51
|
Laccase engineering: From rational design to directed evolution. Biotechnol Adv 2015; 33:25-40. [DOI: 10.1016/j.biotechadv.2014.12.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/17/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
|
52
|
Singh G, Kaur K, Puri S, Sharma P. Critical factors affecting laccase-mediated biobleaching of pulp in paper industry. Appl Microbiol Biotechnol 2014; 99:155-64. [PMID: 25421562 DOI: 10.1007/s00253-014-6219-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Next to xylanases, laccases from fungi and alkali-tolerant bacteria are the most important biocatalysts that can be employed for eco-friendly biobleaching of hard and soft wood pulps in the paper industry. Laccases offer a potential alternative to conventional, environmental-polluting chlorine and chlorine-based bleaching and has no reductive effect on the final yield of pulp as compared to hemicellulases (xylanases and mannanases). In the last decade, reports on biobleaching with laccases are based on laboratory observations only. There are several critical challenges before this enzyme can be implemented for pulp bleaching at the industrial scale. This review discusses significant factors like redox potential, laccase mediator system (LMS)-synthetic or natural, pH, temperature, stability of enzyme, unwanted grafting reactions of laccase, and cost-intensive production at large scale which constitute a great hitch for the successful implementation of laccases at industrial level.
Collapse
Affiliation(s)
- Gursharan Singh
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Chandigarh, India,
| | | | | | | |
Collapse
|
53
|
Singh B. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential. Crit Rev Biotechnol 2014; 36:59-69. [PMID: 25025273 DOI: 10.3109/07388551.2014.923985] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myceliophthora thermophila syn. Sporotrichum thermophile is a ubiquitous thermophilic mould with a strong ability to degrade organic matter during optimal growth at 45 °C. Both genome analysis and experimental data have suggested that the mould is capable of hydrolyzing all major polysaccharides found in biomass. The mould is able to secrete a large number of hydrolytic enzymes (cellulases, laccases, xylanases, pectinases, lipases, phytases and some other miscellaneous enzymes) employed in various biotechnological applications. Characterization of the biomass-hydrolyzing activity of wild and recombinant enzymes suggests that this mould is highly efficient in biomass decomposition at both moderate and high temperatures. The native enzymes produced by the mould are more efficient in activity than their mesophilic counterparts beside their low enzyme titers. The mould is able to synthesize various biomolecules, which are used in multifarious applications. Genome sequence data of M. thermophila also supported the physiological data. This review describes the biotechnological potential of thermophilic mould, M. thermophila supported by genomic and experimental evidences.
Collapse
Affiliation(s)
- Bijender Singh
- a Laboratory of Bioprocess Technology, Department of Microbiology , Maharshi Dayanand University , Rohtak-124001 , Haryana , India
| |
Collapse
|
54
|
Karnaouri A, Topakas E, Antonopoulou I, Christakopoulos P. Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila. Front Microbiol 2014; 5:281. [PMID: 24995002 PMCID: PMC4061905 DOI: 10.3389/fmicb.2014.00281] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/22/2014] [Indexed: 01/08/2023] Open
Abstract
The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Cellulolytic fungi represent a promising group of organisms, as they have evolved complex systems for adaptation to their natural habitat. The filamentous fungus Myceliophthora thermophila constitutes an exceptionally powerful cellulolytic microorganism that synthesizes a complete set of enzymes necessary for the breakdown of plant cell wall. The genome of this fungus has been recently sequenced and annotated, allowing systematic examination and identification of enzymes required for the degradation of lignocellulosic biomass. The genomic analysis revealed the existence of an expanded enzymatic repertoire including numerous cellulases, hemicellulases, and enzymes with auxiliary activities, covering the most of the recognized CAZy families. Most of them were predicted to possess a secretion signal and undergo through post-translational glycosylation modifications. These data offer a better understanding of activities embedded in fungal lignocellulose decomposition mechanisms and suggest that M. thermophila could be made usable as an industrial production host for cellulolytic and hemicellulolytic enzymes.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens Athens, Greece ; Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| | - Evangelos Topakas
- Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens Athens, Greece
| | - Io Antonopoulou
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| |
Collapse
|
55
|
Gascón V, Díaz I, Márquez-Álvarez C, Blanco RM. Mesoporous silicas with tunable morphology for the immobilization of laccase. Molecules 2014; 19:7057-71. [PMID: 24886935 PMCID: PMC6272017 DOI: 10.3390/molecules19067057] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 11/25/2022] Open
Abstract
Siliceous ordered mesoporous materials (OMM) are gaining interest as supports for enzyme immobilization due to their uniform pore size, large surface area, tunable pore network and the introduction of organic components to mesoporous structure. We used SBA-15 type silica materials, which exhibit a regular 2D hexagonal packing of cylindrical mesopores of uniform size, for non-covalent immobilization of laccase. Synthesis conditions were adjusted in order to obtain supports with different particle shape, where those with shorter channels had higher loading capacity. Despite the similar isoelectric points of silica and laccase and the close match between the size of laccase and the pore dimensions of these SBA-15 materials, immobilization was achieved with very low leaching. Surface modification of macro-/mesoporous amorphous silica by grafting of amine moieties was proved to significantly increase the isoelectric point of this support and improve the immobilization yield.
