51
|
Nagai H, Masuda A, Toya Y, Matsuda F, Shimizu H. Metabolic engineering of mevalonate-producing Escherichia coli strains based on thermodynamic analysis. Metab Eng 2018; 47:1-9. [DOI: 10.1016/j.ymben.2018.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/07/2017] [Accepted: 02/25/2018] [Indexed: 01/07/2023]
|
52
|
Masuda A, Toya Y, Shimizu H. Metabolic impact of nutrient starvation in mevalonate-producing Escherichia coli. BIORESOURCE TECHNOLOGY 2017; 245:1634-1640. [PMID: 28501379 DOI: 10.1016/j.biortech.2017.04.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to enhance mevalonate yield from glucose in Escherichia coli by essential nutrient starvations and to reveal these effects on the central carbon metabolism. Stationary phase culture without essential nutrients such as nitrogen, sulfur, and magnesium was evaluated using an engineered E. coli introducing mvaE and mvaS genes from Enterococcus faecalis. Sulfur starvation resulted in the highest mevalonate yield of 0.61C-molC-mol-1 from glucose. The metabolic impacts of nutrient starvation were investigated by 13C-metabolic flux analysis. Under nitrogen starvation, the flux of the TCA cycle was large, causing high CO2 production. This was caused by degradation of mevalonate synthesis pathway enzymes. Under magnesium starvation, NADPH production was decreased, which limited mevalonate synthesis and promoted an overflow of acetate. Sulfur starvation not only suppressed the TCA cycle flux, but also supplied NADPH for mevalonate synthesis.
Collapse
Affiliation(s)
- Ami Masuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
53
|
Matsumoto T, Tanaka T, Kondo A. Engineering metabolic pathways in Escherichia coli for constructing a "microbial chassis" for biochemical production. BIORESOURCE TECHNOLOGY 2017; 245:1362-1368. [PMID: 28522199 DOI: 10.1016/j.biortech.2017.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The present work reviews literature describing the re-design of the metabolic pathways of a microbial host using sophisticated genetic tools, yielding strains for producing value-added chemicals including fuels, building-block chemicals, pharmaceuticals, and derivatives. This work employed Escherichia coli, a well-studied microorganism that has been successfully engineered to produce various chemicals. E. coli has several advantages compared with other microorganisms, including robustness, and handling. To achieve efficient productivities of target compounds, an engineered E. coli should accumulate metabolic precursors of target compounds. Multiple researchers have reported the use of pathway engineering to generate strains capable of accumulating various metabolic precursors, including pyruvate, acetyl-CoA, malonyl-CoA, mevalonate and shikimate. The aim of this review provides a promising guideline for designing E. coli strains capable of producing a variety of useful chemicals. Herein, the present work reviews their common and unique strategies, treating metabolically engineered E. coli as a "microbial chassis".
Collapse
Affiliation(s)
- Takuya Matsumoto
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
54
|
Zhang L, Liu Q, Pan H, Li X, Guo D. Metabolic engineering of Escherichia coli to high efficient synthesis phenylacetic acid from phenylalanine. AMB Express 2017; 7:105. [PMID: 28549374 PMCID: PMC5445031 DOI: 10.1186/s13568-017-0407-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/22/2017] [Indexed: 11/10/2022] Open
Abstract
Phenylacetic acid (PAA) is a fine chemical with a high industrial demand for its widespread uses. Whereas, microorganic synthesis of PAA is impeded by the formation of by-product phenethyl alcohol due to quick, endogenous, and superfluous conversion of aldehydes to their corresponding alcohols, which resulted in less conversation of PAA from aldehydes. In this study, an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that does duty for a platform for aromatic aldehyde biosynthesis was used to prompt more PAA biosynthesis. We establish a microbial biosynthetic pathway for PAA production from the simple substrate phenylalanine in E. coli with heterologous coexpression of aminotransferase (ARO8), keto acid decarboxylase (KDC) and aldehyde dehydrogenase H (AldH) gene. It was found that PAA transformation yield was up to ~94% from phenylalanine in E. coli and there was no by-product phenethyl alcohol was detected. Our results reveal the high efficiency of the RARE strain for production of PAA and indicate the potential industrial applicability of this microbial platform for PAA biosynthesis.
