51
|
Szulc M, Samaszko-Fiertek J, Ślusarz R, Kowalska K, Sikorski A, Madaj J. Solid phase synthesis of two muramyl pentapeptide derivatives. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1154153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Monika Szulc
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Rafał Ślusarz
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Artur Sikorski
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Janusz Madaj
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
52
|
Gonçalves FDA, de Carvalho CCCR. Phenotypic Modifications in Staphylococcus aureus Cells Exposed to High Concentrations of Vancomycin and Teicoplanin. Front Microbiol 2016; 7:13. [PMID: 26834731 PMCID: PMC4724715 DOI: 10.3389/fmicb.2016.00013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/08/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial cells are known to change the fatty acid (FA) composition of the phospholipids as a phenotypic response to environmental conditions and to the presence of toxic compounds such as antibiotics. In the present study, Staphylococcus aureus cells collected during the exponential growth phase were challenged with 50 and 100 mg/L of vancomycin and teicoplanin, which are concentrations high enough to kill the large majority of the cell population. Colony-forming unit counts showed biphasic killing kinetics, typical for persister cell enrichment, in both antibiotics and concentrations tested. However, fluorescence microscopy showed the existence of viable but non-culturable (VBNC) cells in a larger number than that of possible persister cells. The analysis of the FA composition of the cells showed that, following antibiotic exposure up to 6 h, the survivor cells have an increased percentage of saturated FAs, a significant reduced percentage of branched FAs and an increased iso/anteiso branched FA ratio when compared to cells exhibiting a regular phenotype. This should result in lower membrane fluidity. However, cells exposed for 8-24 h presented an increased branched/saturated and lower iso/anteiso branched FA ratios, and thus increased membrane fluidity. Furthermore, the phenotypic changes were transmitted to daughter cells grown in drug-free media. The fact that VBNC cells presented nearly the same FA composition as those obtained after cell growth in drug-free media, which could only be the result of growth of persister cells, suggest that VBNC and persister phenotypes share the same type of response to antibiotics at the lipid level.
Collapse
Affiliation(s)
- Fábio D A Gonçalves
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Carla C C R de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
53
|
Van Bambeke F. Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review. Drugs 2015; 75:2073-95. [DOI: 10.1007/s40265-015-0505-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
54
|
Jarrad A, Karoli T, Blaskovich MAT, Lyras D, Cooper MA. Clostridium difficile drug pipeline: challenges in discovery and development of new agents. J Med Chem 2015; 58:5164-85. [PMID: 25760275 PMCID: PMC4500462 DOI: 10.1021/jm5016846] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 12/17/2022]
Abstract
In the past decade Clostridium difficile has become a bacterial pathogen of global significance. Epidemic strains have spread throughout hospitals, while community acquired infections and other sources ensure a constant inoculation of spores into hospitals. In response to the increasing medical burden, a new C. difficile antibiotic, fidaxomicin, was approved in 2011 for the treatment of C. difficile-associated diarrhea. Rudimentary fecal transplants are also being trialed as effective treatments. Despite these advances, therapies that are more effective against C. difficile spores and less damaging to the resident gastrointestinal microbiome and that reduce recurrent disease are still desperately needed. However, bringing a new treatment for C. difficile infection to market involves particular challenges. This review covers the current drug discovery pipeline, including both small molecule and biologic therapies, and highlights the challenges associated with in vitro and in vivo models of C. difficile infection for drug screening and lead optimization.
Collapse
Affiliation(s)
- Angie
M. Jarrad
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tomislav Karoli
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Dena Lyras
- School
of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew A. Cooper
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
55
|
Structural variations of the cell wall precursor lipid II and their influence on binding and activity of the lipoglycopeptide antibiotic oritavancin. Antimicrob Agents Chemother 2014; 59:772-81. [PMID: 25403671 DOI: 10.1128/aac.02663-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oritavancin is a semisynthetic derivative of the glycopeptide antibiotic chloroeremomycin with activity against Gram-positive pathogens, including vancomycin-resistant staphylococci and enterococci. Compared to vancomycin, oritavancin is characterized by the presence of two additional residues, a hydrophobic 4'-chlorobiphenyl methyl moiety and a 4-epi-vancosamine substituent, which is also present in chloroeremomycin. Here, we show that oritavancin and its des-N-methylleucyl variant (des-oritavancin) effectively inhibit lipid I- and lipid II-consuming peptidoglycan biosynthesis reactions in vitro. In contrast to that for vancomycin, the binding affinity of oritavancin to the cell wall precursor lipid II appears to involve, in addition to the D-Ala-D-Ala terminus, other species-specific binding sites of the lipid II molecule, i.e., the crossbridge and D-isoglutamine in position 2 of the lipid II stem peptide, both characteristic for a number of Gram-positive pathogens, including staphylococci and enterococci. Using purified lipid II and modified lipid II variants, we studied the impact of these modifications on the binding of oritavancin and compared it to those of vancomycin, chloroeremomycin, and des-oritavancin. Analysis of the binding parameters revealed that additional intramolecular interactions of oritavancin with the peptidoglycan precursor appear to compensate for the loss of a crucial hydrogen bond in vancomycin-resistant strains, resulting in enhanced binding affinity. Augmenting previous findings, we show that amidation of the lipid II stem peptide predominantly accounts for the increased binding of oritavancin to the modified intermediates ending in D-Ala-D-Lac. Corroborating our conclusions, we further provide biochemical evidence for the phenomenon of the antagonistic effects of mecA and vanA resistance determinants in Staphylococcus aureus, thus partially explaining the low frequency of methicillin-resistant S. aureus (MRSA) acquiring high-level vancomycin resistance.
Collapse
|
56
|
Cheng M, Huang JX, Ramu S, Butler MS, Cooper MA. Ramoplanin at bactericidal concentrations induces bacterial membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 2014; 58:6819-27. [PMID: 25182650 PMCID: PMC4249368 DOI: 10.1128/aac.00061-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Ramoplanin is an actinomycetes-derived antibiotic with broad-spectrum activity against Gram-positive bacteria that has been evaluated in clinical trials for the treatment of gastrointestinal vancomycin-resistant enterococci (VRE) and Clostridium difficile infections. Recent studies have proposed that ramoplanin binds to bacterial membranes as a C2 symmetrical dimer that can sequester Lipid II, which causes inhibition of cell wall peptidoglycan biosynthesis and cell death. In this study, ramoplanin was shown to bind to anionic and zwitterionic membrane mimetics with a higher affinity for anionic membranes and to induce membrane depolarization of methicillin-susceptible Staphylococcus aureus (MSSA) ATCC 25923 at concentrations at or above the minimal bactericidal concentration (MBC). The ultrastructural effects of ramoplanin on S. aureus were also examined by transmission electron microscopy (TEM), and this showed dramatic changes to bacterial cell morphology. The correlation observed between membrane depolarization and bacterial cell viability suggests that this mechanism may contribute to the bactericidal activity of ramoplanin.
