51
|
Tyagi K, Pedrioli PGA. Protein degradation and dynamic tRNA thiolation fine-tune translation at elevated temperatures. Nucleic Acids Res 2015; 43:4701-12. [PMID: 25870413 PMCID: PMC4482078 DOI: 10.1093/nar/gkv322] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/30/2015] [Indexed: 01/15/2023] Open
Abstract
Maintenance of protein quality control has implications in various processes such as neurodegeneration and ageing. To investigate how environmental insults affect this process, we analysed the proteome of yeast continuously exposed to mild heat stress. In agreement with previous transcriptomics studies, amongst the most marked changes, we found up-regulation of cytoprotective factors; a shift from oxidative phosphorylation to fermentation; and down-regulation of translation. Importantly, we also identified a novel, post-translationally controlled, component of the heat shock response. The abundance of Ncs2p and Ncs6p, two members of the URM1 pathway responsible for the thiolation of wobble uridines in cytoplasmic tRNAs tKUUU, tQUUG and tEUUC, is down-regulated in a proteasomal dependent fashion. Using random forests we show that this results in differential translation of transcripts with a biased content for the corresponding codons. We propose that the role of this pathway in promoting catabolic and inhibiting anabolic processes, affords cells with additional time and resources needed to attain proper protein folding under periods of stress.
Collapse
Affiliation(s)
- Kshitiz Tyagi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Patrick G A Pedrioli
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK The Swiss Federal Institute of Technology, The Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, 8092 Zurich, Switzerland
| |
Collapse
|
52
|
Abstract
The first description of dermatophytosis was recorded by Celsus, a Roman encyclopaedist who described a suppurative infection of scalp (‘porrigo’ or ‘kerion of Celsus’) in De Re Medicina (30 A.D.). Throughout the middle ages, several descriptions of dermatophytosis were produced where it is described as ‘tinea’. The keratin-destroying moths which made circular holes in the woollen garments are known as Tinea. Due to similarity in the structure of circular lesion of dermatophytosis on the smooth skin with the circular hole made by moth, Cassius Felix introduced the term ‘tinea’ to describe the lesions. In 1806, Alibert used the term ‘favus’ to describe the honey-like exudate in some scalp infections. However, the fungal aetiology of tinea was first detected by Robert Remak, a Polish physician who first observed the presence of hyphae in the crusts of favus. This detection is also a landmark in medical history because this is the first description of a microbe causing a human disease. He himself did not publish his work, but he permitted the reference of his observations in a dissertation by Xavier Hube in 1837. Remak gave all the credits of his discovery to his mentor Schoenlein who first published the fungal etiological report of favus in 1839. He observed the infectious nature of the favus by autoinoculation into his own hands and also successfully isolated the fungus later (1945) and named Achorion schoenleinii (Trichophyton schoenleinii) in honour of his mentor. In 1844, Gruby described the etiologic agent of tinea endothrix, later became known as Trichophyton tonsurans. The genus Trichophyton was created and described by Malmsten (1845) with its representative species T. tonsurans. Charles Robin identified T. mentagrophytes in 1847 and T. equinum was identified by Matruchot and Dassonville in 1898. Raymond Jacques Adrien Sabouraud (France) first compiled the description of Trichophyton in his book (Les Teignes) in 1910 which was based on his observation in artificial culture. The sexual state of dermatophyte was described by Nannizzi (1927). Emmons (1934) first reported the classification of dermatophytes based on vegetative structures and conidia. Gentles (1958) established the successful treatment of tinea capitis with griseofulvin.
