51
|
Samaranayake DP, Hanes SD. Milestones in Candida albicans gene manipulation. Fungal Genet Biol 2011; 48:858-65. [PMID: 21511047 DOI: 10.1016/j.fgb.2011.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/02/2011] [Accepted: 04/05/2011] [Indexed: 11/17/2022]
Abstract
In the United States, candidemia is one of the most common hospital-acquired infections and is estimated to cause 10,000 deaths per year. The species Candida albicans is responsible for the majority of these cases. As C. albicans is capable of developing resistance against the currently available drugs, understanding the molecular basis of drug resistance, finding new cellular targets, and further understanding the overall mechanism of C. albicans pathogenesis are important goals. To study this pathogen it is advantageous to manipulate its genome. Numerous strategies of C. albicans gene manipulation have been introduced. This review evaluates a majority of these strategies and should be a helpful guide for researchers to identify gene targeting strategies to suit their requirements.
Collapse
Affiliation(s)
- Dhanushki P Samaranayake
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12208, USA.
| | | |
Collapse
|
52
|
Linde J, Wilson D, Hube B, Guthke R. Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells. BMC SYSTEMS BIOLOGY 2010; 4:148. [PMID: 21050438 PMCID: PMC3225834 DOI: 10.1186/1752-0509-4-148] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/04/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND Reverse engineering of gene regulatory networks can be used to predict regulatory interactions of an organism faced with environmental changes, but can prove problematic, especially when focusing on complicated multi-factorial processes. Candida albicans is a major human fungal pathogen. During the infection process, this fungus is able to adapt to conditions of very low iron availability. Such adaptation is an important virulence attribute of virtually all pathogenic microbes. Understanding the regulation of iron acquisition genes will extend our knowledge of the complex regulatory changes during the infection process and might identify new potential drug targets. Thus, there is a need for efficient modelling approaches predicting key regulatory events of iron acquisition genes during the infection process. RESULTS This study deals with the regulation of C. albicans iron uptake genes during adhesion to and invasion into human oral epithelial cells. A reverse engineering strategy is presented, which is able to infer regulatory networks on the basis of gene expression data, making use of relevant selection criteria such as sparseness and robustness. An exhaustive use of available knowledge from different data sources improved the network prediction. The predicted regulatory network proposes a number of new target genes for the transcriptional regulators Rim101, Hap3, Sef1 and Tup1. Furthermore, the molecular mode of action for Tup1 is clarified. Finally, regulatory interactions between the transcription factors themselves are proposed. This study presents a model describing how C. albicans may regulate iron acquisition during contact with and invasion of human oral epithelial cells. There is evidence that some of the proposed regulatory interactions might also occur during oral infection. CONCLUSIONS This study focuses on a typical problem in Systems Biology where an interesting biological phenomenon is studied using a small number of available experimental data points. To overcome this limitation, a special modelling strategy was used which identifies sparse and robust networks. The data is augmented by an exhaustive search for additional data sources, helping to make proposals on regulatory interactions and to guide the modelling approach. The proposed modelling strategy is capable of finding known regulatory interactions and predicts a number of yet unknown biologically relevant regulatory interactions.
Collapse
Affiliation(s)
- Jörg Linde
- Research Group Systems Biology/Bioinformatics, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Duncan Wilson
- Department Microbial Pathogenicity Mechanisms, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology/Bioinformatics, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| |
Collapse
|
53
|
Endosomal and AP-3-dependent vacuolar trafficking routes make additive contributions to Candida albicans hyphal growth and pathogenesis. EUKARYOTIC CELL 2010; 9:1755-65. [PMID: 20870878 DOI: 10.1128/ec.00029-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans mutants deficient in vacuolar biogenesis are defective in polarized hyphal growth and virulence. However, the specific vacuolar trafficking routes required for hyphal growth and virulence are unknown. In Saccharomyces cerevisiae, two trafficking routes deliver material from the Golgi apparatus to the vacuole. One occurs via the late endosome and is dependent upon Vps21p, while the second bypasses the endosome and requires the AP-3 complex, including Aps3p. To determine the significance of these pathways in C. albicans hyphal growth and virulence, aps3Δ/Δ, vps21Δ/Δ, and aps3Δ/Δ vps21Δ/Δ mutant strains were constructed. Analysis of vacuolar morphology and localization of the vacuolar protein Mlt1p suggests that C. albicans Aps3p and Vps21p mediate two distinct transport pathways. The vps21Δ/Δ mutant has a minor reduction in hyphal elongation, while the aps3Δ/Δ mutant has no defect in hyphal growth. Interestingly, the aps3Δ/Δ vps21Δ/Δ double mutant has dramatically reduced hyphal growth. Overexpression of the Ume6p transcriptional activator resulted in constitutive hyphal growth of wild-type, aps3Δ/Δ, and vps21Δ/Δ strains and formation of highly vacuolated subapical compartments. Thus, Ume6p-dependent transcriptional responses are sufficient to induce subapical vacuolation. However, the aps3Δ/Δ vps21Δ/Δ mutant formed mainly pseudohyphae that lacked vacuolated compartments. The aps3Δ/Δ strain was virulent in a mouse model of disseminated infection; the vps21Δ/Δ mutant failed to kill mice but persisted within kidney tissue, while the double mutant was avirulent and cleared from the kidneys. These results suggest that while the AP-3 pathway alone has little impact on hyphal growth or virulence, it is much more significant when endosomal trafficking is disrupted.
Collapse
|
54
|
Squina FM, Leal J, Cipriano VTF, Martinez-Rossi NM, Rossi A. Transcription of the Neurospora crassa 70-kDa class heat shock protein genes is modulated in response to extracellular pH changes. Cell Stress Chaperones 2010; 15:225-31. [PMID: 19618296 PMCID: PMC2866986 DOI: 10.1007/s12192-009-0131-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 06/25/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022] Open
Abstract
Heat shock proteins belong to a conserved superfamily of molecular chaperones found in prokaryotes and eukaryotes. These proteins are linked to a myriad of physiological functions. In this study, we show that the N. crassa hsp70-1 (NCU09602.3) and hsp70-2 (NCU08693.3) genes are preferentially expressed in an acidic milieu after 15 h of cell growth in sufficient phosphate at 30 degrees C. No significant accumulation of these transcripts was detected at alkaline pH values. Both genes accumulated to a high level in mycelia that were incubated for 1 h at 45 degrees C, regardless of the phosphate concentration and extracellular pH changes. Transcription of the hsp70-1 and hsp70-2 genes was dependent on the pacC (+) background in mycelia cultured under optimal growth conditions or at 45 degrees C. The pacC gene encodes a Zn-finger transcription factor that is involved in the regulation of gene expression by pH. Heat shock induction of these two hsp genes in mycelia incubated in low-phosphate medium was almost not altered in the nuc-1 (-) background under both acidic and alkaline pH conditions. The NUC-1 transcriptional regulator is involved in the derepression of nucleases, phosphatases, and transporters that are necessary for fulfilling the cell's phosphate requirements. Transcription of the hsp70-3 (NCU01499.3) gene followed a different pattern of induction-the gene was depressed under insufficient phosphate conditions but was apparently unaffected by alkalinization of the culture medium. Moreover, this gene was not induced by heat shock. These results reveal novel aspects of the heat-sensing network of N. crassa.