Collapse
Affiliation(s)
- Mu Cheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Johnny X Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Soumya Ramu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
57
|
Van Bambeke F. Renaissance of antibiotics against difficult infections: Focus on oritavancin and new ketolides and quinolones. Ann Med 2014; 46:512-29. [PMID: 25058176 DOI: 10.3109/07853890.2014.935470] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipoglycopeptide, ketolide, and quinolone antibiotics are currently in clinical development, with specific advantages over available molecules within their respective classes. The lipoglycopeptide oritavancin is bactericidal against MRSA, vancomycin-resistant enterococci, and multiresistant Streptococcus pneumoniae, and proved effective and safe for the treatment of acute bacterial skin and skin structure infection (ABSSSI) upon administration of a single 1200 mg dose (two completed phase III trials). The ketolide solithromycin (two phase III studies recruiting for community-acquired pneumonia) shows a profile of activity similar to that of telithromycin, but in vitro data suggest a lower risk of hepatotoxicity, visual disturbance, and aggravation of myasthenia gravis due to reduced affinity for nicotinic receptors. Among quinolones, finafloxacin and delafloxacin share the unique property of an improved activity in acidic environments (found in many infection sites). Finafloxacin (phase II completed; activity profile similar to that of ciprofloxacin) is evaluated for complicated urinary tract and Helicobacter pylori infections. The other quinolones (directed towards Gram-positive pathogens) show improved activity on MRSA and multiresistant S. pneumoniae compared to current molecules. They are in clinical evaluation for ABSSSI (avarofloxacin (phase II completed), nemonoxacin and delafloxacin (ongoing phase III)), respiratory tract infections (zabofloxacin and nemonoxacin (ongoing phase III)), or gonorrhea (delafloxacin).
Collapse
Affiliation(s)
- Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain , Brussels , Belgium
| |
Collapse
|
58
|
Glycopeptide antibiotics: Back to the future. J Antibiot (Tokyo) 2014; 67:631-44. [DOI: 10.1038/ja.2014.111] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 12/22/2022]
|
59
|
Production of Teicoplanin fromActinoplanes teichomyceticusID9303 by Adding Proline. Biosci Biotechnol Biochem 2014; 72:1635-7. [DOI: 10.1271/bbb.80143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
60
|
Cheng M, Ziora ZM, Hansford KA, Blaskovich MA, Butler MS, Cooper MA. Anti-cooperative ligand binding and dimerisation in the glycopeptide antibiotic dalbavancin. Org Biomol Chem 2014; 12:2568-75. [PMID: 24608916 PMCID: PMC4082399 DOI: 10.1039/c3ob42428f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/22/2014] [Indexed: 12/22/2022]
Abstract
Dalbavancin, a semi-synthetic glycopeptide with enhanced antibiotic activity compared to vancomycin and teicoplanin, binds to the C-terminal lysyl-d-alanyl-d-alanine subunit of Lipid II, inhibiting peptidoglycan biosynthesis. In this study, micro-calorimetry and electrospray ionization (ESI)-MS have been used to investigate the relationship between oligomerisation of dalbavancin and binding of a Lipid II peptide mimic, diacetyl-Lys-d-Ala-d-Ala (Ac2-Kaa). Dalbavancin dimerised strongly in an anti-cooperative manner with ligand-binding, as was the case for ristocetin A, but not for vancomycin and teicoplanin. Dalbavancin and ristocetin A both adopt an 'closed' conformation upon ligand binding, suggesting anti-cooperative dimerisation with ligand-binding may be a general feature of dalbavancin/ristocetin A-like glycopeptides. Understanding these effects may provide insight into design of novel dalbavancin derivatives with cooperative ligand-binding and dimerisation characteristics that could enhance antibiotic activity.
Collapse
Affiliation(s)
- Mu Cheng
- Division of Chemistry and Structural Biology , Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia . ; Tel: +61-7-3346-2044
| | - Zyta M. Ziora
- Division of Chemistry and Structural Biology , Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia . ; Tel: +61-7-3346-2044
| | - Karl A. Hansford
- Division of Chemistry and Structural Biology , Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia . ; Tel: +61-7-3346-2044
| | - Mark A. Blaskovich
- Division of Chemistry and Structural Biology , Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia . ; Tel: +61-7-3346-2044
| | - Mark S. Butler
- Division of Chemistry and Structural Biology , Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia . ; Tel: +61-7-3346-2044
| | - Matthew A. Cooper
- Division of Chemistry and Structural Biology , Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia . ; Tel: +61-7-3346-2044
| |
Collapse
|
61
|
Ndieyira JW, Kappeler N, Logan S, Cooper MA, Abell C, McKendry RA, Aeppli G. Surface-stress sensors for rapid and ultrasensitive detection of active free drugs in human serum. NATURE NANOTECHNOLOGY 2014; 9:225-232. [PMID: 24584276 DOI: 10.1038/nnano.2014.33] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/29/2014] [Indexed: 06/03/2023]
Abstract
There is a growing appreciation that mechanical signals can be as important as chemical and electrical signals in biology. To include such signals in a systems biology description for understanding pathobiology and developing therapies, quantitative experiments on how solution-phase and surface chemistry together produce biologically relevant mechanical signals are needed. Because of the appearance of drug-resistant hospital 'superbugs', there is currently great interest in the destruction of bacteria by bound drug-target complexes that stress bacterial cell membranes. Here, we use nanomechanical cantilevers as surface-stress sensors, together with equilibrium theory, to describe quantitatively the mechanical response of a surface receptor to different antibiotics in the presence of competing ligands in solution. The antibiotics examined are the standard, Food and Drug Administration-approved drug of last resort, vancomycin, and the yet-to-be approved oritavancin, which shows promise for controlling vancomycin-resistant infections. The work reveals variations among strong and weak competing ligands, such as proteins in human serum, that determine dosages in drug therapies. The findings further enhance our understanding of the biophysical mode of action of the antibiotics and will help develop better treatments, including choice of drugs as well as dosages, against pathogens.
Collapse
Affiliation(s)
- Joseph W Ndieyira
- 1] London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London WC1H 0AH, UK [2] Jomo Kenyatta University of Agriculture and Technology, Department of Chemistry, PO Box 62000, Nairobi, Kenya
| | - Natascha Kappeler
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Stephen Logan
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane 4072, Australia
| | - Chris Abell
- Department of Chemistry, Lensfield Road, University of Cambridge, Cambridge CB2 1EW, UK
| | - Rachel A McKendry
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Gabriel Aeppli
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| |
Collapse
|
62
|
Wu X, Hurdle JG. The Membrane as a Novel Target Site for Antibiotics to Kill Persisting Bacterial Pathogens. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
63
|
|
64
|
Kim SJ, Tanaka KSE, Dietrich E, Rafai Far A, Schaefer J. Locations of the hydrophobic side chains of lipoglycopeptides bound to the peptidoglycan of Staphylococcus aureus. Biochemistry 2013; 52:3405-14. [PMID: 23607653 DOI: 10.1021/bi400054p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycopeptides whose aminosugars have been modified by attachment of hydrophobic side chains are frequently active against vancomycin-resistant microorganisms. We have compared the conformations of six such fluorinated glycopeptides (with side chains of varying length) complexed to cell walls labeled with d-[1-(13)C]alanine, [1-(13)C]glycine, and l-[ε-(15)N]lysine in whole cells of Staphylococcus aureus. The internuclear distances from (19)F of the bound drug to the (13)C and (15)N labels of the peptidoglycan, and to the natural abundance (31)P of lipid membranes and teichoic acids, were determined by rotational-echo double resonance NMR. The drugs did not dimerize, and their side chains did not form membrane anchors but instead became essential parts of secondary binding to pentaglycyl bridge segments of the cell-wall peptidoglycan.
