51
|
Hu J, Tan Y, Li Y, Hu X, Xu D, Wang X. Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum. Plasmid 2013; 70:303-13. [DOI: 10.1016/j.plasmid.2013.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
|
52
|
Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, Bott M, Noack S, Frunzke J. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl Environ Microbiol 2013; 79:6006-15. [PMID: 23892752 PMCID: PMC3811366 DOI: 10.1128/aem.01634-13] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/17/2013] [Indexed: 11/20/2022] Open
Abstract
The activity of bacteriophages and phage-related mobile elements is a major source for genome rearrangements and genetic instability of their bacterial hosts. The genome of the industrial amino acid producer Corynebacterium glutamicum ATCC 13032 contains three prophages (CGP1, CGP2, and CGP3) of so far unknown functionality. Several phage genes are regularly expressed, and the large prophage CGP3 (∼190 kbp) has recently been shown to be induced under certain stress conditions. Here, we present the construction of MB001, a prophage-free variant of C. glutamicum ATCC 13032 with a 6% reduced genome. This strain does not show any unfavorable properties during extensive phenotypic characterization under various standard and stress conditions. As expected, we observed improved growth and fitness of MB001 under SOS-response-inducing conditions that trigger CGP3 induction in the wild-type strain. Further studies revealed that MB001 has a significantly increased transformation efficiency and produced about 30% more of the heterologous model protein enhanced yellow fluorescent protein (eYFP), presumably as a consequence of an increased plasmid copy number. These effects were attributed to the loss of the restriction-modification system (cg1996-cg1998) located within CGP3. The deletion of the prophages without any negative effect results in a novel platform strain for metabolic engineering and represents a useful step toward the construction of a C. glutamicum chassis genome of strain ATCC 13032 for biotechnological applications and synthetic biology.
Collapse
Affiliation(s)
- Meike Baumgart
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Simon Unthan
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | | | - Jasintha Sivalingam
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Alexander Grünberger
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | | | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
53
|
Warth L, Altenbuchner J. The tyrosine recombinase MrpA and its target sequence: a mutational analysis of the recombination site mrpS resulting in a new left element/right element (LE/RE) deletion system. Arch Microbiol 2013; 195:617-36. [PMID: 23861149 DOI: 10.1007/s00203-013-0910-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 06/06/2013] [Accepted: 06/22/2013] [Indexed: 11/28/2022]
Abstract
MrpA is the multimer resolution protein of the Streptomyces coelicolor A3(2) plasmid SCP2*. Previously, MrpA was found to be a site-specific tyrosine recombinase that acts with the 36-bp recombination site mrpS. The present report gives a comprehensive characterization of the composition as well as the position of the spacer and MrpA binding sites within mrpS. Experiments revealed a spacer consisting of 6 remarkably variable nucleotides in the middle of the mrpS-site. A reduction in the spacer to 5 nucleotides abolished recombination. Investigation of the MrpA binding sites showed the importance of its 15 nucleotides on an effective recombination. Among almost randomly exchangeable nucleotides, two nucleotides were identified as essential for MrpA binding. Alteration of either of these nucleotides led to a reduction in MrpA binding down to 2 % or even to no binding. Based on these results, a new left element/right element (LE/RE) deletion system was developed. The constructed heteromeric mrpS-sites are efficiently resolved by MrpA. The resulting double mutated (LE/RE) site can no longer be used as a recombination site by MrpA. The system has been successfully applied for the generation of multiple-targeted deletions in the genome of E. coli.
Collapse
Affiliation(s)
- Lydia Warth
- Institut für Industrielle Genetik, Universität Stuttgart, Germany
| | | |
Collapse
|
54
|
Baculovirus VP1054 is an acquired cellular PURα, a nucleic acid-binding protein specific for GGN repeats. J Virol 2013; 87:8465-80. [PMID: 23720732 DOI: 10.1128/jvi.00068-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Baculovirus VP1054 protein is a structural component of both of the virion types budded virus (BV) and occlusion-derived virus (ODV), but its exact role in virion morphogenesis is poorly defined. In this paper, we reveal sequence and functional similarity between the baculovirus protein VP1054 and the cellular purine-rich element binding protein PUR-alpha (PURα). The data strongly suggest that gene transfer has occurred from a host to an ancestral baculovirus. Deletion of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vp1054 gene completely prevented viral cell-to-cell spread. Electron microscopy data showed that assembly of progeny nucleocapsids is dramatically reduced in the absence of VP1054. More precisely, VP1054 is required for proper viral DNA encapsidation, as deduced from the formation of numerous electron-lucent capsid-like tubules. Complementary searching identified the presence of genetic elements composed of repeated GGN trinucleotide motifs in baculovirus genomes, the target sequence for PURα proteins. Interestingly, these GGN-rich sequences are disproportionally distributed in baculoviral genomes and mostly occurred in proximity to the gene for the major occlusion body protein polyhedrin. We further demonstrate that the VP1054 protein specifically recognizes these GGN-rich islands, which at the same time encode crucial proline-rich domains in p78/83, an essential gene adjacent to the polyhedrin gene in the AcMNPV genome. While some viruses, like human immunodeficiency virus type 1 (HIV-1) and human JC virus (JCV), utilize host PURα protein, baculoviruses encode the PURα-like protein VP1054, which is crucial for viral progeny production.