Collapse
Affiliation(s)
- Fabio M. Squina
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
- Centro de Ciência e Tecnologia do Bioetanol-CTBE, Associação Brasileira de Tecnologia de Luz Síncrotron, Campinas, SP Brazil
| | - Juliana Leal
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Vivian T. F. Cipriano
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Nilce M. Martinez-Rossi
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Antonio Rossi
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| |
Collapse
|
55
|
Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog 2010; 6:e1000776. [PMID: 20174553 PMCID: PMC2824755 DOI: 10.1371/journal.ppat.1000776] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/18/2010] [Indexed: 11/19/2022] Open
Abstract
Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101Δ mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101Δ strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101Δ mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions. Cryptococcus neoformans is an environmental fungus and an opportunistic human pathogen. Survival of this fungus within a human host depends on its ability to sense the host environment and respond with protective cellular changes. It is known that the cAMP/PKA signal transduction cascade is important for sensing host-specific environments and regulating the cellular adaptations, such as capsule and increased iron uptake, that are necessary for growth inside the infected host. Here we document that, unlike what has been described in other fungal species, a C. neoformans Rim101 homologue is directly regulated by PKA. The Rim101 signaling pathway is also involved in capsule regulation and virulence. Our study demonstrates that Rim101 integrates two conserved signal transduction cascades, and it is important in regulating microbial pathogenesis.
Collapse
|
56
|
Wang Q, Szaniszlo PJ. Roles of the pH signaling transcription factor PacC in Wangiella (Exophiala) dermatitidis. Fungal Genet Biol 2009; 46:657-66. [PMID: 19501183 DOI: 10.1016/j.fgb.2009.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 01/03/2023]
Abstract
To study the function of the PacC transcription factor in Wangiella dermatitidis, a black, polymorphic fungal pathogen of humans with yeast-phase predominance, the PACC gene was cloned, sequenced, disrupted and expressed. Three zinc finger DNA-binding motifs were found at the N-terminus, and a signaling protease cleavage site at the C-terminus. PACC was more expressed at neutral-alkaline pH than at acidic pH. Truncation at about 40 residues of the coding sequence upstream of the conserved protease processing cleavage site of PacC affected growth on a nutrient-rich medium, increased sensitivity to Na(+) stress, decreased yeast growth at neutral-alkaline pH, and repressed hyphal growth on a nutrient-poor medium at 25 degrees C. Truncation at the coding sequence for the conserved signaling protease box of PacC impaired growth and reduced RNA expression of the class II chitin synthase gene at acidic pH. The results suggested that PacC is important not only for the adaptation of W. dermatitidis to different ambient pH conditions and Na(+) stress conditions, but also for influencing yeast-hyphal transitions in this agent of phaeohyphomycosis.
Collapse
Affiliation(s)
- Qin Wang
- Section of Molecular Genetics and Microbiology, School of Biological Sciences and Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
57
|
Abstract
The vacuole has crucial roles in stress resistance and adaptation of the fungal cell. Furthermore, in Candida albicans it has been observed to undergo dramatic expansion during the initiation of hyphal growth, to produce highly "vacuolated" subapical compartments. We hypothesized that these functions may be crucial for survival within the host and tissue-invasive hyphal growth. We also considered the role of the late endosome or prevacuole compartment (PVC), a distinct organelle involved in vacuolar and endocytic trafficking. We identified two Rab GTPases, encoded by VPS21 and YPT72, required for trafficking through the PVC and vacuole biogenesis, respectively. Deletion of VPS21 or YPT72 led to mild sensitivities to some cellular stresses. However, deletion of both genes resulted in a synthetic phenotype with severe sensitivity to cellular stress and impaired growth. Both the vps21Delta and ypt72Delta mutants had defects in filamentous growth, while the double mutant was completely deficient in polarized growth. The defects in hyphal growth were not suppressed by an "active" RIM101 allele or loss of the hyphal repressor encoded by TUP1. In addition, both single mutants had significant attenuation in a mouse model of hematogenously disseminated candidiasis, while the double mutant was rapidly cleared. Histological examination confirmed that the vps21Delta and ypt72Delta mutants are deficient in hyphal growth in vivo. We suggest that the PVC and vacuole are required on two levels during C. albicans infection: (i) stress resistance functions required for survival within tissue and (ii) a role in filamentous growth which may aid host tissue invasion.
Collapse
|
58
|
Rolland S, Bruel C, Rascle C, Girard V, Billon-Grand G, Poussereau N. pH controls both transcription and post-translational processing of the protease BcACP1 in the phytopathogenic fungus Botrytis cinerea. MICROBIOLOGY-SGM 2009; 155:2097-2105. [PMID: 19359322 DOI: 10.1099/mic.0.025999-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During pathogenesis, the ascomycete Botrytis cinerea secretes a range of cell-wall-degrading enzymes such as polygalacturonases, glucanases and proteases. We report the identification of a new member of the G1 family of proteases, BcACP1, which is secreted by B. cinerea during infection. The production of BcACP1 correlates with the acidification of the plant tissue, and transcriptional analysis of the Bcacp1 gene showed that it is only expressed under acidic growth conditions. Using a transcriptional reporter system, we showed that pH regulation of Bcacp1 is not mediated by the canonical PacC transcription factor binding site. Like other G1 proteases, BcACP1 is produced as a pro-enzyme. Trapping of the zymogen form allowed investigation of its maturation process. Evidence is presented for an autocatalytic proteolysis of the enzyme that is triggered by acidic pH. Environmental pH therefore controls Bcacp1 production at both the transcriptional and post-translational level.
