51
|
Shannon SP, Chrzanowski TH, Grover JP. Prey food quality affects flagellate ingestion rates. MICROBIAL ECOLOGY 2007; 53:66-73. [PMID: 17186152 DOI: 10.1007/s00248-006-9140-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 06/21/2006] [Accepted: 07/10/2006] [Indexed: 05/13/2023]
Abstract
Flagellate feeding efficiency appears to depend on morphological characteristics of prey such as cell size and motility, as well as on other characteristics such as digestibility and cell surface characteristics. Bacteria of varying morphological characteristics (cell size) and mineral nutrient characteristics or food quality (as determined by the C:N:P ratio) were obtained by growing Pseudomonas fluorescens in chemostats at four dilution rates (0.03, 0.06, 0.10, and 0.13 h-1) and three temperatures (14 degrees C, 20 degrees C, and 28 degrees C). Cells of a given food quality were heat-killed and used to grow the flagellate Ochromonas danica. Ingestion and digestion rates were determined by using fluorescently labeled bacteria of the same food quality as the bacteria supporting growth. Ingestion rates were affected by both food quality and cell size. Cells of high food quality (low carbon:element ratio) were ingested at higher rates than cells of low food quality. Multiple regression analysis indicated that cell size also influenced ingestion rate but to a much lesser extent than did food quality. Digestion rates were not correlated with either food quality or cell size. Results suggest that flagellates may adjust feeding efficiency based on the quality of food items available.
Collapse
Affiliation(s)
- S Paul Shannon
- Department of Biology, The University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | |
Collapse
|
52
|
Abstract
Why do bacteria have shape? Is morphology valuable or just a trivial secondary characteristic? Why should bacteria have one shape instead of another? Three broad considerations suggest that bacterial shapes are not accidental but are biologically important: cells adopt uniform morphologies from among a wide variety of possibilities, some cells modify their shape as conditions demand, and morphology can be tracked through evolutionary lineages. All of these imply that shape is a selectable feature that aids survival. The aim of this review is to spell out the physical, environmental, and biological forces that favor different bacterial morphologies and which, therefore, contribute to natural selection. Specifically, cell shape is driven by eight general considerations: nutrient access, cell division and segregation, attachment to surfaces, passive dispersal, active motility, polar differentiation, the need to escape predators, and the advantages of cellular differentiation. Bacteria respond to these forces by performing a type of calculus, integrating over a number of environmental and behavioral factors to produce a size and shape that are optimal for the circumstances in which they live. Just as we are beginning to answer how bacteria create their shapes, it seems reasonable and essential that we expand our efforts to understand why they do so.
Collapse
Affiliation(s)
- Kevin D Young
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
53
|
Comte J, Jacquet S, Viboud S, Fontvieille D, Millery A, Paolini G, Domaizon I. Microbial community structure and dynamics in the largest natural French lake (Lake Bourget). MICROBIAL ECOLOGY 2006; 52:72-89. [PMID: 16733620 DOI: 10.1007/s00248-004-0230-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 08/10/2004] [Indexed: 05/09/2023]
Abstract
We investigated the dynamics and diversity of heterotrophic bacteria, autotrophic and heterotrophic flagellates, and ciliates from March to July 2002 in the surface waters (0-50 m) of Lake Bourget. The heterotrophic bacteria consisted mainly of "small" cocci, but filaments (>2 microm), commonly considered to be grazing-resistant forms under increased nanoflagellate grazing, were also detected. These elongated cells mainly belonged to the Cytophaga-Flavobacterium (CF) cluster, and were most abundant during spring and early summer, when mixotrophic or heterotrophic flagellates were the main bacterial predators. The CF group strongly dominated fluorescent in situ hybridization-detected cells from March to June, whereas clear changes were observed in early summer when Beta-proteobacteria and Alpha-proteobacteria increased concomitantly with maximal protist grazing pressures. The analysis of protist community structure revealed that the flagellates consisted mainly of cryptomonad forms. The dynamics of Cryptomonas sp. and Dinobryon sp. suggested the potential importance of mixotrophs as consumers of bacteria. This point was verified by an experimental approach based on fluorescent microbeads to assess the potential grazing impact of all protist taxa in the epilimnion. From the results, three distinct periods in the functioning of the epilimnetic microbial loop were identified. In early spring, mixotrophic and heterotrophic flagellates constituted the main bacterivores, and were regulated by the availability of their resources mainly during April (phase 1). Once the "clear water phase" was established, the predation pressure of metazooplankton represented a strong top-down force on all microbial compartments. During this period only mixotrophic flagellates occasionally exerted a significant bacterivory pressure (phase 2). Finally, the early summer was characterized by the highest protozoan grazing impact and by a rapid shift in the carbon pathway transfer, with a fast change-over of the main predators contribution, i.e., mixotrophic, heterotrophic flagellates and ciliates in bacterial mortality. The high abundance of ciliates during this period was consistent with the high densities of resources (heterotrophic nanoflagellates, algae, bacteria) in deep layers containing the most chlorophyll. Bacteria, as ciliates, responded clearly to increasing phytoplankton abundance, and although bacterial grazing impact could vary largely, bacterial abundance seemed to be primarily bottom-up regulated (phase 3).
Collapse
Affiliation(s)
- J Comte
- UMR CARRTEL, Université de Savoie, Equipe de Microbiologie Aquatique, 73376, Le Bourget-du-Lac Cedex, France
| | | | | | | | | | | | | |
Collapse
|
54
|
Dong H, Scheibe TD, Johnson WP, Monkman CM, Fuller ME. Change of collision efficiency with distance in bacterial transport experiments. GROUND WATER 2006; 44:415-29. [PMID: 16681522 DOI: 10.1111/j.1745-6584.2005.00133.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Understanding the mechanisms of bacterial transport in aquifers is important in developing bioremediation strategies. Collision efficiency (alpha) is one important parameter used in modeling bacterial transport. This study was undertaken to measure change in alpha with distance by performing a bacterial transport experiment in Oyster, Virginia. Following injection of a bacterium, Comamonas sp., into a well, water samples were collected at various distances along the flowpath and injected into columns packed with homogenized South Oyster focus area sediment. Zeta potentials of the bacteria in the samples were measured. Values of alpha were determined at various locations in the field in two ways: based on field breakthrough concentrations at the sampling points and based on column breakthrough concentrations. The alpha values estimated from field breakthrough decreased with distance, whereas those estimated from column breakthrough increased with distance. Bacterial cell surface charge became progressively more negative with distance in the field. We hypothesize that the apparent contradiction between field and column alpha values was caused by differences in the flow of the two systems. Flow in the columns was forced to occur through fine-grained zones of iron and aluminum hydroxide coatings that selectively removed the most negatively charged bacteria. In contrast, in the field, the injected cells did not come into contact with the positively charged coatings because the bulk solution bypassed them due to heterogeneous hydraulic properties. These results suggest that laboratory-based models may underestimate bacterial transport distance in the field. A more realistic approach may be necessary to capture the degree of heterogeneity.