Collapse
|
53
|
De novo sequencing and transcriptome analysis of Ustilaginoidea virens by using Illumina paired-end sequencing and development of simple sequence repeat markers. Gene 2014; 547:202-10. [DOI: 10.1016/j.gene.2014.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023]
|
54
|
Al-Maleki AR, Mariappan V, Vellasamy KM, Shankar EM, Tay ST, Vadivelu J. Enhanced intracellular survival and epithelial cell adherence abilities of Burkholderia pseudomallei morphotypes are dependent on differential expression of virulence-associated proteins during mid-logarithmic growth phase. J Proteomics 2014; 106:205-20. [DOI: 10.1016/j.jprot.2014.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
55
|
Childers DS, Mundodi V, Banerjee M, Kadosh D. A 5' UTR-mediated translational efficiency mechanism inhibits the Candida albicans morphological transition. Mol Microbiol 2014; 92:570-85. [PMID: 24601998 DOI: 10.1111/mmi.12576] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2014] [Indexed: 01/09/2023]
Abstract
While virulence properties of Candida albicans, the most commonly isolated human fungal pathogen, are controlled by transcriptional and post-translational mechanisms, considerably little is known about the role of post-transcriptional, and particularly translational, mechanisms. We demonstrate that UME6, a key filament-specific transcriptional regulator whose expression level is sufficient to determine C. albicans morphology and promote virulence, has one of the longest 5' untranslated regions (UTRs) identified in fungi to date, which is predicted to form a complex and extremely stable secondary structure. The 5' UTR inhibits the ability of UME6, when expressed at constitutive high levels, to drive complete hyphal growth, but does not cause a reduction in UME6 transcript. Deletion of the 5' UTR increases C. albicans filamentation under a variety of conditions but does not affect UME6 transcript level or induction kinetics. We show that the 5' UTR functions to inhibit Ume6 protein expression under several filament-inducing conditions and specifically reduces association of the UME6 transcript with polysomes. Overall, our findings suggest that translational efficiency mechanisms, known to regulate diverse biological processes in bacterial and viral pathogens as well as higher eukaryotes, have evolved to inhibit and fine-tune morphogenesis, a key virulence trait of many human fungal pathogens.
Collapse
Affiliation(s)
- Delma S Childers
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., MC: 7758, San Antonio, TX, 78229-3900, USA
| | | | | | | |
Collapse
|
56
|
Qiao J, Gao P, Jiang X, Fang H. In vitro antifungal activity of farnesyltransferase inhibitors against clinical isolates of Aspergillus and Candida. Ann Clin Microbiol Antimicrob 2013; 12:37. [PMID: 24314136 PMCID: PMC4029545 DOI: 10.1186/1476-0711-12-37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/01/2013] [Indexed: 11/23/2022] Open
Abstract
Background Protein farnesylation is an important tosttranslational modification in fungi. We evaluated the antifungal activity of two farnesyltransferase inhibitors against clinical isolates of Aspergillus and Candida. Methods Disk diffusion assay and broth microdilution assay were used to determine the antifungal susceptibility of two farnesyltransferase inhibitors (manumycin A and tipifarnib) against clinical isolates of Aspergillus and Candida. Results Disk diffusion assay demonstrated both agents had activity against Aspergillus and Candida. The minimal inhibitory concentration (MIC) ranges for manumycin A against Aspergillus and Candida were 200 to 400 μM and 13 to >25 μM, respectively. Unfortunately, the MIC were vastly higher than the concentrations that inhibit the proliferation and viability of mammalian cells. The MICs of tipifarnib against Aspergillus and Candida were >1600 μM. Conclusion The outcome of present study showed that farnesyltransferase inhibitors have activity against Aspergillus and Candida. This suggests that farnesyltransferase may be used as anifungal target in designing and developing new drugs.
Collapse
Affiliation(s)
| | | | | | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No, 79, Qingchun Road, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
57
|
Feldman D, Ziv C, Gorovits R, Efrat M, Yarden O. Neurospora crassa protein arginine methyl transferases are involved in growth and development and interact with the NDR kinase COT1. PLoS One 2013; 8:e80756. [PMID: 24260473 PMCID: PMC3834314 DOI: 10.1371/journal.pone.0080756] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
The protein arginine methyltransferaseas (PRMTs) family is conserved from yeast to human, and regulates stability, localization and activity of proteins. We have characterized deletion strains corresponding to genes encoding for PRMT1/3/5 (designated amt-1, amt-3 and skb-1, respectively) in Neurospora crassa. Deletion of PRMT-encoding genes conferred altered Arg-methylated protein profiles, as determined immunologically. Δamt-1 exhibited reduced hyphal elongation rates (70% of wild type) and increased susceptibility to the ergosterol biosynthesis inhibitor voriconazole. In ▵amt-3, distances between branches were significantly longer than the wild type, suggesting this gene is required for proper regulation of hyphal branching. Deletion of skb-1 resulted in hyper conidiation (2-fold of the wild type) and increased tolerance to the chitin synthase inhibitor polyoxin D. Inactivation of two Type I PRMTs (amt-1 and amt-3) conferred changes in both asymmetric as well as symmetric protein methylation profiles, suggesting either common substrates and/or cross-regulation of different PRMTs. The PRMTs in N. crassa apparently share cellular pathways which were previously reported to be regulated by the NDR (Nuclear DBF2-related) kinase COT1. Using co-immunprecipitation experiments (with MYC-tagged proteins), we have shown that SKB1 and COT1 physically interacted and the abundance of the 75 kDa MYC::COT1 isoform was increased in a Δskb-1 background. On the basis of immunological detection, we propose the possible involvement of PRMTs in Arg-methylation of COT1.