Collapse
Affiliation(s)
- Stéphane Rolland
- Université de Lyon, Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR5240, Université Lyon 1, CNRS, Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| | - Christophe Bruel
- Université de Lyon, Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR5240, Université Lyon 1, CNRS, Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| | - Christine Rascle
- Université de Lyon, Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR5240, Université Lyon 1, CNRS, Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| | - Vincent Girard
- Université de Lyon, Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR5240, Université Lyon 1, CNRS, Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| | - Geneviève Billon-Grand
- Université de Lyon, Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR5240, Université Lyon 1, CNRS, Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| | - Nathalie Poussereau
- Université de Lyon, Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR5240, Université Lyon 1, CNRS, Bayer CropScience, 14-20 rue Pierre Baizet, 69263 Lyon Cedex 09, France
| |
Collapse
|
59
|
Strijbis K, Van Roermund CWT, Hardy GP, Van den Burg J, Bloem K, Haan J, Van Vlies N, Wanders RJA, Vaz FM, Distel B. Identification and characterization of a complete carnitine biosynthesis pathway in
Candida albicans. FASEB J 2009; 23:2349-59. [DOI: 10.1096/fj.08-127985] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karin Strijbis
- Department of Medical BiochemistryAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Carlo W. T. Van Roermund
- Department of Genetic Metabolic DiseasesAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Guy P. Hardy
- Department of Medical BiochemistryAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Janny Van den Burg
- Department of Medical BiochemistryAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Karien Bloem
- Department of Medical BiochemistryAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jolanda Haan
- Department of Medical BiochemistryAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Naomi Van Vlies
- Department of Genetic Metabolic DiseasesAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ronald J. A. Wanders
- Department of Genetic Metabolic DiseasesAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Frédéric M. Vaz
- Department of Genetic Metabolic DiseasesAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ben Distel
- Department of Medical BiochemistryAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
60
|
Abstract
The Candida albicans cell wall maintains the structural integrity of the organism in addition to providing a physical contact interface with the environment. The major components of the cell wall are fibrillar polysaccharides and proteins. The proteins of the cell wall are the focus of this review. Three classes of proteins are present in the candidal cell wall. One group of proteins attach to the cell wall via a glycophosphatidylinositol remnant or by an alkali-labile linkage. A second group of proteins with N-terminal signal sequences but no covalent attachment sequences are secreted by the classical secretory pathway. These proteins may end up in the cell wall or in the extracellular space. The third group of proteins lack a secretory signal, and the pathway(s) by which they become associated with the surface is unknown. Potential constituents of the first two classes have been predicted from analysis of genome sequences. Experimental analyses have identified members of all three classes. Some members of each class selected for consideration of confirmed or proposed function, phenotypic analysis of a mutant, and regulation by growth conditions and transcription factors are discussed in more detail.
Collapse
|
61
|
Blanchin-Roland S, Da Costa G, Gaillardin C. Ambient pH signalling in the yeast Yarrowia lipolytica involves YlRim23p/PalC, which interacts with Snf7p/Vps32p, but does not require the long C terminus of YlRim9p/PalI. MICROBIOLOGY-SGM 2008; 154:1668-1676. [PMID: 18524921 DOI: 10.1099/mic.0.2008/017046-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A conserved ambient pH signal transduction pathway has been evidenced in both ascomycetous yeasts and filamentous fungi, called the Rim or Pal pathway, respectively. However, closely related PalC orthologues are found only in Yarrowia lipolytica and in filamentous fungi, where the Rim9p/PalI factor has a much longer C-terminal tail than in other yeasts. We show here that, like Aspergillus nidulans palI mutants, a Ylrim9Delta mutant has a less extreme phenotype than other mutants of the pathway, whereas rim9 mutants in Saccharomyces cerevisiae and Candida albicans reportedly exhibit a tight Rim phenotype. Deletion of the long C-terminal tail of YlRim9p/PalI had no phenotypic effect on ambient pH signalling. We also show that the Y. lipolytica PalC orthologue, named YlRim23p, is absolutely required for the alkaline pH response. Its only interactant identified in a genome-wide two-hybrid screen is YlSnf7/Vps32p, confirming the link between the Rim and the Vps pathways. YlRim13p and YlRim20p both interact with YlSnf7/Vps32p but not with YlRim23p. The long C-terminal tail of YlRim9p/PalI interacts neither with YlRim23p nor with YlSnf7/Vps32p. These results show that YlRim23p is a bona fide component of the Rim pathway in Y. lipolytica and that it participates in the complexes linking pH signalling and endocytosis.
Collapse
Affiliation(s)
- Sylvie Blanchin-Roland
- Laboratoire de Microbiologie et Génétique Moléculaire, AgroParisTech, INRA, UMR1238, CNRS, UMR2585, F-78850 Thiverval-Grignon, France
| | - Grégory Da Costa
- Laboratoire de Microbiologie et Génétique Moléculaire, AgroParisTech, INRA, UMR1238, CNRS, UMR2585, F-78850 Thiverval-Grignon, France
| | - Claude Gaillardin
- Laboratoire de Microbiologie et Génétique Moléculaire, AgroParisTech, INRA, UMR1238, CNRS, UMR2585, F-78850 Thiverval-Grignon, France
| |
Collapse
|
62
|
Nobile CJ, Solis N, Myers CL, Fay AJ, Deneault JS, Nantel A, Mitchell AP, Filler SG. Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 2008; 10:2180-96. [PMID: 18627379 DOI: 10.1111/j.1462-5822.2008.01198.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
pH-responsive transcription factors of the Rim101/PacC family govern virulence in many fungal pathogens. These family members control expression of target genes with diverse functions in growth, morphology and environmental adaptation, so the mechanistic relationship between Rim101/PacC and infection is unclear. We have focused on Rim101 from Candida albicans, which we find to be required for virulence in an oropharyngeal candidiasis model. Rim101 affects the yeast-hypha morphological transition, a major virulence requirement in disseminated infection models. However, virulence in the oropharyngeal candidiasis model is independent of the yeast-hypha transition because it is unaffected by an nrg1 mutation, which prevents formation of yeast cells. Here we have identified Rim101 target genes in an nrg1Delta/Delta mutant background and surveyed function using an overexpression-rescue approach. Increased expression of Rim101 target genes ALS3, CHT2, PGA7/RBT6, SKN1 or ZRT1 can partially restore pathogenic interaction of a rim101Delta/Delta mutant with oral epithelial cells. Four of these five genes govern cell wall structure. Our results indicate that Rim101-dependent cell wall alteration contributes to C. albicans pathogenic interactions with oral epithelial cells, independently of cell morphology.
Collapse
|
63
|
Peñalva MA, Tilburn J, Bignell E, Arst HN. Ambient pH gene regulation in fungi: making connections. Trends Microbiol 2008; 16:291-300. [DOI: 10.1016/j.tim.2008.03.006] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/14/2008] [Accepted: 03/26/2008] [Indexed: 11/15/2022]
|
64
|
Candida albicans HSP12 is co-regulated by physiological CO2 and pH. Fungal Genet Biol 2008; 45:1075-80. [PMID: 18487064 DOI: 10.1016/j.fgb.2008.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 04/07/2008] [Accepted: 04/09/2008] [Indexed: 11/23/2022]
Abstract
Global transcriptional analysis of Candida albicans exposed to elevated ambient CO(2) revealed a statistically significant differential regulation of 14 genes. Subsequent RNA hybridisation analysis of one gene, HSP12, confirmed CO(2)-regulation via a cAMP-dependent mechanism. Additionally, Northern analyses and gel mobility shift assays demonstrate the co-regulation of HSP12 by environmental pH via a Rim101-dependent mechanism.