Collapse
Affiliation(s)
- Hailiang Dong
- Department of Geology, Miami University, Oxford, OH 45056, USA.
| | | | | | | | | |
Collapse
|
55
|
Weinbauer MG, Christen R, Höfle MG. The response of Vibrio- and Rhodobacter-related populations of the NW Mediterranean Sea to additions of dissolved organic matter, phages, or dilution. MICROBIAL ECOLOGY 2006; 51:336-44. [PMID: 16598637 DOI: 10.1007/s00248-006-9028-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 08/06/2005] [Indexed: 05/08/2023]
Abstract
We investigated the growth response of the heterotrophic prokaryotic community focusing on Vibrio- and Rhodobacter-related populations (SRF3) to variation in the availability of dissolved organic matter (DOM), population density-dependent effects, and prokaryotic virus (phage) infection in coastal and offshore waters of the NW Mediterranean Sea. We tested the response of the prokaryotic community to three different DOM fractions prepared by ultrafiltration. One of the DOM fractions contained phages (<0.2 m), a second was virus-free (<100 kDa), and a third contained only low molecular weight (<1 kDa). The proportion of Vibrio and SRF3 populations as determined by fluorescent in situ hybridization in the community ranged from <1 to 6.2% and from 3.2 to 6.3%, respectively. Based on changes in cell numbers, growth rates ranged from 2.1 to 3.1 day(-1) for Vibrio and from 0.8 to 1.2 day(-1) for SRF3. Growth rates of Vibrio were similar or higher than those of the total prokaryotic community, whereas the ability of Vibrio to use high molecular weight (HMW) DOM and the responses to additions of phage-rich material were lower. Growth rates of SRF3 were lower than that of the community. Susceptibility to infection of SRF3 was sometimes lower than in the community, whereas the growth stimulation of HMW DOM was similar or lower. Reducing the cell concentrations of the prokaryotic community by dilution stimulated the overall growth of the community, including that of its constituent Vibrio and SRF3 populations, but the effect was smaller on the SRF3 and greater on Vibrio populations than for the total community. Comparisons with the community also revealed that life strategy traits of bacterial populations differed between coastal and offshore waters. Overall, our data suggest that Vibrio is an r-strategist or opportunistic population in the NW Mediterranean Sea, whereas SRF3 is a K-strategist or equilibrium population.
Collapse
Affiliation(s)
- Markus G Weinbauer
- GBF--German Research Centre for Biotechnology, Department of Environmental Microbiology, Mascheroder Weg 1, D-38124, Braunschweig, Germany.
| | | | | |
Collapse
|
56
|
Corno G, Jürgens K. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl Environ Microbiol 2006; 72:78-86. [PMID: 16391028 PMCID: PMC1352273 DOI: 10.1128/aem.72.1.78-86.2006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the impact of grazing and substrate supply on the size structure of a freshwater bacterial strain (Flectobacillus sp.) which showed pronounced morphological plasticity. The cell length varied from 2 to >40 microm and encompassed rods, curved cells, and long filaments. Without grazers and with a sufficient substrate supply, bacteria grew mainly in the form of medium-sized rods (4 to 7 microm), with a smaller proportion (<10%) of filamentous forms. Grazing experiments with the bacterivorous flagellate Ochromonas sp. showed that freely suspended cells of <7 microm were highly vulnerable to grazers, whereas filamentous cells were resistant to grazing and became enriched during predation. A comparison of long-term growth in carbon-limited chemostats with and without grazers revealed that strikingly different bacterial populations developed: treatments with flagellates were composed of >80% filamentous cells. These attained a biomass comparable to that of populations in chemostats without grazers, which were composed of medium-sized rods and c-shaped cells. Carbon starvation resulted in a fast decrease in cell length and a shift towards small rods, which were highly vulnerable to grazing. Dialysis bag experiments in combination with continuous cultivation revealed that filament formation was significantly enhanced even without direct contact of bacteria with bacterivores and was thus probably stimulated by grazer excretory products.
Collapse
Affiliation(s)
- Gianluca Corno
- Baltic Sea Research Institute Warnemünde, Seestr. 15, D-18119 Rostock, Germany.
| | | |
Collapse
|
57
|
Pernthaler J, Amann R. Fate of heterotrophic microbes in pelagic habitats: focus on populations. Microbiol Mol Biol Rev 2005; 69:440-61. [PMID: 16148306 PMCID: PMC1197807 DOI: 10.1128/mmbr.69.3.440-461.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major biogeochemical processes in the water columns of lakes and oceans are related to the activities of heterotrophic microbes, e.g., the mineralization of organic carbon from photosynthesis and allochthonous influx or its transport to the higher trophic levels. During the last 15 years, cultivation-independent molecular techniques have substantially contributed to our understanding of the diversity of the microbial communities in different aquatic systems. In parallel, the complexity of aquatic habitats at a microscale has inspired research on the ecophysiological properties of uncultured microorganisms that thrive in a continuum of dissolved to particulate organic matter. One possibility to link these two aspects is to adopt a"Gleasonian" perspective, i.e., to study aquatic microbial assemblages in situ at the population level rather than looking at microbial community structure, diversity, or function as a whole. This review compiles current knowledge about the role and fate of different populations of heterotrophic picoplankton in marine and inland waters. Specifically, we focus on a growing suite of techniques that link the analysis of bacterial identity with growth, morphology, and various physiological activities at the level of single cells. An overview is given of the potential and limitations of methodological approaches, and factors that might control the population sizes of different microbes in pelagic habitats are discussed.
