51
|
Furrer P, Panke S, Zinn M. Efficient recovery of low endotoxin medium-chain-length poly([R]-3-hydroxyalkanoate) from bacterial biomass. J Microbiol Methods 2007; 69:206-13. [PMID: 17316850 DOI: 10.1016/j.mimet.2007.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 12/16/2006] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
Bacterial polyhydroxyalkanoate (PHA) is an attractive biopolyester for medical applications due to its biocompatibility. However, inappropriate extraction of PHA from bacterial biomass results in contamination by pyrogenic compounds (e.g. lipopolysaccharides) and thus influences medical testing. This problem was solved by a temperature-controlled method for the recovery of poly(3-hydroxyoctanoate-co-3-hydroxyhexanaote) (PHO) from Pseudomonas putida GPo1. In contrast to other methods, precipitation of PHO was triggered by cooling the hot solution to a particular temperature. N-hexane and 2-propanol were found to be optimal solvents for such procedure. Quantitative extraction with n-hexane took place at 50 degrees C and optimal precipitation occurred between 0 and 5 degrees C. The purity was >97% (w/w) and the endotoxicity between 10 and 15 EU/g PHO. Additional re-dissolution in 2-propanol at 45 degrees C and precipitation at 10 degrees C resulted in a purity of close to 100% (w/w) and the minimal endotoxicity of 2 EU/g PHO. The polydispersity (M(w)/M(n)) of PHO was decreased from 2.0 to 1.5 for this optimized procedure.
Collapse
Affiliation(s)
- Patrick Furrer
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Biomaterials, CH-9014 St. Gallen, Switzerland
| | | | | |
Collapse
|
52
|
Jacquel N, Lo CW, Wu HS, Wei YH, Wang SS. Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations. AIChE J 2007. [DOI: 10.1002/aic.11274] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
53
|
Valappil SP, Boccaccini AR, Bucke C, Roy I. Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie van Leeuwenhoek 2006; 91:1-17. [PMID: 17016742 DOI: 10.1007/s10482-006-9095-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
Gram-positive bacteria, notably Bacillus and Streptomyces, have been used extensively in industry. However, these microorganisms have not yet been exploited for the production of the biodegradable polymers, polyhydroxyalkanoates (PHAs). Although PHAs have many potential applications, the cost of production means that medical applications are currently the main area of use. Gram-negative bacteria, currently the only commercial source of PHAs, have lipopolysaccharides (LPS) which co-purify with the PHAs and cause immunogenic reactions. On the other hand, Gram- positive bacteria lack LPS, a positive feature which justifies intensive investigation into their production of PHAs. This review summarizes currently available knowledge on PHA production by Gram- positive bacteria especially Bacillus and Streptomyces. We hope that this will form the basis of further research into developing either or both as a source of PHAs for medical applications.
Collapse
Affiliation(s)
- Sabeel P Valappil
- Department of Molecular and Applied Biosciences, School of Biosciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | | | | | | |
Collapse
|
54
|
Jo SJ, Maeda M, Ooi T, Taguchi S. Production system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum. J Biosci Bioeng 2006; 102:233-6. [PMID: 17046539 DOI: 10.1263/jbb.102.233] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 05/23/2006] [Indexed: 11/17/2022]
Abstract
A biosynthetic pathway for poly(3-hydroxybutyrate) [P(3HB)] production by Corynebacterium glutamicum was developed by introducing the phbCAB operon derived from Ralstonia eutropha. P(3HB) synthase activity was detected in this recombinant C. glutamicum carrying a cell surface protein gene promoter. Intracellular P(3HB) was microscopically observed as inclusion granules and its content was calculated to be 22.5% (w/w) with a number average molecular weight of 2.1x10(5) and a polydispersity of 1.63.
Collapse
Affiliation(s)
- Sung-Jin Jo
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Sapporo-shi, Hokkaido, Japan
| | | | | | | |
Collapse
|
55
|
Wu ACK, Grøndahl L, Jack KS, Foo MX, Trau M, Hume DA, Cassady AI. Reduction of the in vitro pro-inflammatory response by macrophages to poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Biomaterials 2006; 27:4715-25. [PMID: 16750849 DOI: 10.1016/j.biomaterials.2006.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 05/10/2006] [Indexed: 01/25/2023]
Abstract
This study evaluates the pro-inflammatory response to the thermoplastic biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) through the analysis of cellular responses in vitro. The murine macrophage RAW264.7 cell line was cultured on solvent cast PHBV films, which was found to induce pro-inflammatory activity that required direct contact between the material and the macrophages. The identity of the pro-inflammatory stimulus was determined by culturing bone marrow-derived macrophages from bacterial lipopolysaccharide (LPS) hyporesponsive C3H/HeJ mice and CpG non-responsive TLR9-/- mice on PHBV. The lack of a pro-inflammatory response by the C3H/HeJ cells indicates that the pro-inflammatory agent present within PHBV is predominately LPS while the TLR9-/- macrophages confirmed that CpG-containing bacterial DNA is unlikely to contribute to the activity. A series of purification procedures was evaluated and one procedure was developed that utilized hydrogen peroxide treatment in solution. The optimized purification was found to substantially reduce the pro-inflammatory response to PHBV without adversely affecting either the molecular structure or molecular weight of the material thereby rendering it more amenable for use as a biomaterial in vivo.