Collapse
Affiliation(s)
- Victoria Gascón
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, Madrid 28049, Spain
| | - Isabel Díaz
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, Madrid 28049, Spain
| | | | - Rosa M Blanco
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, Madrid 28049, Spain.
| |
Collapse
|
56
|
Hoshida H, Fujita T, Murata K, Kubo K, Akada R. Copper-Dependent Production of aPycnoporus coccineusExtracellular Laccase inAspergillus oryzaeandSaccharomyces cerevisiae. Biosci Biotechnol Biochem 2014; 69:1090-7. [PMID: 15973039 DOI: 10.1271/bbb.69.1090] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Laccase is a multicopper-containing enzyme that catalyzes the oxidation of phenolic compounds. lcc1 cDNA coding for a secretory laccase of Pycnoporus coccineus was expressed under the maltose inducible amyB promoter in Aspergillus oryzae and under the galactose inducible GAL10 promoter in Saccharomyces cerevisiae. Laccase activities, which were undetectable in the absence of copper, were observed by increasing copper concentrations in the media for both systems. The amounts of secreted laccase protein but not lcc1 mRNA increased in proportion to copper concentrations in A. oryzae. The extracellular activities of native A. oryzae amylase and recombinant RNase-T1 expressed from the same amyB promoter in A. oryzae were constant regardless of copper concentrations. Our results indicate that a high copper concentration is required for the production of active laccase in heterologous hosts and that the copper is required for a post-transcriptional process.
Collapse
Affiliation(s)
- Hisashi Hoshida
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube, Japan.
| | | | | | | | | |
Collapse
|
57
|
Construction of a Laccase Chimerical Gene: Recombinant Protein Characterization and Gene Expression via Yeast Surface Display. Appl Biochem Biotechnol 2014; 172:2916-31. [DOI: 10.1007/s12010-014-0734-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
|
58
|
Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A. Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:6. [PMID: 24401177 PMCID: PMC3917704 DOI: 10.1186/1754-6834-7-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/06/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Biofuel production from lignocellulosic material is hampered by biomass recalcitrance towards enzymatic hydrolysis due to the compact architecture of the plant cell wall and the presence of lignin. The purpose of this work is to study the ability of an industrially available laccase-mediator system to modify and remove lignin during pretreatment of wood (Eucalyptus globulus) feedstock, thus improving saccharification, and to analyze the chemical modifications produced in the whole material and especially in the recalcitrant lignin moiety. RESULTS Up to 50% lignin removal from ground eucalypt wood was attained by pretreatment with recombinant Myceliophthora thermophila laccase and methyl syringate as mediator, followed by alkaline peroxide extraction in a multistage sequence. The lignin removal directly correlated with increases (approximately 40%) in glucose and xylose yields after enzymatic hydrolysis. The pretreatment using laccase alone (without mediator) removed up to 20% of lignin from eucalypt wood. Pyrolysis-gas chromatography/mass spectrometry of the pretreated wood revealed modifications of the lignin polymer, as shown by lignin markers with shortened side chains and increased syringyl-to-guaiacyl ratio. Additional information on the chemical modifications produced was obtained by two-dimensional nuclear magnetic resonance of the whole wood swollen in dimethylsulfoxide-d6. The spectra obtained revealed the removal of guaiacyl and syringyl lignin units, although with a preferential removal of the former, and the lower number of aliphatic side-chains per phenylpropane unit (involved in main β-O-4' and β-β' inter-unit linkages), in agreement with the pyrolysis-gas chromatography/mass spectrometry results, without a substantial change in the wood polysaccharide signals. However, the most noticeable modification observed in the spectra was the formation of Cα-oxidized syringyl lignin units during the enzymatic treatment. Further insight into the modifications of lignin structure, affecting other inter-unit linkages and oxidized structures, was attained by nuclear magnetic resonance of the lignins isolated from the eucalypt feedstock after the enzymatic pretreatments. CONCLUSIONS This work shows the potential of an oxidative enzymatic pretreatment to delignify and improve cellulase saccharification of a hardwood feedstock (eucalypt wood) when applied directly on the ground lignocellulosic material, and reveals the main chemical changes in the pretreated material, and its recalcitrant lignin moiety, behind the above results.
Collapse
Affiliation(s)
- Alejandro Rico
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
| | - José C del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
| |
Collapse
|
59
|
Gascón V, Díaz I, Blanco RM, Márquez-Álvarez C. Hybrid periodic mesoporous organosilica designed to improve the properties of immobilized enzymes. RSC Adv 2014. [DOI: 10.1039/c4ra05362a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hybrid organosilica supports synthesized with pore size adjusted to enzyme dimensions provide high stability in organic solvent systems and prevent leaching.
Collapse
Affiliation(s)
- V. Gascón
- Molecular Sieves Group. Institute of Catalysis and Petroleum Chemistry (ICP-CSIC)
- Madrid, Spain
| | - I. Díaz
- Molecular Sieves Group. Institute of Catalysis and Petroleum Chemistry (ICP-CSIC)
- Madrid, Spain
| | - R. M. Blanco
- Molecular Sieves Group. Institute of Catalysis and Petroleum Chemistry (ICP-CSIC)
- Madrid, Spain
| | - C. Márquez-Álvarez
- Molecular Sieves Group. Institute of Catalysis and Petroleum Chemistry (ICP-CSIC)
- Madrid, Spain
| |
Collapse
|
60
|
Du X, Li J, Gellerstedt G, Rencoret J, Del Río JC, Martínez AT, Gutiérrez A. Understanding Pulp Delignification by Laccase–Mediator Systems through Isolation and Characterization of Lignin–Carbohydrate Complexes. Biomacromolecules 2013; 14:3073-80. [DOI: 10.1021/bm4006936] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xueyu Du
- Department of Fibre and Polymer
Technology, Royal Institute of Technology, KTH, Teknikringen 56-58, SE-10044 Stockholm, Sweden
| | - Jiebing Li
- Department of Fibre and Polymer
Technology, Royal Institute of Technology, KTH, Teknikringen 56-58, SE-10044 Stockholm, Sweden
| | - Göran Gellerstedt
- Department of Fibre and Polymer
Technology, Royal Institute of Technology, KTH, Teknikringen 56-58, SE-10044 Stockholm, Sweden
| | - Jorge Rencoret
- Instituto de Recursos Naturales
y Agrobiología de Sevilla, CSIC,
P.O. Box 1052, E-41080 Seville, Spain
| | - José C. Del Río
- Instituto de Recursos Naturales
y Agrobiología de Sevilla, CSIC,
P.O. Box 1052, E-41080 Seville, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales
y Agrobiología de Sevilla, CSIC,
P.O. Box 1052, E-41080 Seville, Spain
| |
Collapse
|
61
|
MacAodha D, Conghaile PÓ, Egan B, Kavanagh P, Leech D. Membraneless Glucose/Oxygen Enzymatic Fuel Cells Using Redox Hydrogel Films Containing Carbon Nanotubes. Chemphyschem 2013; 14:2302-7. [DOI: 10.1002/cphc.201300239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Indexed: 11/11/2022]
|
62
|
Laccase-mediated synthesis of 2-methoxy-3-methyl-5-(alkylamino)- and 3-methyl-2,5-bis(alkylamino)-[1,4]-benzoquinones. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
63
|
Hahn V, Mikolasch A, Schauer F. Cleavage and synthesis function of high and low redox potential laccases towards 4-morpholinoaniline and aminated as well as chlorinated phenols. Appl Microbiol Biotechnol 2013; 98:1609-20. [DOI: 10.1007/s00253-013-4984-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 11/24/2022]
|
64
|
Torres-Salas P, Mate DM, Ghazi I, Plou FJ, Ballesteros AO, Alcalde M. Widening the pH activity profile of a fungal laccase by directed evolution. Chembiochem 2013; 14:934-7. [PMID: 23592228 DOI: 10.1002/cbic.201300102] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 11/07/2022]
Abstract
Unnatural selection: A fungal laccase was tailored by directed evolution to be active at neutral/alkaline pH. After five generations, the final mutant showed a broader pH profile while retaining 50 to 80 % of its activity at neutral pH.