Collapse
Affiliation(s)
- Jakob Pernthaler
- Limnological Station, Institute of Plant Biology, Seestrasse 187, CH-8802 Kilchberg, Switzerland.
| | | |
Collapse
|
58
|
Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 2005; 3:537-46. [PMID: 15953930 DOI: 10.1038/nrmicro1180] [Citation(s) in RCA: 444] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The oxic realms of freshwater and marine environments are zones of high prokaryotic mortality. Lysis by viruses and predation by ciliated and flagellated protists result in the consumption of microbial biomass at approximately the same rate as it is produced. Protist predation can favour or suppress particular bacterial species, and the successful microbial groups in the water column are those that survive this selective grazing pressure. In turn, aquatic bacteria have developed various antipredator strategies that range from simply 'outrunning' protists to the production of highly effective cytotoxins. This ancient predator-prey system can be regarded as an evolutionary precursor of many other interactions between prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
- Jakob Pernthaler
- Max-Planck-Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany.
| |
Collapse
|
59
|
Pfandl K, Posch T, Boenigk J. Unexpected effects of prey dimensions and morphologies on the size selective feeding by two bacterivorous flagellates (Ochromonas sp. and Spumella sp.). J Eukaryot Microbiol 2005; 51:626-33. [PMID: 15666719 DOI: 10.1111/j.1550-7408.2004.tb00596.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current models on protistan size-selective feeding assume that contact probability is the factor that largely explains observed food preferences. Contact probability is generally expected to be positively correlated with prey size and therefore to explain observed food selection for larger prey items. We critically tested these basic assumptions on size-selective feeding using the interception-feeding chrysomonad nanoflagellates Ochromonas sp. and Spumella sp. Mechanisms of differential feeding were studied during distinct stages of the selection process (i.e. contact probability, capture efficiency, ingestion efficiency, and differential digestion) by means of high-resolution video microscopy. Food selection was investigated using a mixture of microspheres ranging from 0.3-2.2 microm in diam., as well as a mixed bacterial community. In contrast to current model assumptions, the contact probability was highest for microspheres of intermediate size (0.9-1.2 microm), but was not generally positively correlated with prey size over the whole prey size range. Capture and ingestion also proved to be involved in size selection: these patterns were also independent of the food concentration (p = 0.968 for Ochromonas, p = 0.971 for Spumella). Even though the capture rate was significantly higher for attached flagellates than for swimming flagellates (p < 0.001), size selectivity was not affected (p > 0.05). Our results indicate that: (i) size selection is not actively regulated by these flagellates, but is a passive process; (ii) contact probability is not generally positively correlated with prey size, but shows a maximum for intermediate-sized prey in the prey size spectrum of 0.3-2.2 microm; and (iii) selection steps other than contact probability are crucial for size selection and should be integrated in models on size selection.
Collapse
Affiliation(s)
- Karin Pfandl
- University of Innsbruck, Institute of Zoology and Limnology, Technikerstrasse 25 A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
60
|
Schwarz MVJ, Frenzel P. Methanogenic symbionts of anaerobic ciliates and their contribution to methanogenesis in an anoxic rice field soil. FEMS Microbiol Ecol 2005; 52:93-9. [PMID: 16329896 DOI: 10.1016/j.femsec.2004.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 10/24/2004] [Accepted: 10/25/2004] [Indexed: 11/29/2022] Open
Abstract
Methanogenesis in rice field soils starts soon after flooding while potentially competing processes like reduction of sulphate and iron take place. Early methanogenesis is mainly driven by hydrogen, while later in the season acetate tends to become more important. Anaerobic ciliates are abundant during this period, and their endosymbionts use hydrogen produced by the ciliates to reduce carbon dioxide to methane. These endosymbiotic methanogens are protected from the competition for substrates with other bacteria that may control methanogenesis outside the protozoan cells. Thus, we focussed on early methanogenesis and on the potential contribution from ciliates and their endosymbionts. Only ciliates of the genus Metopus were found to harbour methanogens, as identified by the F(420)-fluorescence of the endosymbionts. We followed the population dynamics of the ciliates with time, and calculated the ratio of symbiotic methane production to overall methanogenesis. Symbiotic methane production was calculated from the species-specific numbers of methanogenic endosymbionts times the cell-specific methane production of the symbionts. According to this calculation, the symbionts' contribution to overall methane production was only 6.4% at the beginning and decreased with time. In a second experiment, colchicine and cycloheximide were used to inhibit all eukaryotes, comparing the remaining methane production rate to a control without inhibitors. In the inhibition experiment, the contribution from symbionts decreased from 40% to 6% during the first days after flooding, and dropped to near zero within 2 weeks. However, nearly all methane produced from H(2)/CO(2) could be attributed to the ciliates' symbionts between days 5 and 10 after flooding. Both experiments showed that the contribution of methanogenic symbionts to overall methane production is a transient phenomenon, restricted to the first 2 weeks.
Collapse
Affiliation(s)
- M V Julian Schwarz
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str., D-35043 Marburg, Germany
| | | |
Collapse
|
61
|
Jezbera J, Hornák K, Simek K. Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol Ecol 2005; 52:351-63. [PMID: 16329920 DOI: 10.1016/j.femsec.2004.12.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Revised: 11/26/2004] [Accepted: 12/01/2004] [Indexed: 11/28/2022] Open
Abstract
A modified fluorescence in situ hybridization (FISH) method was used to analyze bacterial prey composition in protistan food vacuoles in both laboratory and natural populations. Under laboratory conditions, we exposed two bacterial strains (affiliated with beta- and gamma-Proteobacteria -- Aeromonas hydrophila and Pseudomonas fluorescens, respectively) to grazing by three protists: the flagellates Bodo saltans and Goniomonas sp., and the ciliate Cyclidium glaucoma. Both flagellate species preferably ingested A. hydrophila over P. fluorescens, while C. glaucoma showed no clear preferences. Differences were found in the digestion of bacterial prey with B. saltans digesting significantly faster P. fluorescens compared to two other protists. The field study was conducted in a reservoir as part of a larger experiment. We monitored changes in the bacterial prey composition available compared to the bacteria ingested in flagellate food vacuoles. Bacteria detected by probe HGC69a (Actinobacteria) and R-BT065 were negatively selected by flagellates. Bacteria detected by probe CF319a were initially positively selected but along with a temporal shift in bacterial cell size, this trend changed to negative selection during the experiment. Overall, our analysis of protistan food vacuole content indicated marked effects of flagellate prey selectivity on bacterioplankton community composition.
