51
|
Franzén O, Jerlström-Hultqvist J, Einarsson E, Ankarklev J, Ferella M, Andersson B, Svärd SG. Transcriptome profiling of Giardia intestinalis using strand-specific RNA-seq. PLoS Comput Biol 2013; 9:e1003000. [PMID: 23555231 PMCID: PMC3610916 DOI: 10.1371/journal.pcbi.1003000] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/02/2013] [Indexed: 01/08/2023] Open
Abstract
Giardia intestinalis is a common cause of diarrheal disease and it consists of eight genetically distinct genotypes or assemblages (A-H). Only assemblages A and B infect humans and are suggested to represent two different Giardia species. Correlations exist between assemblage type and host-specificity and to some extent symptoms. Phenotypical differences have been documented between assemblages and genome sequences are available for A, B and E. We have characterized and compared the polyadenylated transcriptomes of assemblages A, B and E. Four genetically different isolates were studied (WB (AI), AS175 (AII), P15 (E) and GS (B)) using paired-end, strand-specific RNA-seq. Most of the genome was transcribed in trophozoites grown in vitro, but at vastly different levels. RNA-seq confirmed many of the present annotations and refined the current genome annotation. Gene expression divergence was found to recapitulate the known phylogeny, and uncovered lineage-specific differences in expression. Polyadenylation sites were mapped for over 70% of the genes and revealed many examples of conserved and unexpectedly long 3′ UTRs. 28 open reading frames were found in a non-transcribed gene cluster on chromosome 5 of the WB isolate. Analysis of allele-specific expression revealed a correlation between allele-dosage and allele expression in the GS isolate. Previously reported cis-splicing events were confirmed and global mapping of cis-splicing identified only one novel intron. These observations can possibly explain differences in host-preference and symptoms, and it will be the basis for further studies of Giardia pathogenesis and biology. Giardia is a single cell intestinal parasite and a common cause of diarrhea in humans and animals. Giardia is an unusual eukaryote by possessing two nuclei, a highly reduced genome and simple transcriptional apparatus. We have characterized the transcriptome of Giardia at single nucleotide resolution, which allowed the calculation of digital gene expression values for the complete set of genes. We performed a comparison of gene expression divergence across three genotypes. Most of the genes were transcribed, and the data were used to refine and correct gene models. Several gene expression differences were identified between the genotypes. A non-transcribed cluster of genes was detected on chromosome 5, likely representing a silenced region. The data also allowed mapping of transcript termini, which provided the first global view of 3′ untranslated regions in this parasite. This study also gives the first genome-wide evidence of transcription of allelic variants in Giardia. In this study, we provide novel insights into the transcriptome of an important human pathogen and model eukaryote. The findings reported here likely relate to the lifestyle of this parasite and its adaptation to parasitism. The data provide starting points for functional investigation of Giardia's biology and diplomonads generally.
Collapse
Affiliation(s)
- Oscar Franzén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Elin Einarsson
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Johan Ankarklev
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Marcela Ferella
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
52
|
Evaluation of drugs and stationary growth on the cell cycle of Giardia intestinalis. Mol Biochem Parasitol 2012; 187:72-6. [PMID: 23220085 DOI: 10.1016/j.molbiopara.2012.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/21/2022]
Abstract
We examined the effect of aphidicolin, colchicine, demecolcine, fluorouracil, hydroxyurea, and nocodazole, as well as nutrient deprivation on the Giardia intestinalis cell cycle. Aphidicolin was the only drug that was able to block the cell cycle at a specific stage (G1/S), and permit cells to resume growth at a high rate upon its removal. Nutrient deprivation resulted in a portion of G2/M cells completing mitosis and cytokinesis in synchrony during the recovery period, but this synchrony was shortly lost and a sample containing a predominance of G1 cells could not be obtained. Flow cytometry analysis of normal and untreated Giardia cultures showed the occasional appearance of a small percentage of cells with a DNA content of 16C, which is twice the DNA content of G2 cells. However, this 16C peak is larger and more frequently observed in drug-treated Giardia. These 16C are likely produced from endoreplication of 8C/G2 cells, and we propose that they represent a pre-encystation stage that is induced by drug treatments and other stressors.