Collapse
Affiliation(s)
- Pamela Torres-Salas
- Department of Biocatalysis, Institute of Catalysis, CSIC, Marie Curie St. 2, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
65
|
Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica. Appl Environ Microbiol 2012; 79:1316-24. [PMID: 23241981 DOI: 10.1128/aem.02865-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid and efficient enzymatic degradation of plant biomass into fermentable sugars is a major challenge for the sustainable production of biochemicals and biofuels. Enzymes that are more thermostable (up to 70°C) use shorter reaction times for the complete saccharification of plant polysaccharides compared to hydrolytic enzymes of mesophilic fungi such as Trichoderma and Aspergillus species. The genus Myceliophthora contains four thermophilic fungi producing industrially relevant thermostable enzymes. Within this genus, isolates belonging to M. heterothallica were recently separated from the well-described species M. thermophila. We evaluate here the potential of M. heterothallica isolates to produce efficient enzyme mixtures for biomass degradation. Compared to the other thermophilic Myceliophthora species, isolates belonging to M. heterothallica and M. thermophila grew faster on pretreated spruce, wheat straw, and giant reed. According to their protein profiles and in vitro assays after growth on wheat straw, (hemi-)cellulolytic activities differed strongly between M. thermophila and M. heterothallica isolates. Compared to M. thermophila, M. heterothallica isolates were better in releasing sugars from mildly pretreated wheat straw (with 5% HCl) with a high content of xylan. The high levels of residual xylobiose revealed that enzyme mixtures of Myceliophthora species lack sufficient β-xylosidase activity. Sexual crossing of two M. heterothallica showed that progenies had a large genetic and physiological diversity. In the future, this will allow further improvement of the plant biomass-degrading enzyme mixtures of M. heterothallica.
Collapse
|
66
|
Ba S, Arsenault A, Hassani T, Jones JP, Cabana H. Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment. Crit Rev Biotechnol 2012; 33:404-18. [PMID: 23051065 DOI: 10.3109/07388551.2012.725390] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the last few decades many attempts have been made to use biocatalysts for the biotransformation of emerging contaminants in environmental matrices. Laccase, a multicopper oxidoreductase enzyme, has shown great potential in oxidizing a large number of phenolic and non-phenolic emerging contaminants. However, laccases and more broadly enzymes in their free form are biocatalysts whose applications in solution have many drawbacks rendering them currently unsuitable for large scale use. To circumvent these limitations, the enzyme can be immobilized onto carriers or entrapped within capsules; these two immobilization techniques have the disadvantage of generating a large mass of non-catalytic product. Insolubilization of the free enzymes as cross-linked enzymes (CLEAs) is found to yield a greater volume ratio of biocatalyst while improving the characteristics of the biocatalyst. Ultimately, novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater. In this review, fundamental features of laccases are provided in order to elucidate their catalytic mechanism, followed by different chemical aspects of the immobilization and insolubilization techniques applicable to laccases. Finally, kinetic and reactor design effects for enzymes in relation with the potential applications of laccases as combi-CLEAs and EPESs for the biotransformation of micropollutants in wastewater treatment are discussed.
Collapse
Affiliation(s)
- Sidy Ba
- Department of Chemical Engineering, Université de Sherbrooke , Sherbrooke, Québec , Canada
| | | | | | | | | |
Collapse
|
67
|
Gouveia S, Fernández-Costas C, Sanromán MA, Moldes D. Enzymatic polymerisation and effect of fractionation of dissolved lignin from Eucalyptus globulus Kraft liquor. BIORESOURCE TECHNOLOGY 2012; 121:131-138. [PMID: 22858477 DOI: 10.1016/j.biortech.2012.05.144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 06/01/2023]
Abstract
The potential ability of the laccase from Myceliophthora thermophila, either alone or with low molecular weight (LMW) additives, to polymerise a dissolved lignin from Kraft liquor of eucalypt cooking was investigated. A previous study of enzymatic performance (activity and stability) was carried out using a design experiment methodology. In addition, Kraft dissolved lignin (KDL) was fractionated according to two different protocols (solvent extraction and acidic fractionation) in order to identify possible lignin fractions with noticeable polymerisation ability. KDL and its corresponding lignin fractions were treated with laccase and analysed by size exclusion chromatography and Fourier transform infrared spectroscopy. The results provide conclusive evidence of notable lignin modifications after incubation with laccase. Moreover, lignin fractionation allows to obtain lignin fractions with different chemical characteristics and polymerisation capability. Depending on the type of raw lignin, molecular weight can increase from 4- to 21-fold by means of laccase polymerisation.