Collapse
Affiliation(s)
- Jan Jezbera
- Hydrobiological Institute of the Academy of Sciences of the Czech Republic, Na Sádkách 7, CZ-37005, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
62
|
Vanselow BA, Krause DO, McSweeney CS. The Shiga toxin-producing Escherichia coli, their ruminant hosts, and potential on-farm interventions: a review. ACTA ACUST UNITED AC 2005. [DOI: 10.1071/ar04129] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The emergence of Shiga toxin-producing Escherichia coli serotype O157:H7 as a major human pathogen over the last 2 decades has focused attention on this organism’s ruminant hosts. Despite implementation of conventional control methods, people continue to become seriously ill from contaminated meat or other food products, manure-contaminated drinking and recreational water, and direct contact with ruminants. E. coli O157:H7 can cause life-threatening disease, and is a particular threat to children, through acute and chronic kidney damage. Compared with other food-borne bacteria, E. coli O157:H7 has a remarkably low infectious dose and is environmentally robust. Cattle are largely unaffected by this organism and have been identified as the major source of E. coli O157:H7 entering the human food chain. Other Shiga toxin-producing E. coli can be pathogenic to humans and there is increasing evidence that their significance has been underestimated. Governments around the world have acted to tighten food safety regulations, and to investigate animal sources and on-farm control of this and related organisms. Potential intervention strategies on-farm include: feed and water hygiene, altered feeding regimes, specific E. coli vaccines, antibacterials, antibiotics, probiotics, and biological agents or products such as bacteriophages, bacteriocins, or colicins.
Collapse
|
63
|
Kent AD, Jones SE, Yannarell AC, Graham JM, Lauster GH, Kratz TK, Triplett EW. Annual patterns in bacterioplankton community variability in a humic lake. MICROBIAL ECOLOGY 2004; 48:550-560. [PMID: 15696388 DOI: 10.1007/s00248-004-0244-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 02/27/2004] [Indexed: 05/24/2023]
Abstract
Bacterioplankton community composition (BCC) was monitored in a shallow humic lake in northern Wisconsin, USA, over 3 years using automated ribosomal intergenic spacer analysis (ARISA). Comparison of ARISA profiles of bacterial communities over time indicated that BCC was highly variable on a seasonal and annual scale. Nonmetric multidimensional scaling (MDS) analysis indicated little similarity in BCC from year to year. Nevertheless, annual patterns in bacterioplankton community diversity were observed. Trends in bacterioplankton community diversity were correlated to annual patterns in community succession observed for phytoplankton and zooplankton populations, consistent with the notion that food web interactions affect bacterioplankton community structure in this humic lake. Bacterioplankton communities experience a dramatic drop in richness and abundance each year in early summer, concurrent with an increase in the abundance of both mixotrophic and heterotrophic flagellates. A second drop in richness, but not abundance, is observed each year in late summer, coinciding with an intense bloom of the nonphagotrophic dinoflagellate Peridinium limbatum. A relationship between bacterial community composition, size, and abundance and the population dynamics of Daphnia was also observed. The noted synchrony between these major population and species shifts suggests that linkages across trophic levels play a role in determining the annual time course of events for the microbial and metazoan components of the plankton.
Collapse
Affiliation(s)
- A D Kent
- Center for Limnology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Brehm-Stecher BF, Johnson EA. Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 2004; 68:538-59, table of contents. [PMID: 15353569 PMCID: PMC515252 DOI: 10.1128/mmbr.68.3.538-559.2004] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The field of microbiology has traditionally been concerned with and focused on studies at the population level. Information on how cells respond to their environment, interact with each other, or undergo complex processes such as cellular differentiation or gene expression has been obtained mostly by inference from population-level data. Individual microorganisms, even those in supposedly "clonal" populations, may differ widely from each other in terms of their genetic composition, physiology, biochemistry, or behavior. This genetic and phenotypic heterogeneity has important practical consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. New appreciation of the importance of cellular heterogeneity, coupled with recent advances in technology, has driven the development of new tools and techniques for the study of individual microbial cells. Because observations made at the single-cell level are not subject to the "averaging" effects characteristic of bulk-phase, population-level methods, they offer the unique capacity to observe discrete microbiological phenomena unavailable using traditional approaches. As a result, scientists have been able to characterize microorganisms, their activities, and their interactions at unprecedented levels of detail.
Collapse
Affiliation(s)
- Byron F Brehm-Stecher
- Department of Food Microbiology and Toxicology, University of Wisconsin-Madison Food Research Institute, 1925 Willow Drive, Madison, WI 53706, USA
| | | |
Collapse
|
65
|
Shemesh Y, Jurkevitch E. Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ Microbiol 2004; 6:12-8. [PMID: 14686937 DOI: 10.1046/j.1462-2920.2003.00530.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Predation at the lowest trophic level, i.e. between bacteria, is poorly understood, hindering efforts to assess its impact on the structure of bacterial communities. The interaction of Bdellovibrio and Bacteriovorax (Bdellovibrio and like organisms, BLOs), a group of obligate, ubiquitous predatory bacteria, with their Gram-negative bacterial prey results in the multiplication of the predator and in the lysis, but not in the eradication, of the prey. We show that the residual, surviving populations of prey cells exposed to predation stress differ from the populations before exposure, as they exhibit increased resistance to predation. This resistance was demonstrated in a number of Gram-negative prey. Moreover, predation resistance is not specific for the BLO strain experienced by the prey. The phenomenon does not stem from a mutation but is a plastic response associated with a phenotypic change, and it disappears upon removal of the predator. As resistance to predation is not total, this mechanism can ensure survival of both predator and prey.