Collapse
|
65
|
Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation. EUKARYOTIC CELL 2008; 7:610-8. [PMID: 18281597 DOI: 10.1128/ec.00017-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotes, acetyl coenzyme A (acetyl-CoA) produced during peroxisomal fatty acid beta-oxidation needs to be transported to mitochondria for further metabolism. Two parallel pathways for acetyl-CoA transport have been identified in Saccharomyces cerevisiae; one is dependent on peroxisomal citrate synthase (Cit), while the other requires peroxisomal and mitochondrial carnitine acetyltransferase (Cat) activities. Here we show that the human fungal pathogen Candida albicans lacks peroxisomal Cit, relying exclusively on Cat activity for transport of acetyl units. Deletion of the CAT2 gene encoding the major Cat enzyme in C. albicans resulted in a strain that had lost both peroxisomal and mitochondrion-associated Cat activities, could not grow on fatty acids or C(2) carbon sources (acetate or ethanol), accumulated intracellular acetyl-CoA, and showed greatly reduced fatty acid beta-oxidation activity. The cat2 null mutant was, however, not attenuated in virulence in a mouse model of systemic candidiasis. These observations support our previous results showing that peroxisomal fatty acid beta-oxidation activity is not essential for C. albicans virulence. Biofilm formation by the cat2 mutant on glucose was slightly reduced compared to that by the wild type, although both strains grew at the same rate on this carbon source. Our data show that C. albicans has diverged considerably from S. cerevisiae with respect to the mechanism of intracellular acetyl-CoA transport and imply that carnitine dependence may be an important trait of this human fungal pathogen.
Collapse
|
66
|
Kullas AL, Martin SJ, Davis D. Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Mol Microbiol 2007; 66:858-71. [PMID: 17927701 DOI: 10.1111/j.1365-2958.2007.05929.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ability to appropriately respond to environmental conditions is critical for the survival of simple microbes and for development of complex multicellular organisms. Sensing and responding to a given environmental condition requires the integration of numerous signals through one or more signal transduction pathways. This leads to changes in gene expression, and potentially post-translational modifications, that favour growth in the given environment. In the fungus Candida albicans, an important opportunistic pathogen, environmental pH has profound effects on morphology and proper adaptation to extracellular pH is critical for pathogenesis. Here, we demonstrate that the Rim101/PacC pH-sensing pathway acts in parallel to Crz1, via calcineurin, to adapt to alkaline pH. We also show that the Rim101 pathway acts in parallel to Crz2, independent of calcineurin, to adapt to high lithium concentrations and to repress filamentation at acidic pH. Our studies also revealed a novel requirement for Crz1, Crz2 and calcineurin for growth at acidic pH. From these studies, we propose that the Crz1 homologue Crz2 is calcineurin-independent, but like Crz1, acts in parallel to promote specific Rim101-dependent processes. These results establish and begin to dissect the complex interactions between important signal transduction pathways in C. albicans, which are critical for virulence.
Collapse
Affiliation(s)
- Amy L Kullas
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
67
|
Liao WL, Ramón AM, Fonzi WA. GLN3 encodes a global regulator of nitrogen metabolism and virulence of C. albicans. Fungal Genet Biol 2007; 45:514-26. [PMID: 17950010 DOI: 10.1016/j.fgb.2007.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 01/07/2023]
Abstract
The function of GLN3, a GATA factor encoding gene, in nitrogen metabolism of Candida albicans was examined. GLN3 null mutants had reduced growth rates on multiple nitrogen sources. More severe growth defects were observed in mutants lacking both GLN3 and GAT1, a second GATA factor gene. GLN3 was an activator of two genes involved in ammonium assimilation, GDH3, encoding NADP-dependent glutamate dehydrogenase, and MEP2, which encodes an ammonium permease. GAT1 contributed to MEP2 expression, but not that of GDH3. A putative general amino acid permease gene, GAP2, was also activated by both GLN3 and GAT1, but activation by GLN3 was nitrogen source dependent. GLN3 was constitutively expressed, but GAT1 expression varied with nitrogen source and was reduced 2- to 3-fold in gln3 mutants. Both gln3 and gat1 mutants exhibited reduced sensitivity to rapamycin, suggesting they function downstream of TOR kinase. Hyphae formation by gln3 and gat1 mutants differed in relation to nitrogen source. The gln3 mutants formed hyphae on several nitrogen sources, but not ammonium or urea, suggesting a defect in ammonium assimilation. Virulence of gln3 mutants was reduced in a murine model of disseminated disease. We conclude that GLN3 has a broad role in nitrogen metabolism, partially overlapping, but distinct from that of GAT1, and that its function is important for the ability of C. albicans to survive within the host environment.
Collapse
Affiliation(s)
- Wei-Li Liao
- Department of Microbiology & Immunology, Georgetown University, 3900 Reservoir Road N.W., Washington, DC 20057-2197, USA
| | | | | |
Collapse
|
68
|
Biswas S, Van Dijck P, Datta A. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 2007; 71:348-76. [PMID: 17554048 PMCID: PMC1899878 DOI: 10.1128/mmbr.00009-06] [Citation(s) in RCA: 408] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that is found in the normal gastrointestinal flora of most healthy humans. However, under certain environmental conditions, it can become a life-threatening pathogen. The shift from commensal organism to pathogen is often correlated with the capacity to undergo morphogenesis. Indeed, under certain conditions, including growth at ambient temperature, the presence of serum or N-acetylglucosamine, neutral pH, and nutrient starvation, C. albicans can undergo reversible transitions from the yeast form to the mycelial form. This morphological plasticity reflects the interplay of various signal transduction pathways, either stimulating or repressing hyphal formation. In this review, we provide an overview of the different sensing and signaling pathways involved in the morphogenesis and pathogenesis of C. albicans. Where appropriate, we compare the analogous pathways/genes in Saccharomyces cerevisiae in an attempt to highlight the evolution of the different components of the two organisms. The downstream components of these pathways, some of which may be interesting antifungal targets, are also discussed.