Collapse
Affiliation(s)
- Andy C K Wu
- Institute for Molecular Bioscience and Co-operative Research Centre for Chronic Inflammatory Diseases, The University of Queensland, ST LUCIA 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
56
|
Kapritchkoff FM, Viotti AP, Alli RCP, Zuccolo M, Pradella JGC, Maiorano AE, Miranda EA, Bonomi A. Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha. J Biotechnol 2006; 122:453-62. [PMID: 16253372 DOI: 10.1016/j.jbiotec.2005.09.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 09/07/2005] [Accepted: 09/21/2005] [Indexed: 11/19/2022]
Abstract
Polyhydroxybutyrate (PHB) is the most studied among a wide variety of polyhydroxyalkanoates, bacterial biodegradable polymers known as potential substitutes for conventional plastics. This work aimed at evaluating the use of enzymes to recover and purify the PHB produced by Ralstonia eutropha DSM545. Screening experiments allowed the selection of trypsin, bromelain and lysozyme among six enzymes, based on their efficiency in lysing cells of a non-PHB producing R. eutropha strain. Then, process conditions for high efficiency in PHB purification from the DSM545 cells were searched for the enzymes previously selected. The best result was achieved with 2.0% of bromelain (enzyme mass per biomass), equivalent to 14.1 U ml(-1), at 50 degrees C and pH 9.0, resulting in 88.8% PHB purity. Aiming at improving the process efficiency and reducing the enzyme cost, experiments were carried out with pancreatin, leading to 90.0% polymer purity and an enzyme cost three times lower than the one obtained with bromelain. The molecular mass analysis of PHB showed no polymer degradation. Therefore, this work demonstrates the potential of using enzymes in order to recover and purify PHB and bacterial biopolymers in general.
Collapse
Affiliation(s)
- Fernanda M Kapritchkoff
- Agrupamento de Biotecnologia-DQ, Instituto de Pesquisas Tecnológicas do Estado de São Paulo-IPT, Cidade Universitaria, Av. Prof. Almeida Prado 532, CEP 05508-901 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Shishatskaya EI, Volova TG. A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2004; 15:915-923. [PMID: 15477744 DOI: 10.1023/b:jmsm.0000036280.98763.c1] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The paper describes the production and investigation of flexible films made of high-purity polyhydroxyalkanoates (PHAs)--polyhydroxybutyrate [poly-(3HB)] and poly-3-hydroxybutyrate-co-poly-3-hydroxyvalerate [poly(3HB-co-3HV)], containing 4-30 mol % hydroxyvalerate. Poly(3HB-co-3HV) films have a more porous structure than poly-(3HB) films, which are more compact, but their surface properties, such as wettability and surface and interface energies, are the same. Sterilisation of the PHA films by conventional methods (heat treatment and gamma-irradiation) did not impair their strength. Cells cultured on PHA films exhibited high levels of cell adhesion. Cell morphology, protein synthesis and DNA synthesis were estimated by extent of 3H-thymidine incorporation into the animal cell cultures of various origins (fibroblasts, endothelium cells, and isolated hepatocytes) in direct contact with PHAs. The investigation showed that this material can be used to make matrices for in vitro proliferous cells. The investigated properties of poly-(3HB) and poly(3HB-co-3HV) films proved to be fundamentally similar.
Collapse
Affiliation(s)
- E I Shishatskaya
- Institute of Biophysics, The Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 60036, Russia
| | | |
Collapse
|
58
|
Shishatskaya EI, Volova TG, Puzyr AP, Mogilnaya OA, Efremov SN. Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2004; 15:719-728. [PMID: 15346741 DOI: 10.1023/b:jmsm.0000030215.49991.0d] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyhydroxyalkanoate (PHA) sutures were implanted to test animals intramuscularly, and tissue reaction was investigated and compared with the reaction to silk and catgut. Tested monofilament sutures made of PHAs of two types--polyhydroxybutyrate (PHB) and a copolymer of hydroxybutyrate and hydroxyvalerate (PHV)--featured the strength necessary for the healing of muscle-fascial wounds. The reaction of tissues to polymeric implants was similar to their reaction to silk and was less pronounced than the reaction to catgut; it was expressed in a transient post-traumatic inflammation (up to four weeks) and the formation of a fibrous capsule less than 200 microm thick, which became as thin as 40-60 microm after 16 weeks, in the course of reverse development. Macrophages and foreign-body giant cells with a high activity of acid phosphatase were actively involved in this process. PHB and PHB/PHV sutures implanted intramuscularly for an extended period (up to one year) did not cause any acute vascular reaction at the site of implantation or any adverse events, such as suppurative inflammation, necrosis, calcification of the fibrous capsule or malignant tumor formation. No statistically significant differences were revealed in the tissue response to polymer sutures of the two types. Capsules around silk and catgut sutures did not become significantly thinner.