Collapse
|
55
|
A new site-specific recombinase-mediated system for targeted multiple genomic deletions employing chimeric loxP and mrpS sites. Appl Microbiol Biotechnol 2013; 97:6845-56. [DOI: 10.1007/s00253-013-4827-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
|
56
|
Influence of copper resistance determinants on gold transformation by Cupriavidus metallidurans strain CH34. J Bacteriol 2013; 195:2298-308. [PMID: 23475973 DOI: 10.1128/jb.01951-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cupriavidus metallidurans is associated with gold grains and may be involved in their formation. Gold(III) complexes influence the transcriptome of C. metallidurans (F. Reith et al., Proc. Natl. Acad. Sci. U. S. A. 106:17757-17762, 2009), leading to the upregulation of genes involved in the detoxification of reactive oxygen species and metal ions. In a systematic study, the involvement of these systems in gold transformation was investigated. Treatment of C. metallidurans cells with Au(I) complexes, which occur in this organism's natural environment, led to the upregulation of genes similar to those observed for treatment with Au(III) complexes. The two indigenous plasmids of C. metallidurans, which harbor several transition metal resistance determinants, were not involved in resistance to Au(I/III) complexes nor in their transformation to metallic nanoparticles. Upregulation of a cupA-lacZ fusion by the MerR-type regulator CupR with increasing Au(III) concentrations indicated the presence of gold ions in the cytoplasm. A hypothesis stating that the Gig system detoxifies gold complexes by the uptake and reduction of Au(III) to Au(I) or Au(0) reminiscent to detoxification of Hg(II) was disproven. ZupT and other secondary uptake systems for transition metal cations influenced Au(III) resistance but not the upregulation of the cupA-lacZ fusion. The two copper-exporting P-type ATPases CupA and CopF were also not essential for gold resistance. The copABCD determinant on chromosome 2, which encodes periplasmic proteins involved in copper resistance, was required for full gold resistance in C. metallidurans. In conclusion, biomineralization of gold particles via the reduction of mobile Au(I/III) complexes in C. metallidurans appears to primarily occur in the periplasmic space via copper-handling systems.
Collapse
|
57
|
Suzuki N, Inui M. Genome Engineering of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
58
|
Actinomycetes genome engineering approaches. Antonie van Leeuwenhoek 2012; 102:503-16. [DOI: 10.1007/s10482-012-9795-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/09/2012] [Indexed: 10/28/2022]
|
59
|
Wang Y, Weng J, Waseem R, Yin X, Zhang R, Shen Q. Bacillus subtilis genome editing using ssDNA with short homology regions. Nucleic Acids Res 2012; 40:e91. [PMID: 22422839 PMCID: PMC3384351 DOI: 10.1093/nar/gks248] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we developed a simple and efficient Bacillus subtilis genome editing method in which targeted gene(s) could be inactivated by single-stranded PCR product(s) flanked by short homology regions and in-frame deletion could be achieved by incubating the transformants at 42°C. In this process, homologous recombination (HR) was promoted by the lambda beta protein synthesized under the control of promoter PRM in the lambda cI857 PRM–PR promoter system on a temperature sensitive plasmid pWY121. Promoter PR drove the expression of the recombinase gene cre at 42°C for excising the floxed (lox sites flanked) disruption cassette that contained a bleomycin resistance marker and a heat inducible counter-selectable marker (hewl, encoding hen egg white lysozyme). Then, we amplified the single-stranded disruption cassette using the primers that carried 70 nt homology extensions corresponding to the regions flanking the target gene. By transforming the respective PCR products into the B. subtilis that harbored pWY121 and incubating the resultant mutants at 42°C, we knocked out multiple genes in the same genetic background with no marker left. This process is simple and efficient and can be widely applied to large-scale genome analysis of recalcitrant Bacillus species.