Collapse
Affiliation(s)
- Sung Joon Kim
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | | | | | | | | |
Collapse
|
65
|
Chang J, Zhang SJ, Jiang YW, Xu L, Yu JM, Zhou WJ, Sun X. Design, Synthesis, and Antibacterial Activity of Demethylvancomycin Analogues against Drug-Resistant Bacteria. ChemMedChem 2013; 8:976-84. [DOI: 10.1002/cmdc.201300011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/12/2013] [Indexed: 11/11/2022]
|
66
|
Economou NJ, Zentner IJ, Lazo E, Jakoncic J, Stojanoff V, Weeks SD, Grasty KC, Cocklin S, Loll PJ. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:520-33. [PMID: 23519660 PMCID: PMC3606034 DOI: 10.1107/s0907444912050469] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/11/2012] [Indexed: 11/10/2022]
Abstract
Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a D-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein-peptide-antibiotic complex. The 2.05 Å resolution MBP-peptide-teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.
Collapse
Affiliation(s)
- Nicoleta J Economou
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Tascini C, Flammini S, Leonildi A, Ciullo I, Tagliaferri E, Menichetti F. Comparison of teicoplanin and vancomycin in vitro activity on clinical isolates of Staphylococcus aureus. J Chemother 2013; 24:187-90. [PMID: 23040680 DOI: 10.1179/1973947812y.0000000026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Ninety-one clinical isolates of Staphylococcus aureus have been tested with the Kirby Bauer and the Etest® method to determine the susceptibility to glycopeptides in the 2007-2010 period. Five strains (5.5%) were resistant to vancomycin and nine (9.9%) to teicoplanin. Teicoplanin showed a median minimal inhibitory concentration (MIC) of 1 mg/l (range 0.125-24 mg/l), an MIC50 of 1 mg/l, and an MIC90 of 2 mg/l; vancomycin had a median MIC of 1.5 mg/l (range 0.38-4 mg/l), an MIC50 of 1.5 mg/l, and an MIC90 of 2 mg/l. More isolates were distributed on higher values of MIC for vancomycin. Inhibition halos induced by vancomycin-impregnated paper diskettes were slightly larger than those by teicoplanin. Glycopeptide resistance among methicillin-resistant Staphylococcus aureus in Italy is an underestimated phenomenon, possibly due to the described underestimation of glycopeptides MICs by the automatic broth microdilution method, when compared to agar MIC assays. A teicoplanin MIC creep, as reported for vancomycin, cannot be assumed.
Collapse
Affiliation(s)
- Carlo Tascini
- U.O.C. Malattie Infettive, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
68
|
Koh JJ, Qiu S, Zou H, Lakshminarayanan R, Li J, Zhou X, Tang C, Saraswathi P, Verma C, Tan DTH, Tan AL, Liu S, Beuerman RW. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:834-44. [PMID: 22982495 DOI: 10.1016/j.bbamem.2012.09.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 11/26/2022]
Abstract
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created the need for better therapeutic options. In this study, five natural xanthones were extracted and purified from the fruit hull of Garcinia mangostana and their antimicrobial properties were investigated. α-Mangostin was identified as the most potent among them against Gram-positive pathogens (MIC=0.78-1.56 μg/mL) which included two MRSA isolates. α-Mangostin also exhibited rapid in vitro bactericidal activity (3-log reduction within 5 min). In a multistep (20 passage) resistance selection study using a MRSA isolated from the eye, no resistance against α-mangostin in the strains tested was observed. Biophysical studies using fluorescence probes for membrane potential and permeability, calcein encapsulated large unilamellar vesicles and scanning electron microscopy showed that α-mangostin rapidly disrupted the integrity of the cytoplasmic membrane leading to loss of intracellular components in a concentration-dependent manner. Molecular dynamic simulations revealed that isoprenyl groups were important to reduce the free energy for the burial of the hydrophobic phenyl ring of α-mangostin into the lipid bilayer of the membrane resulting in membrane breakdown and increased permeability. Thus, we suggest that direct interactions of α-mangostin with the bacterial membrane are responsible for the rapid concentration-dependent membrane disruption and bactericidal action.
Collapse
Affiliation(s)
- Jun-Jie Koh
- Singapore Eye Research Institute, 11 Third Hospital Avenue, 168751, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Hofmann CM, Anderson JM, Marchant RE. Targeted delivery of vancomycin to Staphylococcus epidermidis biofilms using a fibrinogen-derived peptide. J Biomed Mater Res A 2012; 100:2517-25. [PMID: 22623343 PMCID: PMC3461832 DOI: 10.1002/jbm.a.34166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/08/2022]
Abstract
This study reports on the use of a fibrinogen-derived peptide for the specific targeting and delivery of vancomycin to Staphylococcus epidermidis biofilms. One method by which S. epidermidis initially adheres to biomaterials uses the plasma protein fibrinogen as an intermediary, where the S. epidermidis surface protein SdrG binds to a short amino acid sequence near the amino terminus of the Bβ chain of fibrinogen. We mimicked this binding interaction and demonstrated the use of a synthetic fibrinogen-based β6-20 peptide to target and deliver vancomycin to S. epidermidis in vitro. The β6-20 peptide was synthesized and labeled with a Nanogold probe, and its targeting capabilities were examined through the use of scanning electron microscopy. The Nanogold component was then replaced by vancomycin, utilizing a flexible, variable length poly(ethylene glycol) linker between the peptide and antibiotic to create the targeted vancomycin products, β6-20-PEG(x) -VAN. Initial binding to surface adherent S. epidermidis was increased in a concentration-dependent manner relative to vancomycin for all equivalent concentrations ≥4 μg/mL, with targeted vancomycin content up to 22.9 times that of vancomycin alone. Retention of the targeted antibiotics was measured after an additional 24-h incubation period, revealing levels 1.3 times that of vancomycin. The results demonstrate the improved targeting and retention of vancomycin within a biofilm due to the incorporation of a specific targeting motif.
Collapse
Affiliation(s)
- Christopher M Hofmann
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
70
|
Tamayo M, Santiso R, Gosálvez J, Bou G, Fernández MDC, Fernández JL. Cell wall active antibiotics reduce chromosomal DNA fragmentation by peptidoglycan hydrolysis in Staphylococcus aureus. Arch Microbiol 2012; 194:967-75. [PMID: 22797526 DOI: 10.1007/s00203-012-0831-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/27/2012] [Accepted: 06/29/2012] [Indexed: 11/30/2022]
Abstract
Lysostaphin digestion of peptidoglycan (PG) from Staphylococcus aureus resulted in chromosomal DNA fragmentation by released DNase, as directly visualized in situ on isolated nucleoids. Nevertheless, DNA digestion was partially prevented by previous incubation with antibiotics that inhibit PG synthesis. This inhibitory effect was much more remarkable with glycopeptides vancomycin and mainly teicoplanin than with beta-lactams cloxacillin and ceftazidime. Therefore, inhibition of PG chain elongation has a more significant inhibition of DNA degradation than inhibition of PG cross-linking, possibly due to a reduction in DNase storage at the cell wall.