Collapse
|
53
|
Faso C, Konrad C, Schraner EM, Hehl AB. Export of cyst wall material and Golgi organelle neogenesis in Giardia lamblia depend on endoplasmic reticulum exit sites. Cell Microbiol 2012; 15:537-53. [PMID: 23094658 DOI: 10.1111/cmi.12054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 12/01/2022]
Abstract
Giardia lamblia parasitism accounts for the majority of cases of parasitic diarrheal disease, making this flagellated eukaryote the most successful intestinal parasite worldwide. This organism has undergone secondary reduction/elimination of entire organelle systems such as mitochondria and Golgi. However, trophozoite to cyst differentiation (encystation) requires neogenesis of Golgi-like secretory organelles named encystation-specific vesicles (ESVs), which traffic, modify and partition cyst wall proteins produced exclusively during encystation. In this work we ask whether neogenesis of Golgi-related ESVs during G. lamblia differentiation, similarly to Golgi biogenesis in more complex eukaryotes, requires the maintenance of distinct COPII-associated endoplasmic reticulum (ER) subdomains in the form of ER exit sites (ERES) and whether ERES are also present in non-differentiating trophozoites. To address this question, we identified conserved COPII components in G. lamblia cells and determined their localization, quantity and dynamics at distinct ERES domains in vegetative and differentiating trophozoites. Analogous to ERES and Golgi biogenesis, these domains were closely associated to early stages of newly generated ESV. Ectopic expression of non-functional Sar1 GTPase variants caused ERES collapse and, consequently, ESV ablation, leading to impaired parasite differentiation. Thus, our data show how ERES domains remain conserved in G. lamblia despite elimination of steady-state Golgi. Furthermore, the fundamental eukaryotic principle of ERES to Golgi/Golgi-like compartment correspondence holds true in differentiating Giardia presenting streamlined machinery for secretory organelle biogenesis and protein trafficking. However, in the Golgi-less trophozoites ERES exist as stable ER subdomains, likely as the sole sorting centres for secretory traffic.
Collapse
Affiliation(s)
- Carmen Faso
- Laboratory of Molecular Parasitology, Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland
| | | | | | | |
Collapse
|
54
|
Jenkins MC, O'Brien CN, Macarisin D, Miska K, Fetterer R, Fayer R. Analysis of Giardin Expression During Encystation ofGiardia lamblia. J Parasitol 2012; 98:1266-70. [DOI: 10.1645/ge-2970.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
55
|
Gargantini PR, Serradell MC, Torri A, Lujan HD. Putative SF2 helicases of the early-branching eukaryote Giardia lamblia are involved in antigenic variation and parasite differentiation into cysts. BMC Microbiol 2012. [PMID: 23190735 PMCID: PMC3566956 DOI: 10.1186/1471-2180-12-284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Regulation of surface antigenic variation in Giardia lamblia is controlled post-transcriptionally by an RNA-interference (RNAi) pathway that includes a Dicer-like bidentate RNase III (gDicer). This enzyme, however, lacks the RNA helicase domain present in Dicer enzymes from higher eukaryotes. The participation of several RNA helicases in practically all organisms in which RNAi was studied suggests that RNA helicases are potentially involved in antigenic variation, as well as during Giardia differentiation into cysts. Results An extensive in silico analysis of the Giardia genome identified 32 putative Super Family 2 RNA helicases that contain almost all the conserved RNA helicase motifs. Phylogenetic studies and sequence analysis separated them into 22 DEAD-box, 6 DEAH-box and 4 Ski2p-box RNA helicases, some of which are homologs of well-characterized helicases from higher organisms. No Giardia putative helicase was found to have significant homology to the RNA helicase domain of Dicer enzymes. Additionally a series of up- and down-regulated putative RNA helicases were found during encystation and antigenic variation by qPCR experiments. Finally, we were able to recognize 14 additional putative helicases from three different families (RecQ family, Swi2/Snf2 and Rad3 family) that could be considered DNA helicases. Conclusions This is the first comprehensive analysis of the Super Family 2 helicases from the human intestinal parasite G. lamblia. The relative and variable expression of particular RNA helicases during both antigenic variation and encystation agrees with the proposed participation of these enzymes during both adaptive processes. The putatives RNA and DNA helicases identified in this early-branching eukaryote provide initial information regarding the biological role of these enzymes in cell adaptation and differentiation.