Collapse
Affiliation(s)
- Yang Wang
- Department of Plant Nutrition, College of Resource and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, PR China
| | | | | | | | | | | |
Collapse
|
60
|
Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 2012; 78:1804-12. [PMID: 22247163 DOI: 10.1128/aem.06054-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The feasibility of using technologies based on site-specific recombination in actinomycetes was shown several years ago. Despite their huge potential, these technologies mostly have been used for simple marker removal from a chromosome. In this paper, we present different site-specific recombination strategies for genome engineering in several actinomycetes belonging to the genera Streptomyces, Micromonospora, and Saccharothrix. Two different systems based on Cre/loxP and Dre/rox have been utilized for numerous applications. The activity of the Cre recombinase on the heterospecific loxLE and loxRE sites was similar to its activity on wild-type loxP sites. Moreover, an apramycin resistance marker flanked by the loxLERE sites was eliminated from the Streptomyces coelicolor M145 genome at a surprisingly high frequency (80%) compared to other bacteria. A synthetic gene encoding the Dre recombinase was constructed and successfully expressed in actinomycetes. We developed a marker-free expression method based on the combination of phage integration systems and site-specific recombinases. The Cre recombinase has been used in the deletion of huge genomic regions, including the phenalinolactone, monensin, and lipomycin biosynthetic gene clusters from Streptomyces sp. strain Tü6071, Streptomyces cinnamonensis A519, and Streptomyces aureofaciens Tü117, respectively. Finally, we also demonstrated the site-specific integration of plasmid and cosmid DNA into the chromosome of actinomycetes catalyzed by the Cre recombinase. We anticipate that the strategies presented here will be used extensively to study the genetics of actinomycetes.
Collapse
|
61
|
Lohße A, Ullrich S, Katzmann E, Borg S, Wanner G, Richter M, Voigt B, Schweder T, Schüler D. Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PLoS One 2011; 6:e25561. [PMID: 22043287 PMCID: PMC3197154 DOI: 10.1371/journal.pone.0025561] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/05/2011] [Indexed: 11/19/2022] Open
Abstract
Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, proteomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of large deletion mutants we demonstrate that the entire region is dispensable for growth, and the majority of MAI genes have no detectable function in magnetosome formation and could be eliminated without any effect. Only <25% of the region comprising four major operons could be associated with magnetite biomineralization, which correlated with high expression of these genes and their conservation among magnetotactic bacteria. Whereas only deletion of the mamAB operon resulted in the complete loss of magnetic particles, deletion of the conserved mms6, mamGFDC, and mamXY operons led to severe defects in morphology, size and organization of magnetite crystals. However, strains in which these operons were eliminated together retained the ability to synthesize small irregular crystallites, and weakly aligned in magnetic fields. This demonstrates that whereas the mamGFDC, mms6 and mamXY operons have crucial and partially overlapping functions for the formation of functional magnetosomes, the mamAB operon is the only region of the MAI, which is necessary and sufficient for magnetite biomineralization. Our data further reduce the known minimal gene set required for magnetosome formation and will be useful for future genome engineering approaches.