Collapse
Affiliation(s)
- María Tamayo
- Genetics Unit, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | | | | | | | | | | |
Collapse
|
71
|
Ilisz I, Pataj Z, Aranyi A, Péter A. Macrocyclic Antibiotic Selectors in Direct HPLC Enantioseparations. SEPARATION AND PURIFICATION REVIEWS 2012. [DOI: 10.1080/15422119.2011.596253] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
72
|
Economou NJ, Nahoum V, Weeks SD, Grasty KC, Zentner IJ, Townsend TM, Bhuiya MW, Cocklin S, Loll PJ. A carrier protein strategy yields the structure of dalbavancin. J Am Chem Soc 2012; 134:4637-45. [PMID: 22352468 DOI: 10.1021/ja208755j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many large natural product antibiotics act by specifically binding and sequestering target molecules found on bacterial cells. We have developed a new strategy to expedite the structural analysis of such antibiotic-target complexes, in which we covalently link the target molecules to carrier proteins, and then crystallize the entire carrier-target-antibiotic complex. Using native chemical ligation, we have linked the Lys-D-Ala-D-Ala binding epitope for glycopeptide antibiotics to three different carrier proteins. We show that recognition of this peptide by multiple antibiotics is not compromised by the presence of the carrier protein partner, and use this approach to determine the first-ever crystal structure for the new therapeutic dalbavancin. We also report the first crystal structure of an asymmetric ristocetin antibiotic dimer, as well as the structure of vancomycin bound to a carrier-target fusion. The dalbavancin structure reveals an antibiotic molecule that has closed around its binding partner; it also suggests mechanisms by which the drug can enhance its half-life by binding to serum proteins, and be targeted to bacterial membranes. Notably, the carrier protein approach is not limited to peptide ligands such as Lys-D-Ala-D-Ala, but is applicable to a diverse range of targets. This strategy is likely to yield structural insights that accelerate new therapeutic development.
Collapse
Affiliation(s)
- Nicoleta J Economou
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
A novel membrane protein, VanJ, conferring resistance to teicoplanin. Antimicrob Agents Chemother 2012; 56:1784-96. [PMID: 22232274 DOI: 10.1128/aac.05869-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacterial resistance to the glycopeptide antibiotic teicoplanin shows some important differences from the closely related compound vancomycin. They are currently poorly understood but may reflect significant differences in the mode of action of each antibiotic. Streptomyces coelicolor possesses a vanRSJKHAX gene cluster that when expressed confers resistance to both vancomycin and teicoplanin. The resistance to vancomycin is mediated by the enzymes encoded by vanKHAX, but not by vanJ. vanHAX effect a reprogramming of peptidoglycan biosynthesis, which is considered to be generic, conferring resistance to all glycopeptide antibiotics. Here, we show that vanKHAX are not in fact required for teicoplanin resistance in S. coelicolor, which instead is mediated solely by vanJ. vanJ is shown to encode a membrane protein oriented with its C-terminal active site exposed to the extracytoplasmic space. VanJ also confers resistance to the teicoplanin-like antibiotics ristocetin and A47934 and to a broad range of semisynthetic teicoplanin derivatives, but not generally to antibiotics or semisynthetic derivatives with vancomycin-like structures. vanJ homologues are found ubiquitously in streptomycetes and include staP from the Streptomyces toyocaensis A47934 biosynthetic gene cluster. While overexpression of staP also conferred resistance to teicoplanin, similar expression of other vanJ homologues (SCO2255, SCO7017, and SAV5946) did not. The vanJ and staP orthologues, therefore, appear to represent a subset of a larger protein family whose members have acquired specialist roles in antibiotic resistance. Future characterization of the divergent enzymatic activity within this new family will contribute to defining the molecular mechanisms important for teicoplanin activity and resistance.
Collapse
|
74
|
Jia Z, O'Mara M, Zuegg J, Cooper M, Mark A. The effect of environment on the recognition and binding of vancomycin to native and resistant forms of lipid II. Biophys J 2011; 101:2684-92. [PMID: 22261057 PMCID: PMC3297793 DOI: 10.1016/j.bpj.2011.10.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/10/2011] [Accepted: 10/31/2011] [Indexed: 10/14/2022] Open
Abstract
Molecular dynamics simulations and free energy calculations have been used to examine in detail the mechanism by which a receptor molecule (the glycopeptide antibiotic vancomycin) recognizes and binds to a target molecule (lipid II) embedded within a membrane environment. The simulations show that the direct interaction of vancomycin with lipid II, as opposed to initial binding to the membrane, leads most readily to the formation of a stable complex. The recognition of lipid II by vancomycin occurred via the N-terminal amine group of vancomycin and the C-terminal carboxyl group of lipid II. Despite lying at the membrane-water interface, the interaction of vancomycin with lipid II was found to be essentially identical to that of soluble tripeptide analogs of lipid II (Ac-d-Ala-d-Ala; root mean-square deviation 0.11 nm). Free energy calculations also suggest that the relative binding affinity of vancomycin for native, resistant, and synthetic forms of membrane-bound lipid II was unaffected by the membrane environment. The effect of the dimerization of vancomycin on the binding of lipid II, the position of lipid II within a biological membrane, and the effect of the isoamylene tail of lipid II on membrane fluidity have also been examined.
Collapse
Affiliation(s)
- ZhiGuang Jia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Megan L. O'Mara
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Johannes Zuegg
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Alan E. Mark
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
75
|
Tanino T, Al-Dabbagh B, Mengin-Lecreulx D, Bouhss A, Oyama H, Ichikawa S, Matsuda A. Mechanistic Analysis of Muraymycin Analogues: A Guide to the Design of MraY Inhibitors. J Med Chem 2011; 54:8421-39. [DOI: 10.1021/jm200906r] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tetsuya Tanino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| | - Bayan Al-Dabbagh
- Laboratoire
des Enveloppes Bactériennes
et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire
et Cellulaire, UMR 8619 CNRS, Université Paris-Sud, Bâtiment 430, Orsay F-91405, France
| | - Dominique Mengin-Lecreulx
- Laboratoire
des Enveloppes Bactériennes
et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire
et Cellulaire, UMR 8619 CNRS, Université Paris-Sud, Bâtiment 430, Orsay F-91405, France
| | - Ahmed Bouhss
- Laboratoire
des Enveloppes Bactériennes
et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire
et Cellulaire, UMR 8619 CNRS, Université Paris-Sud, Bâtiment 430, Orsay F-91405, France
| | - Hiroshi Oyama
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo
060-0812, Japan
| |
Collapse
|
76
|
Liu J, Luo C, Smith PA, Chin JK, Page MGP, Paetzel M, Romesberg FE. Synthesis and characterization of the arylomycin lipoglycopeptide antibiotics and the crystallographic analysis of their complex with signal peptidase. J Am Chem Soc 2011; 133:17869-77. [PMID: 21999324 DOI: 10.1021/ja207318n] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosylation of natural products, including antibiotics, often plays an important role in determining their physical properties and their biological activity, and thus their potential as drug candidates. The arylomycin class of antibiotics inhibits bacterial type I signal peptidase and is comprised of three related series of natural products with a lipopeptide tail attached to a core macrocycle. Previously, we reported the total synthesis of several A series derivatives, which have unmodified core macrocycles, as well as B series derivatives, which have a nitrated macrocycle. We now report the synthesis and biological evaluation of lipoglycopeptide arylomycin variants whose macrocycles are glycosylated with a deoxy-α-mannose substituent, and also in some cases hydroxylated. The synthesis of the derivatives bearing each possible deoxy-α-mannose enantiomer allowed us to assign the absolute stereochemistry of the sugar in the natural product and also to show that while glycosylation does not alter antibacterial activity, it does appear to improve solubility. Crystallographic structural studies of a lipoglycopeptide arylomycin bound to its signal peptidase target reveal the molecular interactions that underlie inhibition and also that the mannose is directed away from the binding site into solvent which suggests that other modifications may be made at the same position to further increase solubility and thus reduce protein binding and possibly optimize the pharmacokinetics of the scaffold.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
77
|
Roberts TC, Schallenberger MA, Liu J, Smith PA, Romesberg FE. Initial efforts toward the optimization of arylomycins for antibiotic activity. J Med Chem 2011; 54:4954-63. [PMID: 21630667 PMCID: PMC3151006 DOI: 10.1021/jm1016126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While most clinically used antibiotics were derived from natural products, the isolation of new broad-spectrum natural products has become increasingly rare and narrow-spectrum agents are typically deemed unsuitable for development because of intrinsic limitations of their scaffold or target. However, it is possible that the spectrum of a natural product antibiotic might be limited by specific resistance mechanisms in some bacteria, such as target mutations, and the spectra of such "latent" antibiotics might be reoptimized by derivatization, just as has been done with clinically deployed antibiotics. We recently showed that the spectrum of the arylomycin natural product antibiotics, which act via the novel mechanism of inhibiting type I signal peptidase, is broader than previously believed and that resistance in several key human pathogens is due to the presence of a specific Pro residue in the target peptidase that disrupts interactions with the lipopeptide tail of the antibiotic. To begin to test whether this natural resistance might be overcome by derivatization, we synthesized analogues with altered lipopeptide tails and identified several with an increased spectrum of activity against S. aureus. The data support the hypothesis that the arylomycins are latent antibiotics, suggest that their spectrum may be optimized by derivatization, and identify a promising scaffold upon which future optimization efforts might focus.
