to antibiotics, but the extent of the resistance varies broadly between species. We report that in significant human pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Burkholderia spp., the differences in antibiotic resistance are largely defined by their penetration into the cell. For all tested antibiotics, the intracellular penetration was determined by a synergistic relationship between active efflux and the permeability barrier. We found that the outer membrane (OM) and efflux pumps select compounds on the basis of distinct properties and together universally protect bacteria from structurally diverse antibiotics. On the basis of their interactions with the permeability barriers, antibiotics can be divided into four clusters that occupy defined physicochemical spaces. Our results suggest that rules of intracellular penetration are intrinsic to these clusters. The identified specificities in the permeability barriers should help in the designing of successful therapeutic strategies against antibiotic-resistant pathogens.IMPORTANCE Multidrug-resistant strains of Gram-negative pathogens rapidly spread in clinics. Significant efforts worldwide are currently directed to finding the rules of permeation of antibiotics across two membrane envelopes of these bacteria. This study created the tools for analysis of and identified the major differences in antibacterial activities that distinguish the permeability barriers of P. aeruginosa, A. baumannii, Burkholderia thailandensis, and B. cepacia We conclude that synergy between active efflux and the outer membrane barrier universally protects Gram-negative bacteria from antibiotics. We also found that the diversity of antibiotics affected by active efflux and outer membrane barriers is broader than previously thought and that antibiotics cluster according to specific biological determinants such as the requirement of specific porins in the OM, targeting of the OM, or specific recognition by efflux pumps. No universal rules of antibiotic permeation into Gram-negative bacteria apparently exist. Our results suggest that antibiotic clusters are defined by specific rules of permeation and that further studies could lead to their discovery.
Collapse
|
98
|
Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin Microbiol Rev 2017; 30:557-596. [PMID: 28275006 DOI: 10.1128/cmr.00064-16] [Citation(s) in RCA: 938] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Polymyxins are well-established antibiotics that have recently regained significant interest as a consequence of the increasing incidence of infections due to multidrug-resistant Gram-negative bacteria. Colistin and polymyxin B are being seriously reconsidered as last-resort antibiotics in many areas where multidrug resistance is observed in clinical medicine. In parallel, the heavy use of polymyxins in veterinary medicine is currently being reconsidered due to increased reports of polymyxin-resistant bacteria. Susceptibility testing is challenging with polymyxins, and currently available techniques are presented here. Genotypic and phenotypic methods that provide relevant information for diagnostic laboratories are presented. This review also presents recent works in relation to recently identified mechanisms of polymyxin resistance, including chromosomally encoded resistance traits as well as the recently identified plasmid-encoded polymyxin resistance determinant MCR-1. Epidemiological features summarizing the current knowledge in that field are presented.
Collapse
|
99
|
Transcriptional and Mutational Profiling of an Aminoglycoside-Resistant Pseudomonas aeruginosa Small-Colony Variant. Antimicrob Agents Chemother 2017; 61:AAC.01178-17. [PMID: 28874369 DOI: 10.1128/aac.01178-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/18/2017] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is a major causative agent of both acute and chronic infections. Although aminoglycoside antibiotics are very potent drugs against such infections, antibiotic failure is steadily increasing mainly because of increasing resistance of the bacteria. Many molecular mechanisms that determine resistance, such as acquisition of genes encoding aminoglycoside-inactivating enzymes or overexpression of efflux pumps, have been elucidated. However, there are additional, less well-described mechanisms of aminoglycoside resistance. In this study, we profiled a clinical tobramycin-resistant P. aeruginosa strain that exhibited a small-colony variant (SCV) phenotype. Both the resistance and colony morphology phenotypes were lost upon passage of the isolate under rich medium conditions. Transcriptional and mutational profiling revealed that the SCV harbored activating mutations in the two-component systems AmgRS and PmrAB. Introduction of these mutations individually into type strain PA14 conferred tobramycin and colistin resistance, respectively. However, their combined introduction had an additive effect on the tobramycin resistance phenotype. Activation of the AmgRS system slightly reduced the colony size of wild-type PA14, whereas the simultaneous overexpression of gacA, the response regulator of the GacSA two-component system, further reduced colony size. In conclusion, we uncovered combinatorial influences of two-component systems on clinically relevant phenotypes such as resistance and the expression of the SCV phenotype. Our results clearly demonstrate that the combined activation of P. aeruginosa two-component systems has pleiotropic effects with unforeseen consequences.
Collapse
|
100
|
Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance. J Antibiot (Tokyo) 2017; 71:279-286. [PMID: 28928474 PMCID: PMC5788704 DOI: 10.1038/ja.2017.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/27/2017] [Accepted: 08/05/2017] [Indexed: 02/05/2023]
Abstract
With multi-drug and pan-drug-resistant bacteria becoming increasingly common in hospitals, antibiotic resistance has threatened to return us to a pre-antibiotic era that would completely undermine modern medicine. There is an urgent need to develop new antibiotics and strategies to combat resistance that are substantially different from earlier drug discovery efforts. One such strategy that would complement current and future antibiotics would be a class of co-drugs that target the evolution of resistance and thereby extend the efficacy of specific classes of antibiotics. A critical step in the development of such strategies lies in understanding the critical evolutionary trajectories responsible for resistance and which proteins or biochemical pathways within those trajectories would be good candidates for co-drug discovery. We identify the most important steps in the evolution of resistance for a specific pathogen and antibiotic combination by evolving highly polymorphic populations of pathogens to resistance in a novel bioreactor that favors biofilm development. As the populations evolve to increasing drug concentrations, we use deep sequencing to elucidate the network of genetic changes responsible for resistance and subsequent in vitro biochemistry and often structure determination to determine how the adaptive mutations produce resistance. Importantly, the identification of the molecular steps, their frequency within the populations and their chronology within the evolutionary trajectory toward resistance is critical to assessing their relative importance. In this work, we discuss findings from the evolution of the ESKAPE pathogen, Pseudomonas aeruginosa to the drug of last resort, colistin to illustrate the power of this approach.
Collapse
|