Collapse
Affiliation(s)
- Anna Lohße
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, LMU Biozentrum, Planegg-Martinsried, Germany
| | - Susanne Ullrich
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, LMU Biozentrum, Planegg-Martinsried, Germany
| | - Emanuel Katzmann
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, LMU Biozentrum, Planegg-Martinsried, Germany
| | - Sarah Borg
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, LMU Biozentrum, Planegg-Martinsried, Germany
| | - Gerd Wanner
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, LMU Biozentrum, Planegg-Martinsried, Germany
| | - Michael Richter
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Birgit Voigt
- Department of Microbial Physiology, Institute of Microbiology, Ernst Moritz Arndt University, Greifswald, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology Research Group, Institute of Pharmacy, Ernst Moritz Arndt University, Greifswald, Germany
| | - Dirk Schüler
- Department Biologie I, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, LMU Biozentrum, Planegg-Martinsried, Germany
- * E-mail:
| |
Collapse
|
62
|
Metz SW, Feenstra F, Villoing S, van Hulten MC, van Lent JW, Koumans J, Vlak JM, Pijlman GP. Low temperature-dependent salmonid alphavirus glycoprotein processing and recombinant virus-like particle formation. PLoS One 2011; 6:e25816. [PMID: 21991361 PMCID: PMC3185042 DOI: 10.1371/journal.pone.0025816] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/11/2011] [Indexed: 11/18/2022] Open
Abstract
Pancreas disease (PD) and sleeping disease (SD) are important viral scourges in aquaculture of Atlantic salmon and rainbow trout. The etiological agent of PD and SD is salmonid alphavirus (SAV), an unusual member of the Togaviridae (genus Alphavirus). SAV replicates at lower temperatures in fish. Outbreaks of SAV are associated with large economic losses of ∼17 to 50 million $/year. Current control strategies rely on vaccination with inactivated virus formulations that are cumbersome to obtain and have intrinsic safety risks. In this research we were able to obtain non-infectious virus-like particles (VLPs) of SAV via expression of recombinant baculoviruses encoding SAV capsid protein and two major immunodominant viral glycoproteins, E1 and E2 in Spodoptera frugiperda Sf9 insect cells. However, this was only achieved when a temperature shift from 27°C to lower temperatures was applied. At 27°C, precursor E2 (PE2) was misfolded and not processed by host furin into mature E2. Hence, E2 was detected neither on the surface of infected cells nor as VLPs in the culture fluid. However, when temperatures during protein expression were lowered, PE2 was processed into mature E2 in a temperature-dependent manner and VLPs were abundantly produced. So, temperature shift-down during synthesis is a prerequisite for correct SAV glycoprotein processing and recombinant VLP production.
Collapse
Affiliation(s)
- Stefan W. Metz
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Femke Feenstra
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Jan W. van Lent
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
63
|
Cloning-independent and counterselectable markerless mutagenesis system in Streptococcus mutans. Appl Environ Microbiol 2011; 77:8025-33. [PMID: 21948849 DOI: 10.1128/aem.06362-11] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insertion duplication mutagenesis and allelic replacement mutagenesis are among the most commonly utilized approaches for targeted mutagenesis in bacteria. However, both techniques are limited by a variety of factors that can complicate mutant phenotypic studies. To circumvent these limitations, multiple markerless mutagenesis techniques have been developed that utilize either temperature-sensitive plasmids or counterselectable suicide vectors containing both positive- and negative-selection markers. For many species, these techniques are not especially useful due to difficulties of cloning with Escherichia coli and/or a lack of functional negative-selection markers. In this study, we describe the development of a novel approach for the creation of markerless mutations. This system employs a cloning-independent methodology and should be easily adaptable to a wide array of Gram-positive and Gram-negative bacterial species. The entire process of creating both the counterselection cassette and mutation constructs can be completed using overlapping PCR protocols, which allows extremely quick assembly and eliminates the requirement for either temperature-sensitive replicons or suicide vectors. As a proof of principle, we used Streptococcus mutans reference strain UA159 to create markerless in-frame deletions of 3 separate bacteriocin genes as well as triple mutants containing all 3 deletions. Using a panel of 5 separate wild-type S. mutans strains, we further demonstrated that the procedure is nearly 100% efficient at generating clones with the desired markerless mutation, which is a considerable improvement in yield compared to existing approaches.
Collapse
|
64
|
Metz SW, Geertsema C, Martina BE, Andrade P, Heldens JG, van Oers MM, Goldbach RW, Vlak JM, Pijlman GP. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells. Virol J 2011; 8:353. [PMID: 21762510 PMCID: PMC3162542 DOI: 10.1186/1743-422x-8-353] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 07/15/2011] [Indexed: 12/16/2022] Open
Abstract
Background Chikungunya virus (CHIKV) is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of envelope proteins E1 and E2 and to develop a CHIKV subunit vaccine, C-terminally his-tagged E1 and E2 envelope glycoproteins were produced at high levels in insect cells with baculovirus vectors using their native signal peptides located in CHIKV 6K and E3, respectively. Results Expression in the presence of either tunicamycin or furin inhibitor showed that a substantial portion of recombinant intracellular E1 and precursor E3E2 was glycosylated, but that a smaller fraction of E3E2 was processed by furin into mature E3 and E2. Deletion of the C-terminal transmembrane domains of E1 and E2 enabled secretion of furin-cleaved, fully processed E1 and E2 subunits, which could then be efficiently purified from cell culture fluid via metal affinity chromatography. Confocal laser scanning microscopy on living baculovirus-infected Sf21 cells revealed that full-length E1 and E2 translocated to the plasma membrane, suggesting similar posttranslational processing of E1 and E2, as in a natural CHIKV infection. Baculovirus-directed expression of E1 displayed fusogenic activity as concluded from syncytia formation. CHIKV-E2 was able to induce neutralizing antibodies in rabbits. Conclusions Chikungunya virus glycoproteins could be functionally expressed at high levels in insect cells and are properly glycosylated and cleaved by furin. The ability of purified, secreted CHIKV-E2 to induce neutralizing antibodies in rabbits underscores the potential use of E2 in a subunit vaccine to prevent CHIKV infections.