Collapse
Affiliation(s)
- Tucker C. Roberts
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mark A. Schallenberger
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jian Liu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peter A. Smith
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
78
|
Dunbar LM, Tang DM, Manausa RM. A review of telavancin in the treatment of complicated skin and skin structure infections (cSSSI). Ther Clin Risk Manag 2011; 4:235-44. [PMID: 18728713 PMCID: PMC2503659 DOI: 10.2147/tcrm.s1843] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Telavancin is a novel antibiotic being investigated for the treatment of serious infections caused by Gram-positive bacteria, including complicated skin and skin structure infections (cSSSI) and pneumonia. This once-daily intravenous lipoglycopeptide exerts rapid bactericidal activity via a dual mechanism of action. It is intended for use to combat infections caused by Staphylococcus aureus and other Gram-positive bacteria, including methicillin-resistant and vancomycin-intermediate strains of S. aureus (MRSA and VISA, respectively). Vancomycin is the current gold standard in treating serious infections caused by Gram-positive bacteria, especially MRSA. In recent clinical trials, telavancin has shown excellent efficacy in phase II and III multinational, randomized, double-blinded studies of cSSSI. In the phase II FAST 2 study, which compared telavancin 10 mg/kg intravenously q 24 h vs standard therapy (an antistaphylococcal penicillin at 2 g IV q 6 h or vancomycin 1 gm IV q 12 h), the clinical success rate in the telavancin-treated group was 96% vs 94% in the standard therapy group. In two identical phase III trials comparing telavancin versus vancomycin at the doses of the FAST 2 study for cSSSI, the clinical cure rates were 88.3% and 87.1%, respectively. Two additional phase III clinical trials investigating telavancin for use in hospital-acquired pneumonia, caused by Gram-positive bacteria are currently ongoing. Telavancin is currently under regulatory review in both the United States and Europe for the indication of treatment of cSSSI.
Collapse
Affiliation(s)
- Lala M Dunbar
- Louisiana State University Health Sciences Center New Orleans, USA
| | | | | |
Collapse
|
79
|
Jourdan E, Haroun M, Slama I, Ravel A, Grosset C, Villet A, Peyrin E. Use of an Amino Stationary Phase to Study the Vancomycin Dimerization Dependence on Solute Enantioselectivity. J LIQ CHROMATOGR R T 2011. [DOI: 10.1081/jlc-120020090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Eric Jourdan
- a Equipe de Chimie Analytique, Département de Pharmacochimie Moléculaire , UFR de Pharmacie de Grenoble, Domaine de la Merci , UMR CNR12S‐UFJ 5063, La Tronche , 38700 , France
| | - Mohamed Haroun
- a Equipe de Chimie Analytique, Département de Pharmacochimie Moléculaire , UFR de Pharmacie de Grenoble, Domaine de la Merci , UMR CNR12S‐UFJ 5063, La Tronche , 38700 , France
| | - Ines Slama
- a Equipe de Chimie Analytique, Département de Pharmacochimie Moléculaire , UFR de Pharmacie de Grenoble, Domaine de la Merci , UMR CNR12S‐UFJ 5063, La Tronche , 38700 , France
| | - Anne Ravel
- a Equipe de Chimie Analytique, Département de Pharmacochimie Moléculaire , UFR de Pharmacie de Grenoble, Domaine de la Merci , UMR CNR12S‐UFJ 5063, La Tronche , 38700 , France
| | - Catherine Grosset
- a Equipe de Chimie Analytique, Département de Pharmacochimie Moléculaire , UFR de Pharmacie de Grenoble, Domaine de la Merci , UMR CNR12S‐UFJ 5063, La Tronche , 38700 , France
| | - Annick Villet
- a Equipe de Chimie Analytique, Département de Pharmacochimie Moléculaire , UFR de Pharmacie de Grenoble, Domaine de la Merci , UMR CNR12S‐UFJ 5063, La Tronche , 38700 , France
| | - Eric Peyrin
- a Equipe de Chimie Analytique, Département de Pharmacochimie Moléculaire , UFR de Pharmacie de Grenoble, Domaine de la Merci , UMR CNR12S‐UFJ 5063, La Tronche , 38700 , France
| |
Collapse
|
80
|
Abstract
AbstractSix complexes of vancomycin and peptidoglycan precursors were studied via molecular dynamics simulations. The interactions between the antibiotic and peptidoglycan fragments were identified and described in detail. All six studied modifications of the peptidoglycan precursor resulted in a weakening of the interaction with vancomycin when comparing to the native D-Ala-D-Ala-terminated fragment. It was confirmed that the N-terminus of the vancomycin is directly responsible for peptidoglycan recognition and antimicrobial activity. In simulated systems, the saccharide part of the antibiotic interacts with peptide precursors, thus it could also be important for antimicrobial activity. The complex terminated with D-Lac is the only one in which there is a weak interaction with the sugar moiety in the simulated systems. Analysis of conformational changes is a major scope of this work. The lack of interactions resulting from modification of the peptidoglycan precursors (D-Lac, D-Ser or other substitution) would be counterbalanced by proper modifications of the vancomycin moiety, especially the saccharide part of vancomycin.