Collapse
Affiliation(s)
- S Gouveia
- Department of Chemical Engineering, University of Vigo, Lagoas Marcosende s/n, E-36310 Vigo, Spain
| | | | | | | |
Collapse
|
68
|
Bleve G, Lezzi C, Spagnolo S, Tasco G, Tufariello M, Casadio R, Mita G, Rampino P, Grieco F. Role of the C-terminus of Pleurotus eryngii Ery4 laccase in determining enzyme structure, catalytic properties and stability. Protein Eng Des Sel 2012; 26:1-13. [DOI: 10.1093/protein/gzs056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
69
|
Uthandi S, Prunetti L, De Vera IMS, Fanucci GE, Angerhofer A, Maupin-Furlow JA. Enhanced archaeal laccase production in recombinant Escherichia coli by modification of N-terminal propeptide and twin arginine translocation motifs. J Ind Microbiol Biotechnol 2012; 39:1523-32. [PMID: 22752793 DOI: 10.1007/s10295-012-1152-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/28/2012] [Indexed: 11/29/2022]
Abstract
Laccases are multicopper oxidases that couple the oxidation of phenolic polymers to the reduction of molecular oxygen. While an archaeal laccase has only recently been described (LccA from the culture broth of Haloferax volcanii), this enzyme appears promising for biotechnology applications based on its robust bilirubin oxidase and laccase activities as well as its ability to withstand prolonged exposure to extreme conditions. To further optimize LccA productivity and develop an option for LccA purification from whole cells, the encoding gene was modified through deletion of the twin-arginine translocation motif and N-terminal propeptide, and the modified genes were expressed in Escherichia coli. With this approach, LccA was readily purified (overall yield up to 54 %) from the soluble fraction of E. coli as a 74-kDa monomer with syringaldazine oxidizing activity as high as 33 U mg(-1). LccA proteins prepared from H. volcanii culture broth and the soluble fraction of E. coli cells were compared by ICP-AES, EPR, DSC, CD, and UV-Vis spectroscopy and found to have a similar folding pattern with T (m) values and a rich β-sheet structure analogous to other multicopper oxidases. However, in contrast to the H. volcanii-purified LccA, which was loaded with copper, copper was not fully incorporated into the type-I Cu center of E. coli purified LccA, thus, providing insight into avenues for further optimization.
Collapse
Affiliation(s)
- Sivakumar Uthandi
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Kittl R, Gonaus C, Pillei C, Haltrich D, Ludwig R. Constitutive expression of Botrytis aclada laccase in Pichia pastoris. Bioengineered 2012; 3:232-5. [PMID: 22705842 DOI: 10.4161/bioe.20037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The heterologous expression of laccases is important for their large-scale production and genetic engineering--a prerequisite for industrial application. Pichia pastoris is the preferred expression host for fungal laccases. The recently cloned laccase from the ascomycete Botrytis aclada (BaLac) has been efficiently expressed in P. pastoris under the control of the inducible alcohol oxidase (AOX1) promoter. In this study, we compare these results to the constitutive expression in the same organism using the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. The results show that the amounts of BaLac produced with the GAP system (517 mgL(-1)) and the AOX1 system (495 mgL(-1)) are comparable. The constitutive expression is, however, faster, and the specific activity of BaLac in the culture supernatant is higher (41.3 Umg(-1) GAP, 14.2 Umg(-1) AOX1). In microtiter plates, the constitutive expression provides a clear advantage due to easy manipulation (simple medium, no methanol feeding) and fast enzyme production (high-throughput screening assays can already be performed after 48 h).
Collapse
Affiliation(s)
- Roman Kittl
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | |
Collapse
|
71
|
Thermal denaturation of a blue-copper laccase: Formation of a compact denatured state with residual structure linked to pH changes in the region of histidine protonation. Biophys Chem 2012; 167:36-42. [DOI: 10.1016/j.bpc.2012.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/28/2012] [Accepted: 04/29/2012] [Indexed: 11/23/2022]
|
72
|
Zhang J, Qu Y, Xiao P, Wang X, Wang T, He F. Improved biomass saccharification by Trichoderma reesei through heterologous expression of lacA gene from Trametes sp. AH28-2. J Biosci Bioeng 2012; 113:697-703. [PMID: 22387233 DOI: 10.1016/j.jbiosc.2012.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/26/2011] [Accepted: 01/26/2012] [Indexed: 11/18/2022]
Abstract
The Trametes sp. AH28-2 laccase gene lacA fused to cellobiohydrolase I signal peptide coding sequence was heterologously expressed in T. reesei. The lacA cDNA was under the control of the Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase promoter. Native PAGE analysis indicated that two transformants, L8 and L38, were able to secrete recombinant laccase A, and their laccase activities corresponding to ABTS oxidation reached 3.62 IUml(-1) and 1.50 IUml(-1) respectively. Most of the characteristics of the recombinant laccase were similar to those of the native enzyme. Reducing sugar yields of L8 and L38 obtained from saccharification of corn residue by crude enzyme increased by 31.3% and 71.6% respectively compared to the host strain. These results indicated that the engineering strains developed in this work could be potentially used for laccase production and tailoring cellulase properties with laccase proteins through genetic manipulation would be a feasible strategy to improve saccharification efficiency of biomass by cellulase preparation.