Collapse
Affiliation(s)
- Stefan W Metz
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Contributions of five secondary metal uptake systems to metal homeostasis of Cupriavidus metallidurans CH34. J Bacteriol 2011; 193:4652-63. [PMID: 21742896 DOI: 10.1128/jb.05293-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cupriavidus metallidurans is adapted to high concentrations of transition metal cations and is a model system for studying metal homeostasis in difficult environments. The elemental composition of C. metallidurans cells cultivated under various conditions was determined, revealing the ability of the bacterium to shield homeostasis of one essential metal from the toxic action of another. The contribution of metal uptake systems to this ability was studied. C. metallidurans contains three CorA members of the metal inorganic transport (MIT) protein family of putative magnesium uptake systems, ZupT of the ZRT/IRT protein, or ZIP, family, and PitA, which imports metal phosphate complexes. Expression of the genes for all these transporters was regulated by zinc availability, as shown by reporter gene fusions. While expression of zupT was upregulated under conditions of zinc starvation, expression of the other genes was downregulated at high zinc concentrations. Only corA(1) expression was influenced by magnesium starvation. Deletion mutants were constructed to characterize the contribution of each system to transition metal import. This identified ZupT as the main zinc uptake system under conditions of low zinc availability, CorA(1) as the main secondary magnesium uptake system, and CorA(2) and CorA(3) as backup systems for metal cation import. PitA may function as a cation-phosphate uptake system, the main supplier of divalent metal cations and phosphate in phosphate-rich environments. Thus, metal homeostasis in C. metallidurans is achieved by highly redundant metal uptake systems, which have only minimal cation selectivity and are in combination with efflux systems that "worry later" about surplus cations.
Collapse
|
66
|
Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 2011; 107 Suppl:S3-15. [PMID: 21784228 DOI: 10.1016/j.jip.2011.05.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
|
67
|
Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 2011; 90:1641-54. [DOI: 10.1007/s00253-011-3272-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 01/26/2023]
|
68
|
Pan R, Zhang J, Shen WL, Tao ZQ, Li SP, Yan X. Sequential deletion of Pichia pastoris genes by a self-excisable cassette. FEMS Yeast Res 2011; 11:292-8. [PMID: 21208374 DOI: 10.1111/j.1567-1364.2011.00716.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A rapid and convenient method is presented for unmarked gene deletions in Pichia pastoris. Cre/mutated lox system, Zeocin(®) (Invitrogen) resistance marker and homologous arms were spliced together by fusion PCR to generate the gene disruption cassettes (homologous region-lox71-Cre-ZeoR-lox66-homologous region), which could be integrated into the P. pastoris genome via homologous recombination. After transferring double-cross-over recombinants to methanol induction medium, transient expression of Cre recombinase caused the recombination of lox71-Cre-ZeoR-lox66 fragment into a double-mutant lox72 site, thus excising the Cre-ZeoR cassette from the P. pastoris genome. As the double-mutant lox72 site displays strongly reduced binding affinity for Cre recombinase, this method could be used sequentially to disrupt P. pastoris genes without introducing selectable markers. The effectiveness of this strategy was verified by introducing both single and double gene deletions into the P. pastoris genome.
Collapse
Affiliation(s)
- Rongqing Pan
- Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
69
|
Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of l-threonine. Biotechnol Adv 2011; 29:11-23. [DOI: 10.1016/j.biotechadv.2010.07.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/17/2010] [Accepted: 07/26/2010] [Indexed: 11/23/2022]
|
70
|
Cre-lox-based method for generation of large deletions within the genomic magnetosome island of Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2010; 76:2439-44. [PMID: 20173068 DOI: 10.1128/aem.02805-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetosome biomineralization and magnetotaxis in magnetotactic bacteria are controlled by numerous, mostly unknown gene functions that are predominantly encoded by several operons located within the genomic magnetosome island (MAI). Genetic analysis of magnetotactic bacteria has remained difficult and requires the development of novel tools. We established a Cre-lox-based deletion method which allows the excision of large genomic fragments in Magnetospirillum gryphiswaldense. Two conjugative suicide plasmids harboring lox sites that flanked the target region were subsequently inserted into the chromosome by homologous recombination, requiring only one single-crossover event, respectively, and resulting in a double cointegrate. Excision of the targeted chromosomal segment that included the inserted plasmids and their resistance markers was induced by trans expression of Cre recombinase, which leaves behind a scar of only a single loxP site. The Cre helper plasmid was then cured from the deletant strain by relief of antibiotic selection. We have used this method for the deletion of 16.3-kb, 61-kb, and 67.3-kb fragments from the genomic MAI, either in a single round or in subsequent rounds of deletion, covering a region of approximately 87 kb that comprises the mamAB, mms6, and mamGFDC operons. As expected, all mutants were Mag(-) and some were Mot(-); otherwise, they showed normal growth patterns, which indicates that the deleted region is not essential for viability in the laboratory. The method will facilitate future functional analysis of magnetosome genes and also can be utilized for large-scale genome engineering in magnetotactic bacteria.