Collapse
|
81
|
Çelik A, Aydınlık N, Arslan I. Phytochemical Constituents and Inhibitory Activity towards Methicillin-Resistant Staphylococcus aureus Strains of Eryngium Species (Apiaceae). Chem Biodivers 2011; 8:454-9. [DOI: 10.1002/cbdv.201000124] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
82
|
Dengler V, Meier PS, Heusser R, Berger-Bächi B, McCallum N. Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics. BMC Microbiol 2011; 11:16. [PMID: 21251258 PMCID: PMC3032642 DOI: 10.1186/1471-2180-11-16] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/20/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus activates a protective cell wall stress stimulon (CWSS) in response to the inhibition of cell wall synthesis or cell envelope damage caused by several structurally and functionally different antibiotics. CWSS induction is coordinated by the VraSR two-component system, which senses an unknown signal triggered by diverse cell wall active agents. RESULTS We have constructed a highly sensitive luciferase reporter gene system, using the promoter of sas016 (S. aureus N315), which detects very subtle differences in expression as well as measuring > 4 log-fold changes in CWSS activity, to compare the concentration dependence of CWSS induction kinetics of antibiotics with different cell envelope targets. We compared the effects of subinhibitory up to suprainhibitory concentrations of fosfomycin, D-cycloserine, tunicamycin, bacitracin, flavomycin, vancomycin, teicoplanin, oxacillin, lysostaphin and daptomycin. Induction kinetics were both strongly antibiotic- and concentration-dependent. Most antibiotics triggered an immediate response with induction beginning within 10 min, except for tunicamycin, D-cycloserine and fosfomycin which showed lags of up to one generation before induction commenced. Induction characteristics, such as the rate of CWSS induction once initiated and maximal induction reached, were strongly antibiotic dependent. We observed a clear correlation between the inhibitory effects of specific antibiotic concentrations on growth and corresponding increases in CWSS induction kinetics. Inactivation of VraR increased susceptibility to the antibiotics tested from 2- to 16-fold, with the exceptions of oxacillin and D-cycloserine, where no differences were detected in the methicillin susceptible S. aureus strain background analysed. There was no apparent correlation between the induction capacity of the various antibiotics and the relative importance of the CWSS for the corresponding resistance phenotypes. CONCLUSION CWSS induction profiles were unique for each antibiotic. Differences observed in optimal induction conditions for specific antibiotics should be determined and taken into account when designing and interpreting CWSS induction studies.
Collapse
Affiliation(s)
- Vanina Dengler
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
83
|
Al-Kaddah S, Reder-Christ K, Klocek G, Wiedemann I, Brunschweiger M, Bendas G. Analysis of membrane interactions of antibiotic peptides using ITC and biosensor measurements. Biophys Chem 2010; 152:145-52. [PMID: 20934241 DOI: 10.1016/j.bpc.2010.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 11/18/2022]
Abstract
The interaction of the lantibiotic gallidermin and the glycopeptide antibiotic vancomycin with bacterial membranes was simulated using mass sensitive biosensors and isothermal titration calorimetry (ITC). Both peptides interfere with cell wall biosynthesis by targeting the cell wall precursor lipid II, but differ clearly in their antibiotic activity against individual bacterial strains. We determined the binding affinities of vancomycin and gallidermin to model membranes±lipid II in detail. Both peptides bind to DOPC/lipid II membranes with high affinity (K(D) 0.30 μM and 0.27 μM). Gallidermin displayed also strong affinity to pure DOPC membranes (0.53 μM) an effect that was supported by ITC measurements. A surface acoustic wave (SAW) sensor allowed measurements in the picomolar concentration range and revealed that gallidermin targets lipid II at an equimolar ratio and simultaneously inserts into the bilayer. These results indicate that gallidermin, in contrast to vancomycin, combines cell wall inhibition and interference with the bacterial membrane integrity for potent antimicrobial activity.
Collapse
Affiliation(s)
- Saad Al-Kaddah
- Department of Pharmacy, Rheinische Friedrich Wilhelms University Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
84
|
|
85
|
Identification of the active component that induces vancomycin resistance in MRSA. J Antibiot (Tokyo) 2010; 63:533-8. [PMID: 20588304 DOI: 10.1038/ja.2010.75] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A fraction of methicillin-resistant Staphylococcus aureus (MRSA) shows resistance to vancomycin (VCM) in the presence of β-lactam antibiotics (BIVR) at low concentrations. We hypothesized that the BIVR phenomenon might be exerted by a peptidoglycan derivative(s) generated as a consequence of β-lactam antibiotic action. To verify this hypothesis, we isolated the fraction that mimicked the effect of β-lactam antibiotics by the enzymatic treatment of the crude cell wall. The active components were purified by a combination of reverse phase chromatographies, mass spectrum and amino-acid analyses, and were identified to be a muropeptide with the following formula: N-acetyglucosamyl-N-acetylmuramyl--Ala-D-isoGln-L-Lys-(ɛ-NH-4Gly)-D-Ala-2Gly. This is the very first identification of the active component, which induces VCM resistance in MRSA. We found that the BIVR cells are highly sensitive to this compound rendering the cells resistant to VCM compared with non-BIVR MRSA.
Collapse
|
86
|
Kikuchi T, Karki S, Fujisawa I, Matsushima Y, Nitanai Y, Aoki K. Crystal Structures of Two Vancomycin Complexes with Phosphate andN-Acetyl–D-Ala. Structural Comparison between Low-Affinity and High-Affinity Ligand Complexes of Vancomycin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20090326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
87
|
Devasahayam G, Scheld WM, Hoffman PS. Newer antibacterial drugs for a new century. Expert Opin Investig Drugs 2010; 19:215-34. [PMID: 20053150 DOI: 10.1517/13543780903505092] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
IMPORTANCE OF THE FIELD Antibacterial drug discovery and development has slowed considerably in recent years, with novel classes discovered decades ago and regulatory approvals tougher to get. Traditional approaches and the newer genomic mining approaches have not yielded novel classes of antibacterial compounds. Instead, improved analogues of existing classes of antibacterial drugs have been developed by improving potency, minimizing resistance and alleviating toxicity. AREAS COVERED IN THIS REVIEW This article is a comprehensive review of newer classes of antibacterial drugs introduced or approved after year 2000. WHAT THE READER WILL GAIN It describes their mechanisms of action/resistance, improved analogues, spectrum of activity and clinical trials. It also discusses new compounds in development with novel mechanisms of action, as well as novel unexploited bacterial targets and strategies that may pave the way for combating drug resistance and emerging pathogens in the twenty-first century. TAKE HOME MESSAGE The outlook of antibacterial drug discovery, though challenging, may not be insurmountable in the years ahead, with legislation on incentives and funding introduced for developing an antimicrobial discovery program and efforts to conserve antibacterial drug use.