Collapse
Affiliation(s)
- Jiwei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | | | | | | | | | | |
Collapse
|
73
|
Ogawa S, Ito M, Ohki H, Kimura T, Shimizu T, Matsuda M, Miyairi K. Glycosylation Status and Conformational Stability of Recombinant Stereum purpureum Endopolygalacturonase IVs Produced in an Aspergillus oryzae Expression System. J Appl Glycosci (1999) 2012. [DOI: 10.5458/jag.jag.jag-2011_017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
74
|
Kittl R, Mueangtoom K, Gonaus C, Khazaneh ST, Sygmund C, Haltrich D, Ludwig R. A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris. J Biotechnol 2011; 157:304-14. [PMID: 22178779 DOI: 10.1016/j.jbiotec.2011.11.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/25/2011] [Accepted: 11/30/2011] [Indexed: 01/26/2023]
Abstract
Fungal laccases from basidiomycetous fungi are thoroughly investigated in respect of catalytic mechanism and industrial applications, but the number of reported and well characterized ascomycetous laccases is much smaller although they exhibit interesting catalytic properties. We report on a highly chloride tolerant laccase produced by the plant pathogen ascomycete Botrytis aclada, which was recombinantly expressed in Pichia pastoris with an extremely high yield and purified to homogeneity. In a fed-batch fermentation, 495 mg L(-1) of laccase was measured in the medium, which is the highest concentration obtained for a laccase by a yeast expression system. The recombinant B. aclada laccase has a typical molecular mass of 61,565 Da for the amino acid chain. The pI is approximately 2.4, a very low value for a laccase. Glycosyl residues attached to the recombinant protein make up for approximately 27% of the total protein mass. B. aclada laccase exhibits very low K(M) values and high substrate turnover numbers for phenolic and non-phenolic substrates at acidic and near neutral pH. The enzyme's stability increases in the presence of chloride ions and, even more important, its substrate turnover is only weakly inhibited by chloride ions (I(50)=1.4M), which is in sharp contrast to most other described laccases. This high chloride tolerance is mandatory for some applications such as implantable biofuel cells and laccase catalyzed reactions, which suffer from the presence of chloride ions. The high expression yield permits fast and easy production for further basic and applied research.
Collapse
Affiliation(s)
- Roman Kittl
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
75
|
Ramos JAT, Barends S, Verhaert RMD, de Graaff LH. The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding genes. Microb Cell Fact 2011; 10:78. [PMID: 21981827 PMCID: PMC3200161 DOI: 10.1186/1475-2859-10-78] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/08/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Many filamentous fungal genomes contain complex groups of multicopper oxidase (MCO) coding genes that makes them a good source for new laccases with potential biotechnological interest. A bioinformatics analysis of the Aspergillus niger ATCC 1015 genome resulted in the identification of thirteen MCO genes. Ten of them were cloned and homologously overexpressed. RESULTS A bioinformatic analysis of the A. niger ATCC 1015 genome revealed the presence of 13 MCO genes belonging to three different subfamilies on the basis of their phylogenetic relationships: ascomycete laccases, fungal pigment MCOs and fungal ferroxidases. According to in silico amino acid sequence analysis, the putative genes encoding for functional extracellular laccases (mcoA, mcoB, mcoC, mcoD, mcoE, mcoF, mcoG, mcoI, mcoJ and mcoM) were placed under the control of the glaA promoter and overexpressed in A. niger N593. Enzyme activity plate assays with several common laccase substrates showed that all genes are actually expressed and code for active MCOs. Interestingly, expressed enzymes show different substrate specificities. In addition, optimization of fungal pigment MCOs extracellular production was investigated. The performance of the widely used glucoamylase signal sequence (ssGlaA) in McoA secretion was studied. Results obtained suggest that ssGlaA do not yield higher levels of secreted McoA when compared to its native secretion signal. Also, McoB synthesis was investigated using different nitrogen sources in minimal medium liquid cultures. Higher yields of extracellular McoB were achieved with (NH4)2 tartrate. CONCLUSIONS Aspergillus niger is a good source of new laccases. The different substrate specificity observed in plate assays makes them interesting to be purified and biochemically compared. The homologous signal sequence of McoA has been shown to be a good choice for its extracellular overexpression. From the nitrogen sources tested (NH4)2 tartrate has been found to be the most appropriate for McoB production in A. niger.
Collapse
Affiliation(s)
- Juan A Tamayo Ramos
- Fungal Systems Biology, Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
76
|
Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S. Heterologous laccase production and its role in industrial applications. Bioeng Bugs 2011; 1:252-62. [PMID: 21327057 DOI: 10.4161/bbug.1.4.11438] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 02/04/2023] Open
Abstract
Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching, and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry.
Collapse
Affiliation(s)
- Alessandra Piscitelli
- Dipartimento di Chimica Organica e Biochimica, Complesso Universitario Monte S. Angelo, Napoli, Italy.
| | | | | | | | | |
Collapse
|
77
|
Babot ED, Rico A, Rencoret J, Kalum L, Lund H, Romero J, del Río JC, Martínez AT, Gutiérrez A. Towards industrially-feasible delignification and pitch removal by treating paper pulp with Myceliophthora thermophila laccase and a phenolic mediator. BIORESOURCE TECHNOLOGY 2011; 102:6717-22. [PMID: 21511459 DOI: 10.1016/j.biortech.2011.03.100] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/30/2011] [Accepted: 03/30/2011] [Indexed: 05/13/2023]
Abstract
The ability of two natural phenols to act as mediators of the recombinant Myceliophthora thermophila laccase (MtL) in eucalypt-pulp delignification was investigated. After alkaline peroxide extraction, the properties of the enzymatically-treated pulps improved with respect to the control. The pulp brightness increased (3.1 points) after the enzymatic treatment with MtL alone, but the highest improvements were obtained after the MtL treatment using syringaldehyde (4.7 points) and especially methyl syringate (8.3 points) as mediators. Likewise, a decrease in kappa number up to 2.7 points was obtained after the MtL-methyl syringate treatment, followed by decreases of 1.4 and 0.9 points after the treatments with MtL-syringaldehyde and MtL alone, respectively. On the other hand, removal of the main lipophilic extractives present in eucalypt pulp was observed after the above laccase-mediator treatments. Finally, the doses of both MtL and methyl syringate were reduced, and results compatible with industrial implementation were obtained.