Collapse
|
71
|
Scherer J, Nies DH. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 2009; 73:601-21. [PMID: 19602147 DOI: 10.1111/j.1365-2958.2009.06792.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cupriavidus metallidurans CH34 possesses a multitude of metal efflux systems. Here, the function of the novel P(IB4)-type ATPase CzcP is characterized, which belongs to the plasmid pMOL30-mediated cobalt-zinc-cadmium (Czc) resistance system. Contribution of CzcP to transition metal resistance in C. metallidurans was compared with that of three P(IB2)-type ATPases (CadA, ZntA, PrbA) and to other efflux proteins by construction and characterization of multiple deletion mutants. These data also yielded additional evidence for an export of metal cations from the periplasm to the outside of the cell rather than from the cytoplasm to the outside. Moreover, metal-sensitive Escherichia coli strains were functionally substituted in trans with CzcP and the three P(IB2)-type ATPases. Metal transport kinetics performed with inside-out vesicles identified the main substrates for these four exporters, the K(m) values and apparent turn-over numbers. In combination with the mutant data, transport kinetics indicated that CzcP functions as 'resistance enhancer': this P(IB4)-type ATPase exports transition metals Zn(2+), Cd(2+) and Co(2+) much more rapidly than the three P(IB2)-type proteins. However, a basic resistance level has to be provided by the P(IB2)-type efflux pumps because CzcP may not be able to reach all different speciations of these metals in the cytoplasm.
Collapse
Affiliation(s)
- Judith Scherer
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University, Halle-Wittenberg, Germany
| | | |
Collapse
|
72
|
Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H. Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl Microbiol Biotechnol 2009; 82:491-500. [DOI: 10.1007/s00253-008-1786-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
73
|
Moya A, Gil R, Latorre A, Peretó J, Pilar Garcillán-Barcia M, de la Cruz F. Toward minimal bacterial cells: evolution vs. design. FEMS Microbiol Rev 2009; 33:225-35. [PMID: 19067748 PMCID: PMC7189813 DOI: 10.1111/j.1574-6976.2008.00151.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/29/2008] [Accepted: 10/24/2008] [Indexed: 02/05/2023] Open
Abstract
Recent technical and conceptual advances in the biological sciences opened the possibility of the construction of newly designed cells. In this paper we review the state of the art of cell engineering in the context of genome research, paying particular attention to what we can learn on naturally reduced genomes from either symbiotic or free living bacteria. Different minimal hypothetically viable cells can be defined on the basis of several computational and experimental approaches. Projects aiming at simplifying living cells converge with efforts to make synthetic genomes for minimal cells. The panorama of this particular view of synthetic biology lead us to consider the use of defined minimal cells to be applied in biomedical, bioremediation, or bioenergy application by taking advantage of existing naturally minimized cells.
Collapse
Affiliation(s)
- Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain.
| | | | | | | | | | | |
Collapse
|
74
|
Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R. J Bacteriol 2008; 190:8204-14. [PMID: 18931118 DOI: 10.1128/jb.00752-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous work, random genome deletion mutants of Corynebacterium glutamicum R were generated using the insertion sequence (IS) element IS31831 and the Cre/loxP excision system. One of these mutants, C. glutamicum strain RD41, resulting from the deletion of a 10.1-kb genomic region (DeltacgR_1595 through cgR_1604) from the WT strain, showed cell elongation, and several lines appeared on the cell surface (bamboo shape). The morphological changes were suppressed by overexpression of cgR_1596. Single disruption of cgR_1596 in WT C. glutamicum R resulted in morphological changes similar to those observed in the RD41 strain. CgR_1596 has a predicted secretion signal peptide in the amino-terminal region and a predicted NlpC/P60 domain, which is conserved in cell wall hydrolases, in the carboxyl-terminal region. In C. glutamicum R, CgR_0802, CgR_1596, CgR_2069, and CgR_2070 have the NlpC/P60 domain; however, only simultaneous disruption of cgR_1596 and cgR_2070, and not cgR_2070 single disruption, resulted in cell growth delay and more severe morphological changes than disruption of cgR_1596. Transmission electron microscopy revealed multiple septa within individual cells of cgR_1596 single and cgR_1596-cgR_2070 double disruptants. Taken together, these results suggest that cgR_1596 and cgR_2070 are involved in cell separation and cell growth in C. glutamicum.