Collapse
Affiliation(s)
- E I Shishatskaya
- Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russia
| | | | | | | | | |
Collapse
|
59
|
Volova T, Shishatskaya E, Sevastianov V, Efremov S, Mogilnaya O. Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem Eng J 2003. [DOI: 10.1016/s1369-703x(03)00038-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
60
|
Bradley WG, Widen RH, Weiser AM, Powers JJ, Fountain LB, Punjwani P, Lofgren SM, Hadzic T, Klein R, Green WH, Tanaka A. The novel differentiation of human blood mononuclear cells into CD1a-negative dendritic cells is stimulated in the absence of exogenous cytokines by an extract prepared from pinecones. Int Immunopharmacol 2003; 3:209-23. [PMID: 12586602 DOI: 10.1016/s1567-5769(02)00267-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The production of dendritic cells, both in-vivo and in-vitro, has become the intense focus of research activities. Common to many of these production protocols is the use of cytokines, typically granulocyte-monocyte colony stimulating factor and either interleukin 4 or tumor necrosis factor alpha or a combination of all three. Herein, we report our findings that a proprietary pinecone extract is capable of in a dose-dependent manner, and in the absence of exogenous cytokines, the rapid differentiation from peripheral blood mononuclear cells of mature CD1a-negative dendritic cells.
Collapse
Affiliation(s)
- W G Bradley
- Eckerd College, 4200 54th Avenue South, St Petersburg, FL 33711, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Sevastianov VI, Perova NV, Shishatskaya EI, Kalacheva GS, Volova TG. Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2003; 14:1029-42. [PMID: 14661877 DOI: 10.1163/156856203769231547] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Samples of olyhydroxyalkanoates (PHAs), polyhydroxybutyrate (PHB) and copolymers poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with 4 and 18 mol% hydroxyvalerate, synthesized by the bacteria Ralstonia eutropha B5786, were investigated. PHA films in contact with blood did not activate the hemostasis system at the level of cell response, but they did activate the coagulation system and the complement reaction. To detect biologically-active components in the PHAs, a detailed analysis of the composition of the polymers was conducted. Gas chromatography-mass spectrometry revealed long-chain fatty acids (FAs) in the tested PHAs. Their total concentration in the polymer ranged from tenths of mol% to 2-3 mol%, depending on the purification method. C16:0 constituted the largest proportion, up to 70%. Of the long-chain hydroxy acids, only beta-OH-C14:0 was detected and it did not exceed 0.06 mol%. The analysis of the hemocompatibility properties of the PHAs purified by a specialized procedure, including the quantitative and morphological estimation of platelets adherent to the surface of polymer films, the plasma recalcification time and complement activation studies, indicated that PHB and PHBV can be used in contact with blood. It has been found out that the lipopolysaccharides of bacteria producing PHAs, which contain mostly long-chain hydroxy acids, can be the factor activating the hemostasis systems. Thus, the technology of PHA purification must satisfy rather stringent specific requirements.
Collapse
Affiliation(s)
- V I Sevastianov
- Institute of Transplantology of Artificial Organs, Russian Ministry of Health, Shchukinskaya 1, 123182, Moscow, Russia
| | | | | | | | | |
Collapse
|
62
|
Lee SY, Choi JI. Production of microbial polyester by fermentation of recombinant microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2001; 71:183-207. [PMID: 11217412 DOI: 10.1007/3-540-40021-4_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Polyhydroxyalkanoates (PHAs) can be produced from renewable sources and are biodegradable with similar material properties and processibility to conventional plastic materials. With recent advances in our understanding of the biochemistry and genetics of PHA biosynthesis and cloning of the PHA biosynthesis genes from a number of different bacteria, many different recombinant bacteria have been developed to improve PHA production for commercial applications. For enhancing PHA synthetic capacity, homologous or heterologous expression of the PHA biosynthetic enzymes has been attempted. Several genes that allow utilization of various substrates were transformed into PHA producers, or non-PHA producers utilizing inexpensive carbon substrate were transformed with the PHA biosynthesis genes. Novel PHAs have been synthesized by introducing a new PHA biosynthesis pathway or a new PHA synthase gene. In this article, recent advances in the production of PHA by recombinant bacteria are described.
Collapse
Affiliation(s)
- S Y Lee
- Department of Chemical Engineering and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701, Korea.
| | | |
Collapse
|