Collapse
Affiliation(s)
- Pablo R Gargantini
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba X5004ASK, Argentina.
| | | | | | | |
Collapse
|
56
|
Li W, Saraiya AA, Wang CC. The profile of snoRNA-derived microRNAs that regulate expression of variant surface proteins in Giardia lamblia. Cell Microbiol 2012; 14:1455-73. [PMID: 22568619 PMCID: PMC3422372 DOI: 10.1111/j.1462-5822.2012.01811.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/27/2012] [Indexed: 12/21/2022]
Abstract
In the current investigation, we analysed all the known small nucleolar RNAs (snoRNAs) in the deeply branching protozoan parasite Giardia lamblia for potential microRNAs (miRNAs) that might be derived from them. Two putative miRNAs have since been identified by Northern blot, primer extension, 3' RACE and co-immunoprecipitation with Giardia Argonaute (GlAgo), and designated miR6 and miR10. Giardia Dicer (GlDcr) is capable of processing the snoRNAs into the corresponding miRNAs in vitro. Potential miR6 and miR10 binding sites in Giardia genome were predicted bio-informatically. A miR6 binding site was found at the 3' untranslated regions (UTR) of 44 variant surface protein (vsp) genes, whereas a miR10 binding site was identified at the 3' end of 159 vsp open-reading frames. Thirty-three of these vsp genes turned out to contain binding sites for both miR6 and miR10. A reporter mRNA tagged with the 3' end of vsp1267, which contains the target sites for both miRNAs, was translationally repressed by both miRNAs in Giardia. Episomal expression of an N-terminal c-myc tagged VSP1267 was found significantly repressed by introducing either miR6 or miR10 into the cells and the repressive effects were additive. When the 2'-O-methyl antisense oligos (ASOs) of either miR6 or miR10 was introduced, however, there was an enhancement of tagged VSP1267 expression suggesting an inhibition of the repressive effects of endogenous miR6 or miR10 by the ASOs. Of the total 220 vsp genes in Giardia, we have now found 178 of them carrying putative binding sites for all the miRNAs that have been currently identified, suggesting that miRNAs are likely the regulators of VSP expression in Giardia.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280
| | - Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280
| |
Collapse
|
57
|
Abstract
The review provides current views on human protozoan parasites of the gut. The recognition of the importance of cryptosporidium, cyclospora and microsporidia over the last three decades emphasises the possibility that more pathogenic intestinal protozoa are presently unrecognized. Each of these is a zoonotic infection and the potential for a zoonotic element to the transmission of giardiasis has been recognized. A common theme in increased understanding of the biology and pathological mechanisms involved in causing disease is the application of molecular techniques to the various stages of the parasite life cycle. Molecular methods are increasingly contributing to laboratory diagnosis of these conditions with increased yields of positive results though in the tropics it is likely that fecal microscopy will remain the standard for some time to come. The nitroimidazole compounds are the mainstay of treatment for giardia and amebiasis with no major advance in therapeutics since their role was appreciated. Nitazoxanide was shown to be effective for cryptosporidiosis in the 1990s.
Collapse
|
58
|
Abstract
In this review, the current status of genomic and proteomic research on Giardia is examined in terms of evolutionary biology, phylogenetic relationships and taxonomy. The review also describes how characterising genetic variation in Giardia from numerous hosts and endemic areas has provided a better understanding of life cycle patterns, transmission and the epidemiology of Giardia infections in humans, domestic animals and wildlife. Some progress has been made in relating genomic information to the phenotype of Giardia, and as a consequence, new information has been obtained on aspects of developmental biology and the host-parasite relationship. However, deficiencies remain in our understanding of pathogenesis and host specificity, highlighting the limitations of currently available genomic datasets.