Collapse
Affiliation(s)
- Esteban D Babot
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, P.O. Box 1052, E-41080 Seville, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
van den Brink J, Samson RA, Hagen F, Boekhout T, de Vries RP. Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. FUNGAL DIVERS 2011. [DOI: 10.1007/s13225-011-0107-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
79
|
Chatterjee R, Johansson K, Järnström L, Jönsson LJ. Evaluation of the potential of fungal and plant laccases for active-packaging applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5390-5395. [PMID: 21524087 DOI: 10.1021/jf103811g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Laccases from Trametes versicolor (TvL), Myceliophthora thermophila (MtL), and Rhus vernicifera (RvL) were investigated with regard to their potential utilization as oxygen scavengers in active packages containing food susceptible to oxidation reactions. The substrate selectivity of the laccases was investigated with a set of 17 reducing substrates, mainly phenolic compounds. The temperature dependence of reactions performed at low temperatures (4-31 °C) was studied. Furthermore, the laccases were subjected to immobilization in a latex/clay matrix and drying procedures performed at temperatures up to 105 °C. The results show that it is possible to immobilize the laccases with retained activity after dispersion coating, drying at 75-105 °C, and subsequent storage of the enzyme-containing films at 4 °C. TvL and, to some extent, MtL were promiscuous with regard to their reducing substrate, in the sense that the difference in activity with the 17 substrates tested was relatively small. RvL, on the other hand, showed high selectivity, primarily toward substrates resembling its natural substrate urushiol. When tested at 7 °C, all three laccases retained >20% of the activity they had at 25 °C, which suggests that it would be possible to utilize the laccases also in refrigerated food packages. Coating and drying resulted in a remaining enzymatic activity ranging from 18 to 53%, depending on the drying conditions used. The results indicate that laccases are useful for active-packaging applications and that the selectivity for reducing substrates is an important characteristic of laccases from different sources.
Collapse
|
80
|
Vivekanand V, Dwivedi P, Pareek N, Singh RP. Banana Peel: A Potential Substrate for Laccase Production by Aspergillus fumigatus VkJ2.4.5 in Solid-State Fermentation. Appl Biochem Biotechnol 2011; 165:204-20. [DOI: 10.1007/s12010-011-9244-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
|
81
|
Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure–function relationship among bacterial, fungal and plant laccases. JOURNAL OF MOLECULAR CATALYSIS B: ENZYMATIC 2011; 68:117-128. [DOI: 10.1016/j.molcatb.2010.11.002] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study. BMC BIOCHEMISTRY 2010; 11:32. [PMID: 20735824 PMCID: PMC2939539 DOI: 10.1186/1471-2091-11-32] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 08/24/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The diversity and function of ligninolytic genes in soil-inhabiting ascomycetes has not yet been elucidated, despite their possible role in plant litter decay processes. Among ascomycetes, Trichoderma reesei is a model organism of cellulose and hemicellulose degradation, used for its unique secretion ability especially for cellulase production. T. reesei has only been reported as a cellulolytic and hemicellulolytic organism although genome annotation revealed 6 laccase-like multicopper oxidase (LMCO) genes. The purpose of this work was i) to validate the function of a candidate LMCO gene from T. reesei, and ii) to reconstruct LMCO phylogeny and perform evolutionary analysis testing for positive selection. RESULTS After homologous overproduction of a candidate LMCO gene, extracellular laccase activity was detected when ABTS or SRG were used as substrates, and the recombinant protein was purified to homogeneity followed by biochemical characterization. The recombinant protein, called TrLAC1, has a molecular mass of 104 kDa. Optimal temperature and pH were respectively 40-45°C and 4, by using ABTS as substrate. TrLAC1 showed broad pH stability range of 3 to 7. Temperature stability revealed that TrLAC1 is not a thermostable enzyme, which was also confirmed by unfolding studies monitored by circular dichroism. Evolutionary studies were performed to shed light on the LMCO family, and the phylogenetic tree was reconstructed using maximum-likelihood method. LMCO and classical laccases were clearly divided into two distinct groups. Finally, Darwinian selection was tested, and the results showed that positive selection drove the evolution of sequences leading to well-known laccases involved in ligninolysis. Positively-selected sites were observed that could be used as targets for mutagenesis and functional studies between classical laccases and LMCO from T. reesei. CONCLUSIONS Homologous production and evolutionary studies of the first LMCO from the biomass-degrading fungus T. reesei gives new insights into the physicochemical parameters and biodiversity in this family.