Collapse
|
55
|
Holistic bioengineering: rewiring central metabolism for enhanced bioproduction. Biochem J 2017; 474:3935-3950. [PMID: 29146872 PMCID: PMC5688466 DOI: 10.1042/bcj20170377] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022]
Abstract
What does it take to convert a living organism into a truly productive biofactory? Apart from optimizing biosynthesis pathways as standalone units, a successful bioengineering approach must bend the endogenous metabolic network of the host, and especially its central metabolism, to support the bioproduction process. In practice, this usually involves three complementary strategies which include tuning-down or abolishing competing metabolic pathways, increasing the availability of precursors of the desired biosynthesis pathway, and ensuring high availability of energetic resources such as ATP and NADPH. In this review, we explore these strategies, focusing on key metabolic pathways and processes, such as glycolysis, anaplerosis, the TCA (tricarboxylic acid) cycle, and NADPH production. We show that only a holistic approach for bioengineering — considering the metabolic network of the host organism as a whole, rather than focusing on the production pathway alone — can truly mold microorganisms into efficient biofactories.
Collapse
|
56
|
Improving metabolic efficiency of the reverse beta-oxidation cycle by balancing redox cofactor requirement. Metab Eng 2017; 44:313-324. [PMID: 29122703 DOI: 10.1016/j.ymben.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/29/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Abstract
Previous studies have made many exciting achievements on pushing the functional reversal of beta-oxidation cycle (r-BOX) to more widespread adoption for synthesis of a wide variety of fuels and chemicals. However, the redox cofactor requirement for the efficient operation of r-BOX remains unclear. In this work, the metabolic efficiency of r-BOX for medium-chain fatty acid (C6-C10, MCFA) production was optimized by redox cofactor engineering. Stoichiometric analysis of the r-BOX pathway and further experimental examination identified NADH as a crucial determinant of r-BOX process yield. Furthermore, the introduction of formate dehydrogenase from Candida boidinii using fermentative inhibitor byproduct formate as a redox NADH sink improved MCFA titer from initial 1.2g/L to 3.1g/L. Moreover, coupling of increasing the supply of acetyl-CoA with NADH to achieve fermentative redox balance enabled product synthesis at maximum titers. To this end, the acetate re-assimilation pathway was further optimized to increase acetyl-CoA availability associated with the new supply of NADH. It was found that the acetyl-CoA synthetase activity and intracellular ATP levels constrained the activity of acetate re-assimilation pathway, and 4.7g/L of MCFA titer was finally achieved after alleviating these two limiting factors. To the best of our knowledge, this represented the highest titer reported to date. These results demonstrated that the key constraint of r-BOX was redox imbalance and redox engineering could further unleash the lipogenic potential of this cycle. The redox engineering strategies could be applied to acetyl-CoA-derived products or other bio-products requiring multiple redox cofactors for biosynthesis.
Collapse
|
57
|
Liu H, Cheng T, Zou H, Zhang H, Xu X, Sun C, Aboulnaga E, Cheng Z, Zhao G, Xian M. High titer mevalonate fermentation and its feeding as a building block for isoprenoids (isoprene and sabinene) production in engineered Escherichia coli. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
58
|
Kim JW, Yoon HC, Kwon SJ, Lee BY, Lee PC. Purification of biomevalonate from fermentation broth and conversion of biomevalonate into biomevalonolactone. J Biotechnol 2017; 259:46-49. [DOI: 10.1016/j.jbiotec.2017.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/03/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
|
59
|
Englaender JA, Jones JA, Cress BF, Kuhlman TE, Linhardt RJ, Koffas MAG. Effect of Genomic Integration Location on Heterologous Protein Expression and Metabolic Engineering in E. coli. ACS Synth Biol 2017; 6:710-720. [PMID: 28055177 DOI: 10.1021/acssynbio.6b00350] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromosomal integration offers a selection-free alternative to DNA plasmids for expression of foreign proteins and metabolic pathways. Episomal plasmid DNA is convenient but has drawbacks including increased metabolic burden and the requirement for selection in the form of antibiotics. E. coli has long been used for the expression of foreign proteins and for the production of valuable metabolites by expression of complete metabolic pathways. The gene encoding the fluorescent reporter protein mCherry was integrated into four genomic loci on the E. coli chromosome to measure protein expression at each site. Expression levels ranged from 25% to 500% compared to the gene expressed on a high-copy plasmid. Modular expression of DNA is one of the most commonly used methods for optimizing metabolite production by metabolic engineering. By combining a recently developed method for integration of large synthetic DNA constructs into the genome, we were able to integrate two foreign pathways into the same four genomic loci. We have demonstrated that only one of the genomic loci resulted in the production of violacein, and that all four loci produced trans-cinnamic acid from the TAL pathway.
Collapse
Affiliation(s)
- Jacob A Englaender
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - J Andrew Jones
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
- Department of Chemistry, Hamilton College , Clinton, New York 13323, United States
| | - Brady F Cress
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Thomas E Kuhlman
- Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Carl. R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Robert J Linhardt
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Mattheos A G Koffas
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|