Collapse
Affiliation(s)
- Subhrajit Biswas
- National Centre for Plant Genome Research, New Delhi 110 067, India
| | | | | |
Collapse
|
69
|
Wilson D, Tutulan-Cunita A, Jung W, Hauser NC, Hernandez R, Williamson T, Piekarska K, Rupp S, Young T, Stateva L. Deletion of the high-affinity cAMP phosphodiesterase encoded by PDE2 affects stress responses and virulence in Candida albicans. Mol Microbiol 2007; 65:841-56. [PMID: 17614954 DOI: 10.1111/j.1365-2958.2007.05788.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously, we have shown that PDE2 is required for hyphal development and cell wall integrity in Candida albicans. In the present study, we have investigated the effects of its deletion by genome-wide transcriptome profiling. Changes in expression levels of genes involved in metabolism, transcription, protein and nucleic acids synthesis, as well as stress responses, cell wall and membrane biogenesis, adherence and virulence have been observed. By comparing these changes with previously reported transcriptome profiles of pde2Delta mutants of Saccharomyces cerevisiae, as well as cdc35Delta, ras1Delta and efg1Delta mutants of C. albicans, conserved and species-specific cAMP-regulated genes have been identified. The genes whose transcription is altered upon deletion of PDE2 in C. albicans has also allowed us to predict that the pde2Delta mutant would have a defective ability to adhere to, and invade host cells, and an impaired virulence as well as response to different stresses. Using appropriate assays, we have tested these predictions and compared the roles of the high- and low-affinity cAMP phosphodiesterases, Pde2p and Pde1p in stress, adhesion and virulence. We suggest that phosphodiesterases, and in particular the high-affinity cAMP phosphodiesterase encoded by PDE2, have real potential as targets for antifungal chemotherapy.
Collapse
Affiliation(s)
- Duncan Wilson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Thewes S, Kretschmar M, Park H, Schaller M, Filler SG, Hube B. In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 2007; 63:1606-28. [PMID: 17367383 DOI: 10.1111/j.1365-2958.2007.05614.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human pathogenic fungus Candida albicans can cause a wide range of infections and invade multiple organs. To identify C. albicans genes that are expressed during invasion of the liver, we used genome-wide transcriptional profiling in vivo and ex vivo. By analysing the different phases of intraperitoneal infection from attachment to tissue penetration in a time-course experiment and by comparing the profiles of an invasive with those of a non-invasive strain, we identified genes and transcriptional pattern which are associated with the invasion process. This includes genes involved in metabolism, stress, and nutrient uptake, as well as transcriptional programmes regulating morphology and environmental sensing. One of the genes identified as associated with liver invasion was DFG16, a gene crucial for pH-dependent hyphal formation, correct pH sensing, invasion at physiological pH and systemic infection.
Collapse
Affiliation(s)
- Sascha Thewes
- Division Mycology, Robert-Koch Institute, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
Autophagy is a major cellular process that facilitates the bulk degradation of eukaryotic macromolecules and organelles, through degradation within the lysosomal/vacuole compartment. This has been demonstrated to influence a diverse array of eukaryotic cell functions including adaptation, differentiation and developmental programmes. For example, in Saccharomyces cerevisiae autophagy is required for sporulation and survival of nitrogen starvation. The opportunistic pathogen Candida albicans has the ability to colonize and cause disease within a diverse range of mammalian host sites. The ability to adapt and differentiate within the host is liable to be critical for host colonization and infection. Previous results indicated that the vacuole plays an important role in C. albicans adaptation to stress, differentiation, and survival within and injury of host cells. In this study the importance of vacuole-mediated degradation through the process of autophagy was investigated. This involved identification and deletion of ATG9, a C. albicans gene required for autophagy. The deletion strain was blocked in autophagy and the closely related cytoplasm to vacuole (cvt) trafficking pathway. This resulted in sensitivity to nitrogen starvation, but no defects in growth rate, vacuole morphology or resistance to other stresses. This indicates that the mutant has specific defects in autophagy/cvt trafficking. Given the importance of autophagy in the development and differentiation of other eukaryotes, it was surprising to find that the atg9Delta mutant was unaffected in either yeast-hypha or chlamydospore differentiation. Furthermore, the atg9Delta mutant survived within and killed a mouse macrophage-like cell line as efficiently as control strains. The data suggest that autophagy plays little or no role in C. albicans differentiation or during interaction with host cells.
Collapse
Affiliation(s)
- Glen E Palmer
- Department of MIP, Louisiana State University Health Sciences Center School of Dentistry, 1100 Florida Avenue, Box F8-130, New Orleans, LA 70119, USA.
| | | | | |
Collapse
|
72
|
Eckert SE, Heinz WJ, Zakikhany K, Thewes S, Haynes K, Hube B, Mühlschlegel FA. PGA4, a GAS homologue from Candida albicans, is up-regulated early in infection processes. Fungal Genet Biol 2006; 44:368-77. [PMID: 17257864 DOI: 10.1016/j.fgb.2006.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 02/06/2023]
Abstract
Transglucosidases play a significant role in fungal cell wall biosynthesis. We identified three as yet undescribed genes encoding beta-glucan transglucosidases, homologues of the pH-regulated PHR1 and PHR2, in the genome of the pathogenic yeast Candida albicans. Transcript levels of the gene PGA4 encoding a putative GPI-anchored protein were elevated in C. albicans wild-type cells during infection of reconstituted human epithelial and mouse liver tissue, and transiently increased after induction of hyphal formation with serum. The serum-specific increase in PGA4 transcript was found to be dependent on the transcription factors Ras1p, Cyr1p, and Tec1p. The remaining C. albicans Phr homologues, PHR3 and PGA5, showed low expression levels. Unlike PHR1 and PHR2, the expression of PHR3, PGA4, and PGA5 was not dependent on the pH of the growth medium. Neither PHR3 deletion nor PGA4 disruption resulted in a distinct growth or morphology phenotype. A PGA4 disruption strain was found to have wild-type capacity of infecting reconstituted oral epithelial tissue. Our data suggest that PGA4, and potentially PHR3 and PGA5, are expressed under distinct conditions, which differ from those of PHR1 and PHR2.
Collapse
Affiliation(s)
- Sabine E Eckert
- Department of Biosciences, University of Kent, Canterbury CT2 7NY, UK
| | | | | | | | | | | | | |
Collapse
|
73
|
Baek YU, Martin SJ, Davis DA. Evidence for novel pH-dependent regulation of Candida albicans Rim101, a direct transcriptional repressor of the cell wall beta-glycosidase Phr2. EUKARYOTIC CELL 2006; 5:1550-9. [PMID: 16963637 PMCID: PMC1563585 DOI: 10.1128/ec.00088-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is a commensal fungus of mucosal surfaces that can cause disease in susceptible hosts. One aspect of the success of C. albicans as both a commensal and a pathogen is its ability to adapt to diverse environmental conditions, including dramatic variations in environmental pH. The response to a neutral-to-alkaline pH change is controlled by the Rim101 signal transduction pathway. In neutral-to-alkaline environments, the zinc finger transcription factor Rim101 is activated by the proteolytic removal of an inhibitory C-terminal domain. Upon activation, Rim101 acts to induce alkaline response gene expression and repress acidic response gene expression. Previously, recombinant Rim101 was shown to directly bind to the alkaline-pH-induced gene PHR1. Here, we demonstrate that endogenous Rim101 also directly binds to the alkaline-pH-repressed gene PHR2. Furthermore, we find that of the three putative binding sites, only the -124 site and, to a lesser extent, the -51 site play a role in vivo. In C. albicans, the predicted Rim101 binding site was thought to be CCAAGAA, divergent from the GCCAAG site defined in Aspergillus nidulans and Saccharomyces cerevisiae. Our results suggest that the Rim101 binding site in C. albicans is GCCAAGAA, but slight variations are tolerated in a context-dependent fashion. Finally, our data suggest that Rim101 activity is governed not only by proteolytic processing but also by an additional mechanism not previously described.