Collapse
|
83
|
Derivatization of the azole 1-aminobenzotriazole using laccase ofPycnoporus cinnabarinusandMyceliophthora thermophila: influence of methanol on the reaction and biological evaluation of the derivatives. Biotechnol Appl Biochem 2010; 56:43-8. [DOI: 10.1042/ba20100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
84
|
Abyanova AR, Chulkin AM, Vavilova EA, Fedorova TV, Loginov DS, Koroleva OV, Benevolensky SV. A heterologous production of the Trametes hirsuta laccase in the fungus Penicillium canescens. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810030117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
85
|
Laccase-catalyzed cross-linking of amino acids and peptides with dihydroxylated aromatic compounds. Amino Acids 2010; 39:671-83. [DOI: 10.1007/s00726-010-0488-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/16/2010] [Indexed: 10/19/2022]
|
86
|
Synthesis of model morpholine derivatives with biological activities by laccase-catalysed reactions. Biotechnol Appl Biochem 2009; 54:187-95. [DOI: 10.1042/ba20090219] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
87
|
Andberg M, Hakulinen N, Auer S, Saloheimo M, Koivula A, Rouvinen J, Kruus K. Essential role of the C-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. FEBS J 2009; 276:6285-300. [PMID: 19780817 DOI: 10.1111/j.1742-4658.2009.07336.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C-terminus of the fungal laccase from Melanocarpus albomyces (MaL) is processed during secretion at a processing site conserved among the ascomycete laccases. The three-dimensional structure of MaL has been solved as one of the first complete laccase structures. According to the crystal structure of MaL, the four C-terminal amino acids of the mature protein penetrate into a tunnel leading towards the trinuclear site. The C-terminal carboxylate group forms a hydrogen bond with a side chain of His140, which also coordinates to the type 3 copper. In order to analyze the role of the processed C-terminus, site-directed mutagenesis of the MaL cDNA was performed, and the mutated proteins were expressed in Trichoderma reesei and Saccharomyces cerevisiae. Changes in the C-terminus of MaL caused major defects in protein production in both expression hosts. The deletion of the last four amino acids dramatically affected the activity of the enzyme, as the deletion mutant delDSGL(559) was practically inactive. Detailed characterization of the purified L559A mutant expressed in S. cerevisiae showed the importance of the C-terminal plug for laccase activity, stability, and kinetics. Moreover, the crystal structure of the L559A mutant expressed in S. cerevisiae showed that the C-terminal mutation had clearly affected the trinuclear site geometry. The results in this study clearly confirm the critical role of the last amino acids in the C-terminus of MaL.
Collapse
Affiliation(s)
- Martina Andberg
- VTT Technical Research Center of Finland, P.O. Box 1000, FIN-02044 VTT, Finland.
| | | | | | | | | | | | | |
Collapse
|
88
|
Hahn V, Mikolasch A, Manda K, Gördes D, Thurow K, Schauer F. Derivatization of amino acids by fungal laccases: Comparison of enzymatic and chemical methods. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
89
|
Moussa TAA. Molecular characterization of the phenol oxidase (pox2) gene from the ligninolytic fungus Pleurotus ostreatus. FEMS Microbiol Lett 2009; 298:131-42. [PMID: 19622072 DOI: 10.1111/j.1574-6968.2009.01708.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The gene (pox2) encoding a phenol oxidase from Pleurotus ostreatus, a lignin-degrading basidiomycete, was sequenced and the corresponding pox2-cDNA was also synthesized, cloned and sequenced. The isolated gene consisted of 2674 bp, with the coding sequence interrupted by 19 introns and flanked by an upstream region in which the putative metal-responsive elements (MREs) were determined in the promoter region (849 bp), where MRE 1, 2, 3 and 4 were located in positions -20, -60, -236 and -297. A functional TATA consensus sequence was recognized in position -85, while CAAT and its inversion consensus sequences were recognized in positions -284, -554, -689 and -752. The putative GC box consensus sequences were recognized in positions -181 and -460, and xenobiotic-responsive elements in positions -107, -277 and -390. The isolation of a second cDNA (pox2-cDNA), the nucleotide sequence of pox2, was found to contain an ORF of 1665 bp capable of coding for a protein of 533 amino acid residues. Northern blot analysis revealed that strong transcriptional induction was observed in the copper-supplemented cultures for the pox2 gene.
Collapse
Affiliation(s)
- Tarek A A Moussa
- Department of Botany, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
90
|
Biochemical and molecular genetic characterisation of a novel laccase produced by the aquatic ascomycete Phoma sp. UHH 5-1-03. Appl Microbiol Biotechnol 2009; 84:1095-105. [PMID: 19455326 DOI: 10.1007/s00253-009-2028-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/27/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
A laccase from the aquatic ascomycete Phoma sp. UHH 5-1-03 (DSM 22425) was purified upon hydrophobic interaction and size exclusion chromatography (SEC). Mass spectrometric analysis of the laccase monomer yielded a molecular mass of 75.6 kDa. The enzyme possesses an unusual alkaline isoelectric point above 8.3. The Phoma sp. laccase undergoes pH-dependent dimerisation, with the dimer ( approximately 150 kDa, as assessed by SEC) predominating in a pH range of 5.0 to 8.0. The enzyme oxidises common laccase substrates still at pH 7.0 and 8.0 and is remarkably stable at these pH values. The laccase is active at high concentrations of various organic solvents, all together indicating a considerable biotechnological potential. One laccase gene (lac1) identified at the genomic DNA level and transcribed in laccase-producing cultures was completely sequenced. The deduced molecular mass of the hypothetical protein and the predicted isoelectric point of 8.1 well agree with experimentally determined data. Tryptic peptides of electrophoretically separated laccase bands were analysed by nano-liquid chromatography-tandem mass spectrometry. By using the nucleotide sequence of lac1 as a template, eight different peptides were identified and yielded an overall sequence coverage of about 18%, thus confirming the link between lac1 and the expressed laccase protein.
Collapse
|
91
|
Thermotolerant and thermostable laccases. Biotechnol Lett 2009; 31:1117-28. [PMID: 19360388 DOI: 10.1007/s10529-009-9998-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/16/2009] [Accepted: 03/19/2009] [Indexed: 11/27/2022]
Abstract
Laccases are phenol-oxidizing, usually four-copper containing metalloenzymes. For industrial and biotechnological purposes, laccases were among the first fungal oxidoreductases providing larger-scale applications such as removal of polyphenols in wine and beverages, conversion of toxic compounds and textile dyes in waste waters, and in bleaching and removal of lignin from wood and non-wood fibres. In order to facilitate novel and more efficient bio-catalytic process applications, there is a need for laccases with improved biochemical properties, such as thermostability and thermotolerance. This review gives a current overview on the sources and characteristics of such laccases, with particular emphasis on the fungal enzymes.