Collapse
|
75
|
Multiple knock-out system of Mannheimia succiniciproducens using mutant Lox sequences. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
76
|
Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microbiol 2008; 74:5556-62. [PMID: 18641148 DOI: 10.1128/aem.01156-08] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a fast and accurate method to engineer the Bacillus subtilis genome that involves fusing by PCR two flanking homology regions with an antibiotic resistance gene cassette bordered by two mutant lox sites (lox71 and lox66). The resulting PCR products were used directly to transform B. subtilis, and then transient Cre recombinase expression in the transformants was used to recombine lox71 and lox66 into a double-mutant lox72 site, thereby excising the marker gene. The mutation process could also be accomplished in 2 days by using a strain containing a cre isopropyl-beta-d-thiogalactopyranoside (IPTG)-inducible expression cassette in the chromosome as the recipient or using the lox site-flanked cassette containing both the cre IPTG-inducible expression cassette and resistance marker. The in vivo recombination efficiencies of different lox pairs were compared; the lox72 site that remains in the chromosome after Cre recombination had a low affinity for Cre and did not interfere with subsequent rounds of Cre/lox mutagenesis. We used this method to inactivate a specific gene, to delete a long fragment, to realize the in-frame deletion of a target gene, to introduce a gene of interest, and to carry out multiple manipulations in the same background. Furthermore, it should also be applicable to large genome rearrangement.
Collapse
|
77
|
Suzuki N, Inui M, Yukawa H. Random genome deletion methods applicable to prokaryotes. Appl Microbiol Biotechnol 2008; 79:519-26. [PMID: 18491037 DOI: 10.1007/s00253-008-1512-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/16/2008] [Accepted: 04/19/2008] [Indexed: 11/28/2022]
Abstract
Through their enabling of simultaneous identification of multiple non-essential genes in a genome, large-segment genome deletion methods are an increasingly popular approach to minimize and tailor microbial genomes for specific functions. At present, difficulties in identifying target regions for deletion are a result of inadequate knowledge to define gene essentiality. Furthermore, with the majority of predicted open reading frames of completely sequenced genomes still annotated as putative genes, essential or important genes are found scattered throughout the genomes, limiting the size of non-essential segments that can be safely deleted in a single sweep. Recently described large-segment random genome deletion methods that utilize transposons enable the generation of random deletion strains, analysis of which makes identification of non-essential genes less tedious. Such and other efforts to determine the minimum genome content necessary for cell survival continue to accumulate important information that should help improve our understanding of genome function and evolution. This review presents an assessment of technological advancements of random genome deletion methods in prokaryotes to date.
Collapse
Affiliation(s)
- Nobuaki Suzuki
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Kizugawa, Kyoto, Japan
| | | | | |
Collapse
|
78
|
From genome sequence to integrated bioprocess for succinic acid production by Mannheimia succiniciproducens. Appl Microbiol Biotechnol 2008; 79:11-22. [PMID: 18340442 DOI: 10.1007/s00253-008-1424-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 02/16/2008] [Accepted: 02/18/2008] [Indexed: 12/16/2022]
Abstract
Mannheimia succiniciproducens is a capnophilic gram-negative bacterium isolated from bovine rumen. Wild-type M. succiniciproducens can produce succinic acid as a major fermentation product with acetic, formic, and lactic acids as byproducts during the anaerobic cultivation using several different carbon sources. Succinic acid is an important C4 building block chemical for many applications. Here, we review the progress made with M. succiniciproducens for efficient succinic acid production; the approaches taken towards the development of an integrated process for succinic acid production are described, which include strain isolation and characterization, complete genome sequencing and annotation, development of genetic tools for metabolic engineering, strain development by systems approach of integrating omics and in silico metabolic analysis, and development of fermentation and recovery processes. We also describe our current effort on further improving the performance of M. succiniciproducens and optimizing the mid- and downstream processes. Finally, we finish this mini-review by discussing the issues that need to be addressed to make this process of fermentative succinic acid production employing M. succiniciproducens to reach the industrial-scale process.