Collapse
Affiliation(s)
- Yong-Un Baek
- Department of Microbiology, University of Minnesota, 420 Delaware St., Minneapolis, 55455, USA
| | | | | |
Collapse
|
74
|
Piekarska K, Mol E, van den Berg M, Hardy G, van den Burg J, van Roermund C, MacCallum D, Odds F, Distel B. Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans. EUKARYOTIC CELL 2006; 5:1847-56. [PMID: 16963628 PMCID: PMC1694795 DOI: 10.1128/ec.00093-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phagocytic cells form the first line of defense against infections by the human fungal pathogen Candida albicans. Recent in vitro gene expression data suggest that upon phagocytosis by macrophages, C. albicans reprograms its metabolism to convert fatty acids into glucose by inducing the enzymes of the glyoxylate cycle and fatty acid beta-oxidation pathway. Here, we asked whether fatty acid beta-oxidation, a metabolic pathway localized to peroxisomes, is essential for fungal virulence by constructing two C. albicans double deletion strains: a pex5Delta/pex5Delta mutant, which is disturbed in the import of most peroxisomal enzymes, and a fox2Delta/fox2Delta mutant, which lacks the second enzyme of the beta-oxidation pathway. Both mutant strains had strongly reduced beta-oxidation activity and, accordingly, were unable to grow on media with fatty acids as a sole carbon source. Surprisingly, only the fox2Delta/fox2Delta mutant, and not the pex5Delta/pex5Delta mutant, displayed strong growth defects on nonfermentable carbon sources other than fatty acids (e.g., acetate, ethanol, or lactate) and showed attenuated virulence in a mouse model for systemic candidiasis. The degree of virulence attenuation of the fox2Delta/fox2Delta mutant was comparable to that of the icl1Delta/icl1Delta mutant, which lacks a functional glyoxylate cycle and also fails to grow on nonfermentable carbon sources. Together, our data suggest that peroxisomal fatty acid beta-oxidation is not essential for virulence of C. albicans, implying that the attenuated virulence of the fox2Delta/fox2Delta mutant is largely due to a dysfunctional glyoxylate cycle.
Collapse
Affiliation(s)
- Katarzyna Piekarska
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Lotz H, Sohn K, Brunner H, Muhlschlegel FA, Rupp S. RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. EUKARYOTIC CELL 2005; 3:776-84. [PMID: 15189998 PMCID: PMC420143 DOI: 10.1128/ec.3.3.776-784.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor Rim101p of Candida albicans has been shown to play a major role in pH-dependent gene regulation. Rim101p is involved in cell wall biosynthesis, since it regulates PHR1 and PHR2, two almost functionally redundant cell wall glycosidases important for adaptation to either neutral or acidic habitats within the human host. To identify additional cell wall components regulated by Rim101p, we performed transcriptional profiling with a cell wall-specific DNA microarray. We showed that Rim101p contributes to the activation of known hypha-specific genes such as HWP1 and RBT1 but is also required for repression of the previously uncharacterized potential cell wall genes RBR1, RBR2, and RBR3. Further characterization of RBR1 revealed that it encodes a small glycosylphosphatidyl inositol protein that is expressed under acidic conditions predominantly at low temperature. Deletion of the gene resulted in a filamentation defect at low pH. Most interestingly, NRG1, a transcriptional repressor of hyphal growth in C. albicans, was required for RBR1 expression. The apparently activating effect of NRG1 observed in this study has not been described before. In addition, we showed that expression of NRG1 is not only temperature but also pH dependent.
Collapse
|
76
|
Noble SM, Johnson AD. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. EUKARYOTIC CELL 2005; 4:298-309. [PMID: 15701792 PMCID: PMC549318 DOI: 10.1128/ec.4.2.298-309.2005] [Citation(s) in RCA: 483] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Candida albicans is the most common human fungal pathogen and causes significant morbidity and mortality worldwide. Nevertheless, the basic principles of C. albicans pathogenesis remain poorly understood. Of central importance to the study of this organism is the ability to generate homozygous knockout mutants and to analyze them in a mammalian model of pathogenesis. C. albicans is diploid, and current strategies for gene deletion typically involve repeated use of the URA3 selectable marker. These procedures are often time-consuming and inefficient. Moreover, URA3 expression levels-which are susceptible to chromosome position effects-can themselves affect virulence, thereby complicating analysis of strains constructed with URA3 as a selectable marker. Here, we describe a set of newly developed reference strains (leu2Delta/leu2Delta, his1Delta/his1Delta; arg4Delta/arg4Delta, his1Delta/his1Delta; and arg4Delta/arg4Delta, leu2Delta/leu2Delta, his1Delta/his1Delta) that exhibit wild-type or nearly wild-type virulence in a mouse model. We also describe new disruption marker cassettes and a fusion PCR protocol that permit rapid and highly efficient generation of homozygous knockout mutations in the new C. albicans strains. We demonstrate these procedures for two well-studied genes, TUP1 and EFG1, as well as a novel gene, RBD1. These tools should permit large-scale genetic analysis of this important human pathogen.
Collapse
Affiliation(s)
- Suzanne M Noble
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94143-2200, USA.
| | | |
Collapse
|
77
|
Barwell KJ, Boysen JH, Xu W, Mitchell AP. Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans. EUKARYOTIC CELL 2005; 4:890-9. [PMID: 15879523 PMCID: PMC1140096 DOI: 10.1128/ec.4.5.890-899.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many fungal pH responses depend upon conserved Rim101p/PacC transcription factors, which are activated by C-terminal proteolytic processing. The means by which environmental pH is sensed by this pathway are not known. Here, we report a screen of the Saccharomyces cerevisiae viable deletion mutant library that has yielded a new gene required for processed Rim101p accumulation, DFG16. An S. cerevisiae dfg16Delta mutant expresses Rim101p-repressed genes at elevated levels. In addition, Candida albicans dfg16Delta/dfg16Delta mutants are defective in alkaline pH-induced filamentation, and their defect is suppressed by expression of truncated Rim101-405p. Thus, Dfg16p is a functionally conserved Rim101p pathway member. Many proteins required for processed Rim101p accumulation are members of the ESCRT complex, which functions in the formation of multivesicular bodies (MVBs). Staining with the dye FM4-64 indicates that the S. cerevisiae dfg16Delta mutant does not have an MVB defect. We find that two transcripts, PRY1 and ASN1, respond to mutations that affect both the Rim101p and MVB pathways but not to mutations that affect only one pathway. The S. cerevisiae dfg16Delta mutation does not affect PRY1 and ASN1 expression, thus confirming that Dfg16p function is restricted to the Rim101p pathway. Dfg16p is homologous to Aspergillus nidulans PalH, a component of the well-characterized PacC processing pathway. We verify that the previously recognized PalH homolog, Rim21p, also functions in the S. cerevisiae Rim101p pathway. Dfg16p is predicted to have seven membrane-spanning segments and a long hydrophilic C-terminal region, as expected if Dfg16p were a G-protein-coupled receptor.