Collapse
|
92
|
Mikolasch A, Schauer F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 2009; 82:605-24. [DOI: 10.1007/s00253-009-1869-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 01/09/2009] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
|
93
|
Haibo Z, Yinglong Z, Feng H, Peiji G, Jiachuan C. Purification and characterization of a thermostable laccase with unique oxidative characteristics from Trametes hirsuta. Biotechnol Lett 2009; 31:837-43. [DOI: 10.1007/s10529-009-9945-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 11/29/2022]
|
94
|
Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M. Engineering and Applications of fungal laccases for organic synthesis. Microb Cell Fact 2008; 7:32. [PMID: 19019256 PMCID: PMC2613868 DOI: 10.1186/1475-2859-7-32] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/20/2008] [Indexed: 11/10/2022] Open
Abstract
Laccases are multi-copper containing oxidases (EC 1.10.3.2), widely distributed in fungi, higher plants and bacteria. Laccase catalyses the oxidation of phenols, polyphenols and anilines by one-electron abstraction, with the concomitant reduction of oxygen to water in a four-electron transfer process. In the presence of small redox mediators, laccase offers a broader repertory of oxidations including non-phenolic substrates. Hence, fungal laccases are considered as ideal green catalysts of great biotechnological impact due to their few requirements (they only require air, and they produce water as the only by-product) and their broad substrate specificity, including direct bioelectrocatalysis. Thus, laccases and/or laccase-mediator systems find potential applications in bioremediation, paper pulp bleaching, finishing of textiles, bio-fuel cells and more. Significantly, laccases can be used in organic synthesis, as they can perform exquisite transformations ranging from the oxidation of functional groups to the heteromolecular coupling for production of new antibiotics derivatives, or the catalysis of key steps in the synthesis of complex natural products. In this review, the application of fungal laccases and their engineering by rational design and directed evolution for organic synthesis purposes are discussed.
Collapse
Affiliation(s)
- Adinarayana Kunamneni
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
95
|
Mikolasch A, Matthies A, Lalk M, Schauer F. Laccase-induced C-N coupling of substituted p-hydroquinones with p-aminobenzoic acid in comparison with known chemical routes. Appl Microbiol Biotechnol 2008; 80:389-97. [PMID: 18668239 DOI: 10.1007/s00253-008-1595-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 11/28/2022]
Abstract
Fungal laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) from Pycnoporus cinnabarinus and Myceliophthora thermophila were used as biocatalysts for enzymatic reaction of halogen-, alkyl-, alkoxy-, and carbonyl-substituted p-hydroquinones (laccase substrates) with p-aminobenzoic acid (no laccase substrate). During this reaction, the laccase substrate was oxidized to the corresponding quinones, which react with p-aminobenzoic acid by amination of the laccase substrate. The different substitutions at the hydroquinone substrates were used to prove whether the substituents influence the position of amination and product yields. The cross-coupling of methoxy-p-hydroquinone (alkoxylated) and 2,5-dihydroxybenzaldehyd (carbonyl-substituted) with p-aminobenzoic acid resulted in the formation of one monoaminated product (yield alkoxylated 52%). If monohalogen- or monoalkyl-substituted p-hydroquinones were used as laccase substrates, two monoaminated products (constitution isomers) were formed. The simultaneous formation of two different monoaminated products from the same hydroquinone substrate is the first report for laccase-mediated synthesis of aminated constitution isomers. Depending from the type of substituent of the hydroquinone, the positions of the two monoaminations are different. While the amination at the monoalkylated hydroquinone occurs at the 5- and 6-positions (yield 38%), the amination at monohalogenated hydroquinones was detectable at the 3- and 5-positions (yield 53%). The same product pattern could be achieved if instead of the biocatalyst laccase the chemical catalyst sodium iodate was used as the oxidant. However, the yields were partially much lower (0-45% of the yields with laccase).
Collapse
Affiliation(s)
- Annett Mikolasch
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany.
| | | | | | | |
Collapse
|
96
|
Purification and characterization of laccase secreted by L. lividus. Appl Biochem Biotechnol 2008; 157:311-20. [PMID: 18607547 DOI: 10.1007/s12010-008-8265-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 04/24/2008] [Indexed: 10/21/2022]
Abstract
The culture conditions for maximum secretion of laccase by Loweporus lividus MTCC-1178 have been optimized. The laccase from the culture filtrate of L. lividus MTCC-1178 has been purified to homogeneity. The molecular weight of the purified laccase is 64.8 kDa. The enzymatic characteristics like K(m), pH, and temperature optimum using 2,6-dimethoxyphenol have been determined and found to be 480 microM, 5.0, and 60 degrees C, respectively. The K(m) values for other substrates like catechol, m-cresol, pyrogallol, and syringaldazine have also been determined and found to be 230, 210, 320, and 350 microM, respectively.
Collapse
|
97
|
Ryu SH, Lee AY, Kim M. Molecular characteristics of two laccase from the basidiomycete fungus Polyporus brumalis. J Microbiol 2008; 46:62-9. [DOI: 10.1007/s12275-007-0110-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
98
|
Salony, Garg N, Baranwal R, Chhabra M, Mishra S, Chaudhuri T, Bisaria V. Laccase of Cyathus bulleri: structural, catalytic characterization and expression in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:259-68. [DOI: 10.1016/j.bbapap.2007.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 10/18/2007] [Accepted: 11/05/2007] [Indexed: 11/26/2022]
|
99
|
Kunamneni A, Ghazi I, Camarero S, Ballesteros A, Plou FJ, Alcalde M. Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochem 2008. [DOI: 10.1016/j.procbio.2007.11.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
100
|
Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI. "Blue" laccases. BIOCHEMISTRY (MOSCOW) 2008; 72:1136-50. [PMID: 18021071 DOI: 10.1134/s0006297907100112] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review concerns copper-containing oxidases--laccases. Principal biochemical and electrochemical properties of laccases isolated from different sources are described, as well as their structure and mechanism of catalysis. Possible applications of laccases in different fields of biotechnology are discussed.
Collapse
Affiliation(s)
- O V Morozova
- Bach Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | | | | | | | | |
Collapse
|