Collapse
|
79
|
Kim JM, Lee KH, Lee SY. Development of a markerless gene knock-out system forMannheimia succiniciproducensusing a temperature-sensitive plasmid. FEMS Microbiol Lett 2008; 278:78-85. [DOI: 10.1111/j.1574-6968.2007.00981.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
80
|
Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl Microbiol Biotechnol 2007; 77:871-8. [DOI: 10.1007/s00253-007-1215-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/12/2007] [Accepted: 09/16/2007] [Indexed: 10/22/2022]
|
81
|
Fehér T, Papp B, Pal C, Pósfai G. Systematic genome reductions: theoretical and experimental approaches. Chem Rev 2007; 107:3498-513. [PMID: 17636890 DOI: 10.1021/cr0683111] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tamas Fehér
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | |
Collapse
|
82
|
Tsuge Y, Suzuki N, Inui M, Yukawa H. Random segment deletion based on IS31831 and Cre/loxP excision system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2007; 74:1333-41. [PMID: 17221197 DOI: 10.1007/s00253-006-0788-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 11/28/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
A simple and random genome deletion method combining insertion sequence (IS) element IS31831 and the Cre/loxP excision system generated 42 Corynebacterium glutamicum mutants (0.2-186 kb). A total of 393.6 kb (11.9% of C. glutamicum R genome) coding for 331 genes was confirmed to be nonessential under standard laboratory conditions. The deletion strains, generated using only two vectors, varied not only in their lengths but also the location of the deletion along the C. glutamicum R genome. By comparing and analyzing the generated deletion strains, identification of nonessential genes, the roles of genes of hitherto unknown function, and gene-gene interactions can be easily and efficiently determined.
Collapse
Affiliation(s)
- Yota Tsuge
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Soraku-gun, Kyoto 619-0292, Japan
| | | | | | | |
Collapse
|
83
|
Lambert JM, Bongers RS, Kleerebezem M. Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol 2006; 73:1126-35. [PMID: 17142375 PMCID: PMC1828656 DOI: 10.1128/aem.01473-06] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The classic strategy to achieve gene deletion variants is based on double-crossover integration of nonreplicating vectors into the genome. In addition, recombination systems such as Cre-lox have been used extensively, mainly for eukaryotic organisms. This study presents the construction of a Cre-lox-based system for multiple gene deletions in Lactobacillus plantarum that could be adapted for use on gram-positive bacteria. First, an effective mutagenesis vector (pNZ5319) was constructed that allows direct cloning of blunt-end PCR products representing homologous recombination target regions. Using this mutagenesis vector, double-crossover gene replacement mutants could be readily selected based on their antibiotic resistance phenotype. In the resulting mutants, the target gene is replaced by a lox66-P(32)-cat-lox71 cassette, where lox66 and lox71 are mutant variants of loxP and P(32)-cat is a chloramphenicol resistance cassette. The lox sites serve as recognition sites for the Cre enzyme, a protein that belongs to the integrase family of site-specific recombinases. Thus, transient Cre recombinase expression in double-crossover mutants leads to recombination of the lox66-P(32)-cat-lox71 cassette into a double-mutant loxP site, called lox72, which displays strongly reduced recognition by Cre. The effectiveness of the Cre-lox-based strategy for multiple gene deletions was demonstrated by construction of both single and double gene deletions at the melA and bsh1 loci on the chromosome of the gram-positive model organism Lactobacillus plantarum WCFS1. Furthermore, the efficiency of the Cre-lox-based system in multiple gene replacements was determined by successive mutagenesis of the genetically closely linked loci melA and lacS2 in L. plantarum WCFS1. The fact that 99.4% of the clones that were analyzed had undergone correct Cre-lox resolution emphasizes the suitability of the system described here for multiple gene replacement and deletion strategies in a single genetic background.
Collapse
Affiliation(s)
- Jolanda M Lambert
- Wegeningen Centre for Food Science, Microbial Functionality and Safety Programme, Health and Safety Department, P.O. Box 20, 6710 BA Ede, The Netherlands
| | | | | |
Collapse
|
84
|
Ohtake H, Yamashita S, Kato J. Development of a New Biotechnological Basis for Improving Industrial Sustainability in Japan. Eng Life Sci 2006. [DOI: 10.1002/elsc.200620124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|