Collapse
|
59
|
Ma’ayeh SY, Brook-Carter PT. Representational difference analysis identifies specific genes in the interaction of Giardia duodenalis with the murine intestinal epithelial cell line, IEC-6. Int J Parasitol 2012; 42:501-9. [DOI: 10.1016/j.ijpara.2012.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
60
|
Cho CC, Su LH, Huang YC, Pan YJ, Sun CH. Regulation of a Myb transcription factor by cyclin-dependent kinase 2 in Giardia lamblia. J Biol Chem 2011; 287:3733-50. [PMID: 22167200 DOI: 10.1074/jbc.m111.298893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protozoan Giardia lamblia parasitizes the human small intestine to cause diseases. It undergoes differentiation into infectious cysts by responding to intestinal stimulation. How the activated signal transduction pathways relate to encystation stimulation remain largely unknown. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately up-regulated by a Myb2 transcription factor. Because cell differentiation is linked to cell cycle regulation, we tried to understand the role of cell cycle regulators, cyclin-dependent kinases (Cdks), in encystation. We found that the recombinant Myb2 was phosphorylated by Cdk-associated complexes and the levels of phosphorylation increased significantly during encystation. We have identified a putative cdk gene (cdk2) by searching the Giardia genome database. Cdk2 was found to localize in the cytoplasm with higher expression during encystation. Interestingly, overexpression of Cdk2 resulted in a significant increase of the levels of cwp gene expression and cyst formation. In addition, the Cdk2-associated complexes can phosphorylate Myb2 and the levels of phosphorylation increased significantly during encystation. Mutations of important catalytic residues of Cdk2 resulted in a significant decrease of kinase activity and ability of inducing cyst formation. Addition of a Cdk inhibitor, purvalanol A, significantly decreased the Cdk2 kinase activity and the levels of cwp gene expression and cyst formation. Our results suggest that the Cdk2 pathway may be involved in phosphorylation of Myb2, leading to activation of the Myb2 function and up-regulation of cwp genes during encystation. The results provide insights into the use of Cdk inhibitory drugs in disruption of Giardia differentiation into cysts.
Collapse
Affiliation(s)
- Chao-Cheng Cho
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
61
|
Cyst and encystment in protozoan parasites: optimal targets for new life-cycle interrupting strategies? Trends Parasitol 2011; 27:450-8. [PMID: 21775209 DOI: 10.1016/j.pt.2011.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 11/24/2022]
Abstract
Certain protozoan parasites use survival strategies to reside outside the host such as the formation of cysts. This dormant and resistant stage results from the complex process of encystment that involves diverse molecular and cellular modifications. The stimuli and changes associated with cyst biogenesis are a matter of ongoing studies in human and animal protozoan parasites such as amoeba and Giardia species because blocking every step in the encystment pathway should, in theory, interrupt their life cycles. The present review thoroughly examines this essential process in those protozoan parasites and discusses the possibility of using that information to develop new kinds of anti-parasite specific and life cycle-interrupting drugs, aimed at holding back the dissemination of these infections.
Collapse
|
62
|
Faghiri Z, Widmer G. A comparison of the Giardia lamblia trophozoite and cyst transcriptome using microarrays. BMC Microbiol 2011; 11:91. [PMID: 21542940 PMCID: PMC3096902 DOI: 10.1186/1471-2180-11-91] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/04/2011] [Indexed: 11/21/2022] Open
Abstract
Background Compared with many protists, Giardia lamblia has a simple life cycle alternating between cyst and trophozoite. Most research on the molecular biology of Giardia parasites has focused on trophozoites and the processes of excystation and encystation, whereas cysts have attracted less interest. The striking morphological differences between the dormant cyst and the rapidly dividing and motile trophozoite implies profound changes in the metabolism as the parasite encysts in the host's intestine and excysts upon ingestion by a new host. Results To investigate the magnitude of the transcriptional changes occurring during the G. lamblia life cycle we compared the transcriptome of G. lamblia trophozoites and cysts using single-color oligonucleotide microarrays. Cysts were found to possess a much smaller transcriptome, both in terms of mRNA diversity and abundance. Genes encoding proteins related to ribosomal functions are highly over-represented. The comparison of the transcriptome of cysts generated in culture or extracted from feces revealed little overlap, raising the possibility of significant biological differences between the two types of cysts. Conclusions The comparison of the G. lamblia cyst and trophozoite transcriptome showed that transcripts of most genes are present at a lower level in cysts. This global view of the cyst and trophozoite transcriptome complements studies focused on the expression of selected genes during trophozoite multiplication, encystation and excystation.
Collapse
Affiliation(s)
- Zahra Faghiri
- Division of Infectious Diseases, Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA, USA
| | | |
Collapse
|
63
|
Transcriptional changes in Giardia during host–parasite interactions. Int J Parasitol 2011; 41:277-85. [DOI: 10.1016/j.ijpara.2010.09.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/20/2022]
|