Collapse
Affiliation(s)
- Daria Feldman
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
58
|
The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans. mBio 2012; 3:mBio.00495-12. [PMID: 23232717 PMCID: PMC3520108 DOI: 10.1128/mbio.00495-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Microbes must assimilate carbon to grow and colonize their niches. Transcript profiling has suggested that Candida albicans, a major pathogen of humans, regulates its carbon assimilation in an analogous fashion to the model yeast Saccharomyces cerevisiae, repressing metabolic pathways required for the use of alterative nonpreferred carbon sources when sugars are available. However, we show that there is significant dislocation between the proteome and transcriptome in C. albicans. Glucose triggers the degradation of the ICL1 and PCK1 transcripts in C. albicans, yet isocitrate lyase (Icl1) and phosphoenolpyruvate carboxykinase (Pck1) are stable and are retained. Indeed, numerous enzymes required for the assimilation of carboxylic and fatty acids are not degraded in response to glucose. However, when expressed in C. albicans, S. cerevisiae Icl1 (ScIcl1) is subjected to glucose-accelerated degradation, indicating that like S. cerevisiae, this pathogen has the molecular apparatus required to execute ubiquitin-dependent catabolite inactivation. C. albicans Icl1 (CaIcl1) lacks analogous ubiquitination sites and is stable under these conditions, but the addition of a ubiquitination site programs glucose-accelerated degradation of CaIcl1. Also, catabolite inactivation is slowed in C. albicans ubi4 cells. Ubiquitination sites are present in gluconeogenic and glyoxylate cycle enzymes from S. cerevisiae but absent from their C. albicans homologues. We conclude that evolutionary rewiring of ubiquitination targets has meant that following glucose exposure, C. albicans retains key metabolic functions, allowing it to continue to assimilate alternative carbon sources. This metabolic flexibility may be critical during infection, facilitating the rapid colonization of dynamic host niches containing complex arrays of nutrients. Pathogenic microbes must assimilate a range of carbon sources to grow and colonize their hosts. Current views about carbon assimilation in the pathogenic yeast Candida albicans are strongly influenced by the Saccharomyces cerevisiae paradigm in which cells faced with choices of nutrients first use energetically favorable sugars, degrading enzymes required for the assimilation of less favorable alternative carbon sources. We show that this is not the case in C. albicans because there has been significant evolutionary rewiring of the molecular signals that promote enzyme degradation in response to glucose. As a result, this major pathogen of humans retains enzymes required for the utilization of physiologically relevant carbon sources such as lactic acid and fatty acids, allowing it to continue to use these host nutrients even when glucose is available. This phenomenon probably enhances efficient colonization of host niches where sugars are only transiently available.
Collapse
|
59
|
Activity of the calcium channel pore Cch1 is dependent on a modulatory region of the subunit Mid1 in Cryptococcus neoformans. EUKARYOTIC CELL 2012; 12:142-50. [PMID: 23175710 DOI: 10.1128/ec.00130-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium (Ca(2+))-mediated signaling events in fungal pathogens such as Cryptococcus neoformans are central to physiological processes, including those that mediate stress responses and promote virulence. The Cch1-Mid1 channel (CMC) represents the only high-affinity Ca(2+) channel in the plasma membrane of fungal cells; consequently, cryptococci cannot survive in low-Ca(2+) environments in the absence of CMC. Previous electrophysiological characterization revealed that Cch1, the predicted channel pore, and Mid1, a binding partner of Cch1, function as a store-operated Ca(2+)-selective channel gated by depletion of endoplasmic reticulum (ER) Ca(2+) stores. Cryptococci lacking CMC did not survive ER stress, indicating its critical role in restoring Ca(2+) homeostasis. Despite the requirement for Mid1 in promoting Ca(2+) influx via Cch1, identification of the role of Mid1 remains elusive. Here we show that the C-terminal tail of Mid1 is a modulatory region that impinges on Cch1 channel activity directly and mediates the trafficking of Mid1 to the plasma membrane. This region consists of the last 24 residues of Mid1, and the functional expression of Mid1 in a human embryonic cell line (HEK293) and in C. neoformans is dependent on this domain. Substitutions of arginine (R619A) or cysteine (C621A) in the modulatory region failed to target Mid1 to the plasma membrane and prevented CMC activity. Interestingly, loss of a predicted protein kinase C (PKC)-phosphorylated serine residue (S605A) had no effect on Mid1 trafficking but did alter the kinetics of Cch1 channel activity. Thus, establishment of Ca(2+) homeostasis in C. neoformans is dependent on a modulatory domain of Mid1.