Collapse
Affiliation(s)
- Yair Shemesh
- Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | |
Collapse
|
66
|
Alavi MR. Predator/prey interaction between Pfiesteria piscicida and Rhodomonas mediated by a marine alpha proteobacterium. MICROBIAL ECOLOGY 2004; 47:48-58. [PMID: 15259269 DOI: 10.1007/s00248-003-1018-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The dinoflagellate Pfiesteria piscicida coexists with bacteria in aquatic environments and as such, may interact with them at the physiological level. This study was designed to investigate the influence of bacteria, present in a clonal culture of Pfiesteria piscicida, on the predator/prey relationship of this dinoflagellate with the alga Rhodomonas. A series of replenishment experiments with bacteria isolated from P. piscicida clonal culture and the bacteria-free P. piscicida derived from the same culture were carried out. In the presence of bacteria, the number of P. piscicida increased significantly when incubated with alga Rhodomonas. This enhanced growth was almost entirely due to the increased consumption rate of Rhodomonas by P. piscicida since in bacteria-free (axenic) cultures Rhodomonas were consumed at significantly reduced rates relative to cultures with bacteria. Subsequent replenishment experiments with individual bacterial isolates showed that a single isolate was responsible for the increased predation rate of P. piscicida. The presence or absence of this specific bacterium determined the outcome of the interaction between P. piscicida and Rhodomonas. Partial sequence analysis of the 16S rDNA of this isolate indicated that it was a novel marine alpha proteobacterium with sequence similarities to a Roseobacter sp. and a bacterium recently isolated from a toxic dinoflagellate Alexandrium sp.
Collapse
Affiliation(s)
- M R Alavi
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD, 21202, USA.
| |
Collapse
|
67
|
Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC. Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 2003; 6:111-20. [PMID: 14756876 DOI: 10.1046/j.1462-2920.2003.00543.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Movile Cave is an unusual groundwater ecosystem that is supported by in situ chemoautotrophic production. The cave atmosphere contains 1-2% methane (CH4), although much higher concentrations are found in gas bubbles that keep microbial mats afloat on the water surface. As previous analyses of stable carbon isotope ratios have suggested that methane oxidation occurs in this environment, we hypothesized that aerobic methane-oxidizing bacteria (methanotrophs) are active in Movile Cave. To identify the active methanotrophs in the water and mat material from Movile Cave, a microcosm was incubated with a 10%13CH4 headspace in a DNA-based stable isotope probing (DNA-SIP) experiment. Using improved centrifugation conditions, a 13C-labelled DNA fraction was collected and used as a template for polymerase chain reaction amplification. Analysis of genes encoding the small-subunit rRNA and key enzymes in the methane oxidation pathway of methanotrophs identified that strains of Methylomonas, Methylococcus and Methylocystis/Methylosinus had assimilated the 13CH4, and that these methanotrophs contain genes encoding both known types of methane monooxygenase (MMO). Sequences of non-methanotrophic bacteria and an alga provided evidence for turnover of CH4 due to possible cross-feeding on 13C-labelled metabolites or biomass. Our results suggest that aerobic methanotrophs actively convert CH4 into complex organic compounds in Movile Cave and thus help to sustain a diverse community of microorganisms in this closed ecosystem.
Collapse
Affiliation(s)
- Elena Hutchens
- Babes-Bolyai University, Department of Plant Biology, Kogalniceanu 1, 3400 Cluj, Romania
| | | | | | | | | |
Collapse
|
68
|
Fu Y, O'Kelly C, Sieracki M, Distel DL. Protistan grazing analysis by flow cytometry using prey labeled by in vivo expression of fluorescent proteins. Appl Environ Microbiol 2003; 69:6848-55. [PMID: 14602649 PMCID: PMC262319 DOI: 10.1128/aem.69.11.6848-6855.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 08/20/2003] [Indexed: 11/20/2022] Open
Abstract
Selective grazing by protists can profoundly influence bacterial community structure, and yet direct, quantitative observation of grazing selectivity has been difficult to achieve. In this investigation, flow cytometry was used to study grazing by the marine heterotrophic flagellate Paraphysomonas imperforata on live bacterial cells genetically modified to express the fluorescent protein markers green fluorescent protein (GFP) and red fluorescent protein (RFP). Broad-host-range plasmids were constructed that express fluorescent proteins in three bacterial prey species, Escherichia coli, Enterobacter aerogenes, and Pseudomonas putida. Micromonas pusilla, an alga with red autofluorescence, was also used as prey. Predator-prey interactions were quantified by using a FACScan flow cytometer and analyzed by using a Perl program described here. Grazing preference of P. imperforata was influenced by prey type, size, and condition. In competitive feeding trials, P. imperforata consumed algal prey at significantly lower rates than FP (fluorescent protein)-labeled bacteria of similar or different size. Within-species size selection was also observed, but only for P. putida, the largest prey species examined; smaller cells of P. putida were grazed preferentially. No significant difference in clearance rate was observed between GFP- and RFP-labeled strains of the same prey species or between wild-type and GFP-labeled strains. In contrast, the common chemical staining method, 5-(4,6-dichloro-triazin-2-yl)-amino fluorescein hydrochloride, depressed clearance rates for bacterial prey compared to unlabeled or RFP-labeled cells.
Collapse
Affiliation(s)
- Yutao Fu
- Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine 04575, USA
| | | | | | | |
Collapse
|
69
|
Feris K, Ramsey P, Frazar C, Moore JN, Gannon JE, Holben WE. Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Appl Environ Microbiol 2003; 69:5563-73. [PMID: 12957946 PMCID: PMC194920 DOI: 10.1128/aem.69.9.5563-5573.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to alpha-, beta-, and gamma-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities.
Collapse
Affiliation(s)
- Kevin Feris
- Microbial Ecology Program, Division of Biological Sciences, The University of Montana, Missoula, Montana 59812, USA
| | | | | | | | | | | |
Collapse
|
70
|
Hahn MW. Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 2003; 69:5248-54. [PMID: 12957910 PMCID: PMC194981 DOI: 10.1128/aem.69.9.5248-5254.2003] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 06/24/2003] [Indexed: 11/20/2022] Open
Abstract
More than 40 bacterial strains belonging to the cosmopolitan Polynucleobacter necessarius cluster (Betaproteobacteria) were isolated from a broad spectrum of freshwater habitats located in three climatic zones. Sequences affiliated with the freshwater P. necessarius cluster are among the most frequently detected in studies on bacterial diversity in freshwater ecosystems. Despite this frequent detection with culture-independent techniques and the cosmopolitan occurrence of members affiliated with this cluster, no isolates have been reported thus far. The isolated strains have been obtained from lakes, ponds, and rivers in central Europe, the People's Republic of China, and East Africa by use of the filtration-acclimatization method. The 16S rRNA gene sequences of the isolates are 98.8 to 100% identical to reference sequences obtained by various authors by use of culture-independent methods. The isolates, aerobic heterotrophs, grew on a wide range of standard complex media and formed visible colonies on agar plates. Thus, the previous lack of isolates cannot be explained by a lack of appropriate media. Most of the isolates possess, under a wide range of culture conditions, very small cells (<0.1 micro m(3)), even when grown in medium containing high concentrations of organic substances. Thus, these strains are obligate ultramicrobacteria. The obtained strains have a C-shaped cell morphology which is very similar to that of recently isolated ultramicrobacterial Luna cluster strains (Actinobacteria) and the SAR11 cluster strains (Alphaproteobacteria).