Collapse
Affiliation(s)
- Karen J Barwell
- Department of Microbiology, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
78
|
Villar CC, Kashleva H, Mitchell AP, Dongari-Bagtzoglou A. Invasive phenotype of Candida albicans affects the host proinflammatory response to infection. Infect Immun 2005; 73:4588-95. [PMID: 16040970 PMCID: PMC1201248 DOI: 10.1128/iai.73.8.4588-4595.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Candida albicans is a major opportunistic pathogen in immunocompromised patients. Production of proinflammatory cytokines by host cells in response to C. albicans plays a critical role in the activation of immune cells and final clearance of the organism. Invasion of host cells and tissues is considered one of the virulence attributes of this organism. The purpose of this study was to investigate whether the ability of C. albicans to invade host cells and tissues affects the proinflammatory cytokine responses by epithelial and endothelial cells. In this study we used the invasion-deficient RIM101 gene knockout strain DAY25, the highly invasive strain SC5314, and highly invasive RIM101-complemented strain DAY44 to compare the proinflammatory cytokine responses by oral epithelial or endothelial cells. Using a high-throughput approach, we found both qualitative and quantitative differences in the overall inflammatory responses to C. albicans strains with different invasive potentials. Overall, the highly invasive strains triggered higher levels of proinflammatory cytokines in host cells than the invasion-deficient mutant triggered. Significant differences compared to the attenuated mutant were noted in interleukin-1alpha (IL-1alpha), IL-6, IL-8, and tumor necrosis factor alpha in epithelial cells and in IL-6, growth-related oncogene, IL-8, monocyte chemoattractant protein 1 (MCP-1), MCP-2, and granulocyte colony-stimulating factor in endothelial cells. Our results indicate that invasion of host cells and tissues by C. albicans enhances the host proinflammatory response to infection.
Collapse
Affiliation(s)
- C C Villar
- Department of Periodontology, School of Dental Medicine, University of Connecticut, 263 Farmington Ave., Farmington, CT 06030-1710, USA
| | | | | | | |
Collapse
|
79
|
Russell CL, Brown AJP. Expression of one-hybrid fusions with Staphylococcus aureus lexA in Candida albicans confirms that Nrg1 is a transcriptional repressor and that Gcn4 is a transcriptional activator. Fungal Genet Biol 2005; 42:676-83. [PMID: 15946869 DOI: 10.1016/j.fgb.2005.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/21/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
In the pathogenic fungus, Candida albicans, Nrg1 down-regulates the expression of morphogenetic genes and is presumed to act as a transcriptional repressor. In contrast, Gcn4 up-regulates amino acid biosynthetic genes and is presumed to be a transcriptional activator. However, these presumptions remain to be tested directly. A classic approach has been to use a one-hybrid assay that exploits the Escherichia coli lexA protein fusions. However in C. albicans, the alternate decoding of CUG as serine prevents the expression of heterologous genes such as lexA, which contain numerous CUG codons. Therefore, we have developed a one-hybrid system, based on the Staphylococcus aureus lexA gene, as a tool for one-hybrid analyses of transcription factors in C. albicans. Using this one-hybrid system we have confirmed directly the positive and negative transcriptional activities of Nrg1 and Gcn4 in C. albicans.
Collapse
Affiliation(s)
- Claire L Russell
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | |
Collapse
|
80
|
Bensen ES, Martin SJ, Li M, Berman J, Davis DA. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 2005; 54:1335-51. [PMID: 15554973 DOI: 10.1111/j.1365-2958.2004.04350.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human pathogen Candida albicans grows and colonizes sites that can vary markedly in pH. The pH response in C. albicans is governed in part by the Rim101p pathway. In Saccharomyces cerevisiae, Rim101p promotes alkaline responses by repressing expression of NRG1, itself a transcriptional repressor. Our studies reveal that in C. albicans, Rim101p-mediated alkaline adaptation is not through repression of CaNRG1. Furthermore, our studies suggest that Rim101p and Nrg1p act in parallel pathways to regulate hyphal morphogenesis, an important contributor to virulence. To determine the wild-type C. albicans transcriptional response to acidic and alkaline pH, we utilized microarrays and identified 514 pH-responsive genes. Of these, several genes involved in iron acquisition were upregulated at pH 8, suggesting that alkaline pH induces iron starvation. Microarray analysis of rim101-/- cells indicated that Rim101p does not govern transcriptional responses at acidic pH, but does regulate a subset of transcriptional responses at alkaline pH, including the iron acquisition genes. We found that rim101-/- cells are sensitive to iron starvation, which suggests that one important aspect of the Rim101p-dependent alkaline pH response is to adapt to iron starvation conditions.
Collapse
Affiliation(s)
- Eric S Bensen
- Department of Genetics and Cell Development, University of Minnesota, MN 55455, USA
| | | | | | | | | |
Collapse
|
81
|
Peñalva MA, Arst HN. Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu Rev Microbiol 2004; 58:425-51. [PMID: 15487944 DOI: 10.1146/annurev.micro.58.030603.123715] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All microorganisms must adapt to the pH of their environment. One aspect of this adaptation, particularly important for organisms that grow over a wide pH range, is the ability to express appropriately genes whose roles ultimately involve functions at the cell surface or in the environment. Genes encoding permeases, secreted enzymes, enzymes involved in synthesis of exported metabolites such as toxins and antibiotics, and probably enzymes modifying secreted proteins posttranslationally all fall into this category. Here we discuss the most recent findings on the transcriptional regulatory system in fungi that enables such genes to be expressed only when the ambient pH is conducive to their ultimate functions. The intriguing issue of how pH is sensed and how the resulting signal is transmitted to the transcription factor involves at least one late endosome component. Proper functioning of the regulatory system responding to ambient pH is essential for fungal pathogenicity of both animals and plants.