Collapse
Affiliation(s)
- Gina Devasahayam
- University of Virginia, Department of Medicine, Room 2146 MR4 Bldg, 409 Lane Rd, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
88
|
Brzezowska M, Kucharczyk-Klamińska M, Bernardi F, Valensin D, Gaggelli N, Gaggelli E, Valensin G, Jeżowska-Bojczuk M. Cu(II) ion interaction with teicoplanin-vancomycin’s analog. J Inorg Biochem 2010; 104:193-8. [DOI: 10.1016/j.jinorgbio.2009.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 10/26/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
|
89
|
Guskey MT, Tsuji BT. A Comparative Review of the Lipoglycopeptides: Oritavancin, Dalbavancin, and Telavancin. Pharmacotherapy 2010; 30:80-94. [DOI: 10.1592/phco.30.1.80] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
90
|
Patti GJ, Kim SJ, Yu TY, Dietrich E, Tanaka KSE, Parr TR, Far AR, Schaefer J. Vancomycin and oritavancin have different modes of action in Enterococcus faecium. J Mol Biol 2009; 392:1178-91. [PMID: 19576226 PMCID: PMC2748155 DOI: 10.1016/j.jmb.2009.06.064] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/20/2009] [Accepted: 06/24/2009] [Indexed: 02/03/2023]
Abstract
The increasing frequency of Enterococcus faecium isolates with multidrug resistance is a serious clinical problem given the severely limited number of therapeutic options available to treat these infections. Oritavancin is a promising new alternative in clinical development that has potent antimicrobial activity against both staphylococcal and enterococcal vancomycin-resistant pathogens. Using solid-state NMR to detect changes in the cell-wall structure and peptidoglycan precursors of whole cells after antibiotic-induced stress, we report that vancomycin and oritavancin have different modes of action in E. faecium. Our results show the accumulation of peptidoglycan precursors after vancomycin treatment, consistent with transglycosylase inhibition, but no measurable difference in cross-linking. In contrast, after oritavancin exposure, we did not observe the accumulation of peptidoglycan precursors. Instead, the number of cross-links is significantly reduced, showing that oritavancin primarily inhibits transpeptidation. We propose that the activity of oritavancin is the result of a secondary binding interaction with the E. faecium peptidoglycan. The hypothesis is supported by results from (13)C{(19)F} rotational-echo double-resonance (REDOR) experiments on whole cells enriched with l-[1-(13)C]lysine and complexed with desleucyl [(19)F]oritavancin. These experiments establish that an oritavancin derivative with a damaged d-Ala-d-Ala binding pocket still binds to E. faecium peptidoglycan. The (13)C{(19)F} REDOR dephasing maximum indicates that the secondary binding site of oritavancin is specific to nascent and template peptidoglycan. We conclude that the inhibition of transpeptidation by oritavancin in E. faecium is the result of the large number of secondary binding sites relative to the number of primary binding sites.
Collapse
Affiliation(s)
- Gary J. Patti
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130
| | - Sung Joon Kim
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130
| | - Tsyr-Yan Yu
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130
| | - Evelyne Dietrich
- Targanta Therapeutics, Inc., 7170 Frederick Banting, Saint Laurent, Quebec, Canada H4S 21A
| | - Kelly S. E. Tanaka
- Targanta Therapeutics, Inc., 7170 Frederick Banting, Saint Laurent, Quebec, Canada H4S 21A
| | - Thomas R. Parr
- Targanta Therapeutics, Inc., 7170 Frederick Banting, Saint Laurent, Quebec, Canada H4S 21A
| | - Adel Rafai Far
- Targanta Therapeutics, Inc., 7170 Frederick Banting, Saint Laurent, Quebec, Canada H4S 21A
| | - Jacob Schaefer
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130
| |
Collapse
|
91
|
Truman AW, Dias MVB, Wu S, Blundell TL, Huang F, Spencer JB. Chimeric glycosyltransferases for the generation of hybrid glycopeptides. ACTA ACUST UNITED AC 2009; 16:676-85. [PMID: 19549605 DOI: 10.1016/j.chembiol.2009.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 04/23/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
Glycodiversification, an invaluable tool for generating biochemical diversity, can be catalyzed by glycosyltransferases, which attach activated sugar "donors" onto "acceptor" molecules. However, many glycosyltransferases can tolerate only minor modifications to their native substrates, thus making them unsuitable tools for current glycodiversification strategies. Here we report the production of functional chimeric glycosyltransferases by mixing and matching the N- and C-terminal domains of glycopeptide glycosyltransferases. Using this method we have generated hybrid glycopeptides and have demonstrated that domain swapping can result in a predictable switch of substrate specificity, illustrating that N- and C-terminal domains predominantly dictate acceptor and donor specificity, respectively. The determination of the structure of a chimera in complex with a sugar donor analog shows that almost all sugar-glycosyltransferase binding interactions occur in the C-terminal domain.
Collapse
Affiliation(s)
- Andrew W Truman
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, UK.
| | | | | | | | | | | |
Collapse
|
92
|
Leung SSF, Tirado-Rives J, Jorgensen WL. Vancomycin analogs: Seeking improved binding of d-Ala-d-Ala and d-Ala-d-Lac peptides by side-chain and backbone modifications. Bioorg Med Chem 2009; 17:5874-86. [PMID: 19620008 PMCID: PMC2892990 DOI: 10.1016/j.bmc.2009.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/27/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
In order to seek vancomycin analogs with improved performance against VanA and VanB resistant bacterial strains, extensive computational investigations have been performed to examine the effects of side-chain and backbone modifications. Changes in binding affinities for tripeptide cell-wall precursor mimics, Ac(2)-l-Lys-d-Ala-d-Ala (3) and Ac(2)-l-Lys-d-Ala-d-Lac (4), with vancomycin analogs were computed with Monte Carlo/free energy perturbation (MC/FEP) calculations. Replacements of the 3-hydroxyl group in residue 7 with small alkyl or alkoxy groups, which improve contacts with the methyl side chain of the ligands'd-Ala residue, are predicted to be the most promising to enhance binding for both ligands. The previously reported amine backbone modification as in 5 is shown to complement the hydrophobic modifications for binding monoacetylated tripeptides. In addition, replacement of the hydroxyl groups in residues 5 and 7 by fluorine is computed to have negligible impact on binding the tripeptides, though it may be pharmacologically advantageous.
Collapse
|
93
|
Kim SJ, Singh M, Schaefer J. Oritavancin binds to isolated protoplast membranes but not intact protoplasts of Staphylococcus aureus. J Mol Biol 2009; 391:414-25. [PMID: 19538971 PMCID: PMC2747642 DOI: 10.1016/j.jmb.2009.06.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 06/04/2009] [Accepted: 06/11/2009] [Indexed: 11/19/2022]
Abstract
Solid-state NMR has been used to examine the binding of N'-4-[(4-fluorophenyl)benzyl)]chloroeremomycin, a fluorinated analogue of oritavancin, to isolated protoplast membranes and whole-cell sucrose-stabilized protoplasts of Staphylococcus aureus, grown in media containing [1(13)C]glycine and L-[epsilon-(15)N]lysine. Rotational-echo double-resonance NMR was used to characterize the binding by estimating internuclear distances from (19)F of oritavancin to (13)C and (15)N labels of the membrane-associated peptidoglycan and to the (31)P of the phospholipid bilayer of the membrane. In isolated protoplast membranes, both with and without 1 M sucrose added to the buffer, the nascent peptidoglycan was extended away from the membrane surface and the oritavancin hydrophobic side chain was buried deep in the exposed lipid bilayer. However, there was no N'-4-[(4-fluorophenyl)benzyl)]chloroeremomycin binding to intact sucrose-stabilized protoplasts, even though the drug bound normally to the cell walls of whole cells of S. aureus in the presence of 1 M sucrose. As shown by the proximity of peptidoglycan-bridge (13)C labels to phosphate (31)P, the nascent peptidoglycan of the intact protoplasts was confined to the membrane surface.