Collapse
Affiliation(s)
- Martin W Hahn
- Institute for Limnology, Austrian Academy of Sciences, A-5310 Mondsee, Austria.
| |
Collapse
|
71
|
Brümmer IHM, Felske A, Wagner-Döbler I. Diversity and seasonal variability of beta-Proteobacteria in biofilms of polluted rivers: analysis by temperature gradient gel electrophoresis and cloning. Appl Environ Microbiol 2003; 69:4463-73. [PMID: 12902230 PMCID: PMC169091 DOI: 10.1128/aem.69.8.4463-4473.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beta-subgroup of the Proteobacteria has been shown to be important in aquatic habitats and was investigated in depth here by molecular 16S rRNA techniques in biofilms of the Elbe River and its polluted tributary, the Spittelwasser River. The bacterial 16S rRNA genes were cloned from each site, screened for beta-proteobacterial clones and sequenced. River biofilm clones from both rivers grouped into 9 clusters (RBFs). RBFs 1, 2, and 3 fell into the recently described betaI cluster of cosmopolitan freshwater bacteria, where they represented new species related to Rhodoferax, Aquaspirillum, and Hydrogenophaga: RBFs 4 to 7 affiliated with Aquabacterium commune, Ideonella dechloratans, and Sphaerotilus natans, respectively. The two remaining RBFs were uncultivated clusters, one of them being distantly related to Gallionella ferruginea. Seasonal changes in the relative intensity of the beta-proteobacterial 16S rRNA genes of biofilms harvested monthly for 1 year were determined by specific amplification and separation by temperature gradient gel electrophoresis (TGGE). Bands were identified by comparison of clones to community fingerprints by TGGE. Eight of 13 identified bands were shared by both habitats but showed different relative abundance and seasonal variability in the two rivers, probably caused by differences in temperature and pollutants. The data indicate new not-yet-cultivated clusters of river biofilm organisms, some of them probably distributed globally. They confirm the importance of certain known freshwater genera in river biofilms. The high phylogenetic resolution obtained by clone library analysis combined with the high temporal resolution obtained by TGGE suggest that the observed microdiversity in the river biofilm clone libraries might be caused by phylogenetically closely related microbial populations which are adapted to ecological parameters.
Collapse
Affiliation(s)
- I H M Brümmer
- Division of Microbiology, German Research Center for Biotechnology, 38124 Braunschweig, Germany
| | | | | |
Collapse
|
72
|
Beardsley C, Pernthaler J, Wosniok W, Amann R. Are readily culturable bacteria in coastal North Sea waters suppressed by selective grazing mortality? Appl Environ Microbiol 2003; 69:2624-30. [PMID: 12732530 PMCID: PMC154555 DOI: 10.1128/aem.69.5.2624-2630.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Accepted: 02/14/2003] [Indexed: 11/20/2022] Open
Abstract
We studied the growth of six culturable bacterial lineages from coastal North Sea picoplankton in environmental samples under different incubation conditions. The grazing pressure of heterotrophic nanoflagellates (HNF) was reduced either by double prefiltration through 0.8- micro m-pore-size filters or by 10-fold dilutions with 0.2- micro m (pore-size) prefiltered seawater. We hypothesized that those gamma-proteobacterial genera that are rapidly enriched would also be most strongly affected by HNF regrowth. In the absence of HNF, the mean protein content per bacterial cell increased in both treatments compared to environmental samples, whereas the opposite trend was found in incubations of unaltered seawater. Significant responses to the experimental manipulations were observed in Alteromonas, Pseudoalteromonas, and Vibrio populations. No treatment-specific effects could be detected for members of the Roseobacter group, the Cytophaga latercula-C. marinoflava lineage, or the NOR5 clade. Statistical analysis confirmed a transient increase in the proportions of Alteromonas, Pseudoalteromonas, and Vibrio cells at reduced HNF densities only, followed by an overproportional decline during the phase of HNF regrowth. Cells from these genera were significantly larger than the community average in the dilution treatments, and changes in their relative abundances were negatively correlated with HNF densities. Our findings suggest that bacteria affiliated with frequently isolated genera such as Alteromonas, Pseudoalteromonas, and Vibrio might be rare in coastal North Sea picoplankton because their rapid growth response to changing environmental conditions is counterbalanced by a higher grazing mortality.