Collapse
Affiliation(s)
- Miguel A Peñalva
- Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| | | |
Collapse
|
82
|
Palmer GE, Sturtevant JE. Random mutagenesis of an essential Candida albicans gene. Curr Genet 2004; 46:343-56. [PMID: 15549319 DOI: 10.1007/s00294-004-0538-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/20/2004] [Accepted: 09/20/2004] [Indexed: 10/26/2022]
Abstract
A method for the analysis of Candida albicans gene function, which involves random mutagenesis of the open reading frame, is described. This method is especially suited for the study of essential and multi-functional genes, with several advantages over regulatable promoters more commonly used to study essential gene function. These advantages include expression from the endogenous promoter, which should yield a more appropriate transcript expression and abrogate the need for shifts in carbon or amino acid sources necessary with the use of regulatable promoters. Furthermore, there is potential for isolating individual functions of multi-functional genes. To verify this experimental approach, we randomly mutated the essential C. albicans gene, BMH1. The resulting "pool" of putative mutant alleles was then introduced into a BMH1/bmh1Delta strain of C. albicans, such that only the mutagenized BMH1 sequences could be expressed. Transformants were screened for rapamycin sensitivity, defects in filamentation on M199 agar, and growth at 42 degrees C. In this way, we identified six non-lethal mutant alleles of BMH1 with altered amino acid sequences. Further phenotypic analysis of these mutant strains enabled us to segregate individual functions of C. albicans BMH1. The relative merits of Escherichia coli versus PCR-mediated mutagenesis are discussed.
Collapse
Affiliation(s)
- Glen E Palmer
- Department of Microbiology, Immunology, and Parasitology, Center of Excellence in Oral and Craniofacial Biology, Louisiana State University School of Medicine, 1100 Florida Avenue, Box F8-130, New Orleans, LA, USA.
| | | |
Collapse
|
83
|
Palmer GE, Johnson KJ, Ghosh S, Sturtevant J. Mutant alleles of the essential 14-3-3 gene in Candida albicans distinguish between growth and filamentation. MICROBIOLOGY-SGM 2004; 150:1911-1924. [PMID: 15184577 DOI: 10.1099/mic.0.26910-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The opportunistic fungal pathogen Candida albicans has the ability to exploit diverse host environments and can either reside commensally or cause disease. In order to adapt to its new environment it must respond to new physical conditions, nutrient sources, and the host immune response. This requires the co-regulation of multiple signalling networks. The 14-3-3 family of proteins is highly conserved in all eukaryotic species. These proteins regulate signalling pathways involved in cell survival, the cell cycle, and differentiation, and effect their functions via interactions with phosphorylated serines/threonines. In C. albicans there is only one 14-3-3 protein, Bmh1p, and it is required for vegetative growth and optimal filamentation. In order to dissect separate functions of Bmh1p in C. albicans, site-directed nucleotide substitutions were made in the C. albicans BMH1 gene based on studies in other species. Putative temperature-sensitive, ligand-binding and dimerization mutants were constructed. In addition two mutant strains identified through random mutagenesis were analysed. All five mutant strains demonstrated varying defects in growth and filamentation. This paper begins to segregate functions of Bmh1p that are required for optimal growth and the different filamentation pathways. These mutant strains will allow the identification of 14-3-3 target interactions and correlate the individual functions of Bmh1p to cellular processes involved in pathogenesis.
Collapse
Affiliation(s)
- Glen E Palmer
- Georgetown University School of Medicine, Department of Microbiology and Immunology, 3900 Reservoir Road, Washington DC 20036, USA
- Louisiana State University School of Medicine, Department of Microbiology, Immunology, and Parasitology, Center of Excellence in Oral and Craniofacial Biology, 1100 Florida Ave, Box F8-130 New Orleans, LA 70119, USA
| | - Kevin J Johnson
- Louisiana State University School of Medicine, Department of Microbiology, Immunology, and Parasitology, Center of Excellence in Oral and Craniofacial Biology, 1100 Florida Ave, Box F8-130 New Orleans, LA 70119, USA
| | - Sumana Ghosh
- Louisiana State University School of Medicine, Department of Microbiology, Immunology, and Parasitology, Center of Excellence in Oral and Craniofacial Biology, 1100 Florida Ave, Box F8-130 New Orleans, LA 70119, USA
| | - Joy Sturtevant
- Georgetown University School of Medicine, Department of Microbiology and Immunology, 3900 Reservoir Road, Washington DC 20036, USA
- Louisiana State University School of Medicine, Department of Microbiology, Immunology, and Parasitology, Center of Excellence in Oral and Craniofacial Biology, 1100 Florida Ave, Box F8-130 New Orleans, LA 70119, USA
| |
Collapse
|
84
|
Staib P, Binder A, Kretschmar M, Nichterlein T, Schröppel K, Morschhäuser J. Tec1p-independent activation of a hypha-associated Candida albicans virulence gene during infection. Infect Immun 2004; 72:2386-9. [PMID: 15039365 PMCID: PMC375214 DOI: 10.1128/iai.72.4.2386-2389.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tec1p transcription factor is involved in the expression of hypha-specific genes in Candida albicans. Although the induction of the hypha-associated SAP5 gene by serum in vitro depends on Tec1p, deletion of all Tec1p binding site consensus sequences from the SAP5 promoter did not affect its activation. In two different animal models of candidiasis, the SAP5 promoter was induced even in a Deltatec1 deletion mutant, demonstrating that the requirement for Tec1p in gene expression in C. albicans depends on the environmental conditions within the host.
Collapse
Affiliation(s)
- Peter Staib
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, D-97070 Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
85
|
Martchenko M, Alarco AM, Harcus D, Whiteway M. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 2003; 15:456-67. [PMID: 14617819 PMCID: PMC329211 DOI: 10.1091/mbc.e03-03-0179] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Superoxide dismutases (SOD) convert superoxide radicals into less damaging hydrogen peroxide. The opportunistic human pathogen Candida albicans is known to express CuZnSOD (SOD1) and MnSOD (SOD3) in the cytosol and MnSOD (SOD2) in the mitochondria. We identified three additional CuZn-containing superoxide dismutases, SOD4, SOD5, and SOD6, within the sequence of the C. albicans genome. The transcription of SOD5 was up-regulated during the yeast to hyphal transition of C. albicans, and SOD5 was induced when C. albicans cells were challenged with osmotic or with oxidative stresses. SOD5 transcription was also increased when cells were grown on nonfermentable substrates as the only carbon source. The Rim101p transcription factor was required for all inductions observed, whereas the Efg1p transcription factor was specifically needed for serum-modulated expression. Deletion of SOD5 produced a viable mutant strain that showed sensitivity to hydrogen peroxide when cells were grown in nutrient-limited conditions. Sod5p was found to be necessary for the virulence of C. albicans in a mouse model of infection. However, the sod5 mutant strain showed the same resistance to macrophage attack as its parental strain, suggesting that the loss of virulence in not due to an increased sensitivity to macrophage attack.
Collapse
Affiliation(s)
- Mikhail Martchenko
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | | | | | | |
Collapse
|