Collapse
Affiliation(s)
- Sung Joon Kim
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Manmilan Singh
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Jacob Schaefer
- Department of Chemistry, Washington University, St. Louis, MO 63130
| |
Collapse
|
94
|
Biosynthesis, biotechnological production, and application of teicoplanin: current state and perspectives. Appl Microbiol Biotechnol 2009; 84:417-28. [DOI: 10.1007/s00253-009-2107-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/19/2009] [Accepted: 06/21/2009] [Indexed: 11/26/2022]
|
95
|
Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother 2009; 53:3375-83. [PMID: 19470513 DOI: 10.1128/aac.01710-08] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telavancin is an investigational lipoglycopeptide antibiotic currently being developed for the treatment of serious infections caused by gram-positive bacteria. The bactericidal action of telavancin results from a mechanism that combines the inhibition of cell wall synthesis and the disruption of membrane barrier function. The purpose of the present study was to further elucidate the mechanism by which telavancin interacts with the bacterial membrane. A flow cytometry assay with the diethyloxacarbocyanine dye DiOC(2)(3) was used to probe the membrane potential of actively growing Staphylococcus aureus cultures. Telavancin caused pronounced membrane depolarization that was both time and concentration dependent. Membrane depolarization was demonstrated against a reference S. aureus strain as well as phenotypically diverse isolates expressing clinically important methicillin-resistant (MRSA), vancomycin-intermediate (VISA), and heterogeneous VISA (hVISA) phenotypes. The cell wall precursor lipid II was shown to play an essential role in telavancin-induced depolarization. This was demonstrated both in competition binding experiments with exogenous D-Ala-D-Ala-containing ligand and in experiments with cells expressing altered levels of lipid II. Finally, monitoring of the optical density of S. aureus cultures exposed to telavancin showed that cell lysis does not occur during the time course in which membrane depolarization and bactericidal activity are observed. Taken together, these data indicate that telavancin's membrane mechanism requires interaction with lipid II, a high-affinity target that mediates binding to the bacterial membrane. The targeted interaction with lipid II and the consequent disruption of both peptidoglycan synthesis and membrane barrier function provide a mechanistic basis for the improved antibacterial properties of telavancin relative to those of vancomycin.
Collapse
|
96
|
Abstract
The appearance and dissemination of vancomycin resistance among clinically important Gram-positive bacteria was an important watershed in antimicrobial resistance trends that drastically narrows therapeutic options, particularly among the enterococci. Clinical resistance despite apparent susceptibility has also become an increasingly recognized issue with vancomycin treatment of methicillin-resistant Staphylococcus aureus pneumonia and endocarditis, which may be, in part, due to vancomycin-heteroresistant strains. The newly developed glycopeptides telavancin, dalbavancin and oritavancin have superior in vitro activity, enhanced bactericidality and unique pharmacokinetic properties compared with vancomycin and teicoplanin. Current clinical trial data show noninferiority to vancomycin or standard-of-care antistaphylococcal therapy for complicated skin-skin structure infections, and acceptable safety profiles. Although promising, whether or not these new compounds are clinically efficacious for the true therapeutic deficits created by in vitro and clinical vancomycin resistance is yet to be determined.
Collapse
Affiliation(s)
- Peter K Linden
- Critical Care Medicine, University of Pittsburgh Medical Center, 602 A Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
97
|
Vancomycin resistance VanS/VanR two-component systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:200-13. [PMID: 18792691 DOI: 10.1007/978-0-387-78885-2_14] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Vancomycin is a member of the glycopeptide class of antibiotics. Vancomycin resistance (van) gene clusters are found in human pathogens such as Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus, glycopeptide-producing actinomycetes such as Amycolotopsis orientalis, Actinoplanes teichomyceticus and Streptomyces toyocaensis and the nonglycopeptide producing actinomycete Streptomyces coelicolor. Expression of the van genes is activated by the VanS/VanR two-component system in response to extracellular glycopeptide antibiotic. Two major types of inducible vancomycin resistance are found in pathogenic bacteria; VanA strains are resistant to vancomycin itself and also to the lipidated glycopeptide teicoplanin, while VanB strains are resistant to vancomycin but sensitive to teicoplanin. Here we discuss the enzymes the van genes encode, the range of different VanS/VanR two-component systems, the biochemistry of VanS/VanR, the nature of the effector ligand(s) recognised by VanS and the evolution of the van cluster.
Collapse
|
98
|
Kim SJ, Schaefer J. Hydrophobic side-chain length determines activity and conformational heterogeneity of a vancomycin derivative bound to the cell wall of Staphylococcus aureus. Biochemistry 2008; 47:10155-61. [PMID: 18759499 PMCID: PMC2656501 DOI: 10.1021/bi800838c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disaccharide-modified glycopeptides with hydrophobic side chains are active against vancomycin-resistant enterococci and vancomycin-resistant Staphylococcus aureus. The activity depends on the length of the side chain. The benzyl side chain of N-(4-fluorobenzyl)vancomycin (FBV) has the minimal length sufficient for enhancement in activity against vancomycin-resistant pathogens. The conformation of FBV bound to the peptidoglycan in whole cells of S. aureus has been determined using rotational-echo double resonance NMR by measuring internuclear distances from the (19)F of FBV to (13)C and (15)N labels incorporated into the cell-wall peptidoglycan. The hydrophobic side chain and aglycon of FBV form a cleft around the pentaglycyl bridge. FBV binds heterogeneously to the peptidoglycan as a monomer with the (19)F positioned near the middle of the pentaglycyl bridge, approximately 7 A from the bridge link. This differs from the situation for N-(4-(4-fluorophenyl)benzyl)vancomycin complexed to the peptidoglycan where the (19)F is located at the end of pentaglycyl bridge, 7 A from the cross-link.
Collapse
Affiliation(s)
- Sung Joon Kim
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Jacob Schaefer
- Department of Chemistry, Washington University, St. Louis, MO 63130
| |
Collapse
|
99
|
Zou Y, Brunzelle JS, Nair SK. Crystal structures of lipoglycopeptide antibiotic deacetylases: implications for the biosynthesis of A40926 and teicoplanin. ACTA ACUST UNITED AC 2008; 15:533-45. [PMID: 18559264 DOI: 10.1016/j.chembiol.2008.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 10/21/2022]
Abstract
The lipoglycopeptide antibiotics teicoplanin and A40926 have proven efficacy against Gram-positive pathogens. These drugs are distinguished from glycopeptide antibiotics by N-linked long chain acyl-D-glucosamine decorations that contribute to antibacterial efficacy. During the biosynthesis of lipoglycopeptides, tailoring glycosyltransferases attach an N-acetyl-D-glucosamine to the aglycone, and this N-acetyl-glucosaminyl pseudoaglycone is deacetylated prior to long chain hydrocarbon attachment. Here we present several high-resolution crystal structures of the pseudoaglycone deacetylases from the biosynthetic pathways of teicoplanin and A40926. The cocrystal structure of the teicoplanin pseudoaglycone deacetylase with a fatty acid product provides further insights into the roles of active-site residues, and suggests mechanistic similarities with structurally distinct zinc deacetylases, such as peptidoglycan deacetylase and LpxC. A unique, structurally mobile capping lid, located at the apex of these pseudoaglycone deacetylases, likely serves as a determinant of substrate specificity.
Collapse
Affiliation(s)
- Yaozhong Zou
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
100
|
Truman AW, Fan Q, Röttgen M, Stegmann E, Leadlay PF, Spencer JB. The Role of Cep15 in the Biosynthesis of Chloroeremomycin: Reactivation of an Ancestral Catalytic Function. ACTA ACUST UNITED AC 2008; 15:476-84. [DOI: 10.1016/j.chembiol.2008.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
|