Collapse
Affiliation(s)
- Christine Beardsley
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | | | | | |
Collapse
|
73
|
Crump BC, Kling GW, Bahr M, Hobbie JE. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 2003; 69:2253-68. [PMID: 12676708 PMCID: PMC154827 DOI: 10.1128/aem.69.4.2253-2268.2003] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seasonal shifts in bacterioplankton community composition in Toolik Lake, a tundra lake on the North Slope of Alaska, were related to shifts in the source (terrestrial versus phytoplankton) and lability of dissolved organic matter (DOM). A shift in community composition, measured by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes, occurred at 4 degrees C in near-surface waters beneath seasonal ice and snow cover in spring. This shift was associated with an annual peak in bacterial productivity ([(14)C]leucine incorporation) driven by the large influx of labile terrestrial DOM associated with snow meltwater. A second shift occurred after the flux of terrestrial DOM had ended in early summer as ice left the lake and as the phytoplankton community developed. Bacterioplankton communities were composed of persistent populations present throughout the year and transient populations that appeared and disappeared. Most of the transient populations could be divided into those that were advected into the lake with terrestrial DOM in spring and those that grew up from low concentrations during the development of the phytoplankton community in early summer. Sequencing of DNA in DGGE bands demonstrated that most bands represented single ribotypes and that matching bands from different samples represented identical ribotypes. Bacteria were identified as members of globally distributed freshwater phylogenetic clusters within the alpha- and beta-Proteobacteria, the Cytophaga-Flavobacteria-Bacteroides group, and the ACTINOBACTERIA:
Collapse
Affiliation(s)
- Byron C Crump
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
| | | | | | | |
Collapse
|
74
|
Hahn MW, Lünsdorf H, Wu Q, Schauer M, Höfle MG, Boenigk J, Stadler P. Isolation of novel ultramicrobacteria classified as actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 2003; 69:1442-51. [PMID: 12620827 PMCID: PMC150105 DOI: 10.1128/aem.69.3.1442-1451.2003] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the first freshwater members of the class Actinobacteria that have been isolated. Nine ultramicro-size (<0.1 microm(3)) strains were isolated from five freshwater habitats in Europe and Asia. These habitats represent a broad spectrum of ecosystems, ranging from deep oligotrophic lakes to shallow hypertrophic lakes. Even when the isolated strains were grown in very rich media, the cell size was <0.1 microm(3) and was indistinguishable from the cell sizes of bacteria belonging to the smaller size classes of natural lake bacterioplankton. Hybridization of the isolates with oligonucleotide probes and phylogenetic analysis of the 16S rRNA gene sequences of the isolated strains revealed that they are affiliated with the class Actinobacteria and the family Microbacteriaceae. The previously described species with the highest levels of sequence similarity are Clavibacter michiganensis and Rathayibacter tritici, two phytopathogens of terrestrial plants. The 16S rRNA gene sequences of the nine isolates examined are more closely related to cloned sequences from uncultured freshwater bacteria than to the sequences of any previously isolated bacteria. The nine ultramicrobacteria isolated form, together with several uncultured bacteria, a diverse phylogenetic cluster (Luna cluster) consisting exclusively of freshwater bacteria. Isolates obtained from lakes that are ecologically different and geographically separated by great distances possess identical 16S rRNA gene sequences but have clearly different ecophysiological and phenotypic traits. Predator-prey experiments demonstrated that at least one of the ultramicro-size isolates is protected against predation by the bacterivorous nanoflagellate Ochromonas sp. strain DS.
Collapse
Affiliation(s)
- Martin W Hahn
- Institute for Limnology, Austrian Academy of Sciences, Mondseestrasse 9, A-5310 Mondsee, Austria.
| | | | | | | | | | | | | |
Collapse
|
75
|
Degans H, Zöllner E, Gucht K, Meester L, Jürgens K. Rapid Daphnia-mediated changes in microbial community structure: an experimental study. FEMS Microbiol Ecol 2002; 42:137-49. [DOI: 10.1111/j.1574-6941.2002.tb01003.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
76
|
Eguchi M, Ostrowski M, Fegatella F, Bowman J, Nichols D, Nishino T, Cavicchioli R. Sphingomonas alaskensis strain AFO1, an abundant oligotrophic ultramicrobacterium from the North Pacific. Appl Environ Microbiol 2001; 67:4945-54. [PMID: 11679312 PMCID: PMC93257 DOI: 10.1128/aem.67.11.4945-4954.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2001] [Accepted: 08/07/2001] [Indexed: 11/20/2022] Open
Abstract
Numerous studies have established the importance of picoplankton (microorganisms of < or =2 microm in length) in energy flow and nutrient cycling in marine oligotrophic environments, and significant effort has been directed at identifying and isolating heterotrophic picoplankton from the world's oceans. Using a method of diluting natural seawater to extinction followed by monthly subculturing for 12 months, a bacterium was isolated that was able to form colonies on solid medium. The strain was isolated from a 10(5) dilution of seawater where the standing bacterial count was 3.1 x 10(5) cells ml(-1). This indicated that the isolate was representative of the most abundant bacteria at the sampling site, 1.5 km from Cape Muroto, Japan. The bacterium was characterized and found to be ultramicrosized (less than 0.1 microm(3)), and the size varied to only a small degree when the cells were starved or grown in rich media. A detailed molecular (16S rRNA sequence, DNA-DNA hybridization, G+C mol%, genome size), chemotaxonomic (lipid analysis, morphology), and physiological (resistance to hydrogen peroxide, heat, and ethanol) characterization of the bacterium revealed that it was a strain of Sphingomonas alaskensis. The type strain, RB2256, was previously isolated from Resurrection Bay, Alaska, and similar isolates have been obtained from the North Sea. The isolation of this species over an extended period, its high abundance at the time of sampling, and its geographical distribution indicate that it has the capacity to proliferate in ocean waters and is therefore likely to be an important contributor in terms of biomass and nutrient cycling in marine environments.
Collapse
MESH Headings
- Base Composition
- Colony Count, Microbial
- DNA, Bacterial/analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/analysis
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Heat-Shock Response
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Pacific Ocean
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Seawater/microbiology
- Sequence Analysis, DNA
- Sphingomonas/classification
- Sphingomonas/genetics
- Sphingomonas/isolation & purification
- Sphingomonas/ultrastructure
Collapse
Affiliation(s)
- M Eguchi
- Department of Fisheries, Kinki University, Nara 631-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
77
|
Pernthaler J, Posch T, Simek K, Vrba J, Pernthaler A, Glöckner FO, Nübel U, Psenner R, Amann R. Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl Environ Microbiol 2001; 67:2145-55. [PMID: 11319094 PMCID: PMC92849 DOI: 10.1128/aem.67.5.2145-2155.2001] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated whether individual populations of freshwater bacteria in mixed experimental communities may exhibit specific responses to the presence of different bacterivorous protists. In two successive experiments, a two-stage continuous cultivation system was inoculated with nonaxenic batch cultures of the cryptophyte Cryptomonas sp. Algal exudates provided the sole source of organic carbon for growth of the accompanying microflora. The dynamics of several 16S rRNA-defined bacterial populations were followed in the experimental communities. Although the composition and stability of the two microbial communities differed, numerous members of the first assemblage could again be detected during the second experiment. The introduction of a size-selectively feeding mixotrophic nanoflagellate (Ochromonas sp.) always resulted in an immediate bloom of a single phylotype population of members of the class Actinobacteria (Ac1). These bacteria were phylogenetically affiliated with an uncultured lineage of gram-positive bacteria that have been found in freshwater habitats only. The Ac1 cells were close to the average size of freshwater bacterioplankton and significantly smaller than any of the other experimental community members. In contrast, no increase of the Ac1 population was observed in vessels exposed to the bacterivorous ciliate Cyclidium glaucoma. However, when the Ochromonas sp. was added after the establishment of C. glaucoma, the proportion of population Ac1 within the microbial community rapidly increased. Populations of a beta proteobacterial phylotype related to an Aquabacterium sp. decreased relative to the total bacterial communities following the addition of either predator, albeit to different extents. The community structure of pelagic microbial assemblages can therefore be influenced by the taxonomic composition of the predator community.