Collapse
|
60
|
Meem MH, Cullen PJ. The impact of protein glycosylation on Flo11-dependent adherence in Saccharomyces cerevisiae. FEMS Yeast Res 2012; 12:809-18. [PMID: 22816435 DOI: 10.1111/j.1567-1364.2012.00832.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/17/2012] [Accepted: 07/17/2012] [Indexed: 02/05/2023] Open
Abstract
Fungal cell adhesion molecules are critical for the attachment of cells to each other and to surfaces and in pathogens contribute to virulence. Fungal adhesins are typically heavily glycosylated. The impact of protein glycosylation on the function and regulation of adhesion glycoproteins is not clear. We examined the role of protein glycosylation on the adherence properties of the major adhesion molecule Muc1/Flo11 in the budding yeast Saccharomyces cerevisiae. Using a conditional mutant required for an early step in protein glycosylation, pmi40-101, we show that the glycosylation of Flo11 is required for invasive growth and biofilm/mat formation. Underglycosylated Flo11 was not defective in cell-surface localization or binding to wild-type cells in trans. However, wild-type Flo11 was defective for binding to the surface of cells undergoing a glycosylation stress. Shed Flo11 and other shed glycoproteins (Msb2 and Hkr1) were extremely stable with half-lives on the order of days. The glycosylation of Flo11 contributed to its stability. Moreover, the overall balance between Flo11 production, shedding, and turnover favored accumulation of the shed protein over time. Our findings may be applicable to fungal adhesion molecules in other species including pathogens.
Collapse
Affiliation(s)
- Mahbuba H Meem
- Department of Biological Sciences, University of New York at Buffalo, Buffalo, NY 14260-1300, USA
| | | |
Collapse
|
61
|
Park JN, Lee DJ, Kwon O, Oh DB, Bahn YS, Kang HA. Unraveling unique structure and biosynthesis pathway of N-linked glycans in human fungal pathogen Cryptococcus neoformans by glycomics analysis. J Biol Chem 2012; 287:19501-15. [PMID: 22500028 DOI: 10.1074/jbc.m112.354209] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The encapsulated fungal pathogen Cryptococcus neoformans causes cryptococcosis in immunocompromised individuals. Although cell surface mannoproteins have been implicated in C. neoformans pathogenicity, the structure of N-linked glycans assembled on mannoproteins has not yet been elucidated. By analyzing oligosaccharide profiles combined with exoglycosidase treatment, we report here that C. neoformans has serotype-specific high mannose-type N-glycans with or without a β1,2-xylose residue, which is attached to the trimannosyl core of N-glycans. Interestingly, the neutral N-glycans of serotypes A and D were shown to contain a xylose residue, whereas those of serotype B appeared to be much shorter and devoid of a xylose residue. Moreover, analysis of the C. neoformans uxs1Δ mutant demonstrated that UDP-xylose is utilized as a donor sugar in N-glycan biosynthesis. We also constructed and analyzed a set of C. neoformans mutant strains lacking genes putatively assigned to the reconstructed N-glycan biosynthesis pathway. It was shown that the outer chain of N-glycan is initiated by CnOch1p with addition of an α1,6-mannose residue and then subsequently extended by CnMnn2p with multiple additions of α1,2-mannose residues. Finally, comparative analysis of acidic N-glycans from wild-type, Cnoch1Δ, Cnmnn2Δ, and Cnuxs1Δ strains strongly indicated the presence of xylose phosphate attached to mannose residues in the core and outer region of N-glycans. Our data present the first report on the unique structure and biosynthesis pathway of N-glycans in C. neoformans.
Collapse
Affiliation(s)
- Jeong-Nam Park
- Department of Life Science, Center for Fungal Pathogenesis, Chung-Ang University, Seoul 156-756, South Korea
| | | | | | | | | | | |
Collapse
|