Collapse
Affiliation(s)
- J Pernthaler
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Hahn MW, Höfle MG. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 2001; 35:113-121. [PMID: 11295449 DOI: 10.1111/j.1574-6941.2001.tb00794.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Predation by bacterivorous protists in aquatic habitats can influence the morphological structure, taxonomic composition and physiological status of bacterial communities. The protistan grazing can result in bacterial responses at the community and the species level. At the community level, grazing-induced morphological shifts have been observed, which were directed towards either larger or smaller bacterial sizes or in both directions. Morphological changes have been accompanied by changes in taxonomic community structure and bacterial activity. Responses at the species level vary from species to species. Some taxa have shown a pronounced morphological plasticity and demonstrated complete or partial shifts in size distribution to larger growth forms (filaments, microcolonies). However, other taxa with weak plasticity have shown no ability to reduce grazing mortality through changes in size. The impact of protistan grazing on bacterial communities is based on the complex interplay of several parameters. These include grazing selectivity (by size and other features), differences in sensitivity of bacterial species to grazing, differences in responses of single bacterial populations to grazing (size and physiology), as well as the direct and indirect influence of grazing on bacterial growth conditions (substrate supply) and bacterial competition (elimination of competitors).
Collapse
|
79
|
McCaig AE, Grayston SJ, Prosser JI, Glover LA. Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiol Ecol 2001; 35:37-48. [PMID: 11248388 DOI: 10.1111/j.1574-6941.2001.tb00786.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated during direct analysis of the same soil and from a wide range of other sample types studied elsewhere. The study demonstrates the value of fine-scale molecular analysis for identification of laboratory isolates and indicates the culturability of approximately 1% of the total population but under a restricted range of media and cultivation conditions.
Collapse
|
80
|
Matz C, Jürgens K. Effects of hydrophobic and electrostatic cell surface properties of bacteria on feeding rates of heterotrophic nanoflagellates. Appl Environ Microbiol 2001; 67:814-20. [PMID: 11157248 PMCID: PMC92652 DOI: 10.1128/aem.67.2.814-820.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influence of cell surface hydrophobicity and electrostatic charge of bacteria on grazing rates of three common species of interception-feeding nanoflagellates was examined. The hydrophobicity of bacteria isolated from freshwater plankton was assessed by using two different methods (bacterial adhesion to hydrocarbon and hydrophobic interaction chromatography). The electrostatic charge of the cell surface (measured as zeta potential) was analyzed by microelectrophoresis. Bacterial ingestion rates were determined by enumerating bacteria in food vacuoles by immunofluorescence labelling via strain-specific antibodies. Feeding rates varied about twofold for each flagellate species but showed no significant dependence on prey hydrophobicity or surface charge. Further evidence was provided by an experiment involving flagellate grazing on complex bacterial communities in a two-stage continuous culture system. The hydrophobicity values of bacteria that survived protozoan grazing were variable, but the bacteria did not tend to become more hydrophilic. We concluded that variability in bacterial cell hydrophobicity and variability in surface charge do not severely affect uptake rates of suspended bacteria or food selection by interception-feeding flagellates.
Collapse
Affiliation(s)
- C Matz
- Department of Physiological Ecology, Max Planck Institute for Limnology, D-24302 Plön, Germany.
| | | |
Collapse
|
81
|
Obiri-Danso K, Paul N, Jones K. The effects of UVB and temperature on the survival of natural populations and pure cultures of Campylobacter jejuni, Camp. coli, Camp. lari and urease-positive thermophilic campylobacters (UPTC) in surface waters. J Appl Microbiol 2001; 90:256-67. [PMID: 11168729 DOI: 10.1046/j.1365-2672.2001.01239.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To determine whether diurnal and seasonal variations in campylobacters in surface waters result from the effects of temperature and u.v. radiation, and whether natural populations of Campylobacter lari and urease-positive thermophilic campylobacters (UPTC) from birds survive better in surface waters than Camp. jejuni from sewage. METHODS AND RESULTS Natural populations of Camp. lari and UPTC in sea water, and Camp. jejuni in river water, were exposed to artificial sunlight (equivalent to a sunny day in June). Both populations became non-culturable within 30 min, with T90s of 15 min and 25 min, respectively. Cultures of Camp. jejuni became non-culturable within 40 min and those of Camp. coli, Camp. lari and UPTC, within 60 min. In darkness, survival was temperature-dependent. Natural populations took 12 h at 37 degrees C and 5 days at 4 degrees C to become non-culturable in sea water, and slightly less in river water. Cultures of Camp. lari and UPTCs survived for significantly longer than Camp. jejuni and Camp. coli. Loss of culturability for all isolates was most rapid at 37 degrees C and slowest at 4 degrees C. Newly isolated strains from sea water and river water behaved in an almost identical manner to NCTC strains. CONCLUSION Campylobacter lari and UPTCs survive for longer in surface waters than Camp. jejuni and Camp. coli, particularly in the dark. Low Campylobacter numbers in coastal waters in the summer, especially in the afternoon, are due to the combined effects of higher temperatures and higher levels of u.v. radiation. SIGNIFICANCE AND IMPACT OF THE STUDY Campylobacter lari and UPTCs from birds predominate in bathing waters in Morecambe Bay because they are better able to survive; they also originate from closer to the shore than Camp. jejuni and Camp. coli in sewage effluent, which survive poorly and die before the incoming tide reaches the shore. The predominance of Camp. jejuni in river water results from its dominance of the inputs and not from its ability to survive.
Collapse
Affiliation(s)
- K Obiri-Danso
- Department of Biological Science, I.E.N.S., Lancaster University, Lancaster LA1 4YQ, UK
| | | | | |
Collapse
|
82
|
Spear JR. Conservation Medicine: the Changing View of Biodiversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2000; 14:1913-1917. [PMID: 35701907 DOI: 10.1111/j.1523-1739.2000.00023.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- John R Spear
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Campus Box 347, Boulder, CO 80309, U.S.A., email
| |
Collapse
|