51
|
Adhvaryu KK, Selker EU. Protein phosphatase PP1 is required for normal DNA methylation in Neurospora. Genes Dev 2009; 22:3391-6. [PMID: 19141471 DOI: 10.1101/gad.1738008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Covalent modifications of histones integrate intracellular and extracellular cues to regulate the genome. H3 Lys 9 methylation (H3K9me) can direct heterochromatin formation and DNA methylation, while phosphorylation of H3 Ser 10 (H3S10p) drives gene activation and chromosome condensation. To examine the relationship between H3S10p, H3K9me, and DNA methylation in Neurospora crassa, we built and tested mutants of the putative H3S10 phosphatase, PP1. A PP1-impaired mutant showed increased H3S10p and selective reduction of methylation of H3K9 and DNA. Similarly, amino acid substitutions of H3S10 abolished methylation of H3K9 and DNA. Thus, H3S10 dephosphorylation by PP1 is required for DNA methylation of some loci.
Collapse
Affiliation(s)
- Keyur K Adhvaryu
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
52
|
Kawase T, Sato K, Ueda T, Yoshida M. Distinct domains in HMGB1 are involved in specific intramolecular and nucleosomal interactions. Biochemistry 2009; 47:13991-6. [PMID: 19102706 DOI: 10.1021/bi8013449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
HMGB1 is composed of two DNA-binding domains and a long acidic tail at the C-terminus. The acidic tail interacts with the DNA-binding domains of HMGB1 and with core histone H3 in the nucleosome. These interactions are important for modulation of the DNA and chromatin binding activities of HMGB1, as well as biological functions of HMGB1. However, the interactions are not fully characterized, because the tertiary structure of full-length HMGB1 is still unknown. Here we use chemical cross-linking, mass spectrometry, and epitope masking analysis to perform a detailed characterization of the inter- and intramolecular protein interactions of the acidic tail of HMGB1. We show that specific regions of the acidic tail participate in intramolecular interactions with Lys2 of HMGB1 and in intermolecular interactions with Lys36 and Lys37 of histone H3. The acidic tail is oriented by its location adjacent to the C-terminus of helix III of DNA-binding HMG box A in the HMGB1 molecule. These results suggest that the acidic tail modulates the biological functions of HMGB1 through these specific interactions.
Collapse
Affiliation(s)
- Toshifumi Kawase
- Department of Biological Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | |
Collapse
|
53
|
Lin CH, Li B, Swanson S, Zhang Y, Florens L, Washburn MP, Abmayr SM, Workman JL. Heterochromatin protein 1a stimulates histone H3 lysine 36 demethylation by the Drosophila KDM4A demethylase. Mol Cell 2009; 32:696-706. [PMID: 19061644 DOI: 10.1016/j.molcel.2008.11.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 07/23/2008] [Accepted: 11/01/2008] [Indexed: 01/01/2023]
Abstract
Recent discoveries of histone demethylases demonstrate that histone methylation is reversible. However, mechanisms governing the targeting and regulation of histone demethylation remain elusive. Here we report that a Drosophila melanogaster JmjC domain-containing protein, dKDM4A, is a histone H3K36 demethylase. dKDM4A specifically demethylates H3K36me2 and H3K36me3 both in vitro and in vivo. Affinity purification and mass spectrometry analysis revealed that heterochromatin protein 1a (HP1a) associates with dKDMA4A. We found that the chromo shadow domain of HP1a and a HP1-interacting motif of dKDM4A are responsible for this interaction. HP1a stimulates the histone H3K36 demethylation activity of dKDM4A, and this stimulation depends on the H3K9me-binding motif of HP1a. Finally, we provide in vivo evidence suggesting that HP1a and dKDM4A interact with each other and that loss of HP1a leads to an increased level of histone H3K36me3. Collectively, these results suggest a function of HP1a in transcription facilitating H3K36 demethylation at transcribed and/or heterochromatin regions.
Collapse
Affiliation(s)
- Chia-Hui Lin
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res 2008; 19:427-37. [PMID: 19092133 DOI: 10.1101/gr.086231.108] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Both RNAi-dependent and -independent mechanisms have been implicated in the establishment of heterochromatin domains, which may be stabilized by feedback loops involving chromatin proteins and modifications of histones and DNA. Neurospora crassa sports features of heterochromatin found in higher eukaryotes, namely cytosine methylation (5mC), methylation of histone H3 lysine 9 (H3K9me), and heterochromatin protein 1 (HP1), and is a model to investigate heterochromatin establishment and maintenance. We mapped the distribution of HP1, 5mC, H3K9me3, and H3K4me2 at 100 bp resolution and explored their interplay. HP1, H3K9me3, and 5mC were extensively co-localized and defined 44 heterochromatic domains on linkage group VII, all relics of repeat-induced point mutation. Interestingly, the centromere was found in an approximately 350 kb heterochromatic domain with no detectable H3K4me2. 5mC was not found in genes, in contrast to the situation in plants and animals. H3K9me3 is required for HP1 localization and DNA methylation in N. crassa. In contrast, we found that localization of H3K9me3 was independent of 5mC or HP1 at virtually all heterochromatin regions. In addition, we observed complete restoration of DNA methylation patterns after depletion and reintroduction of the H3K9 methylation machinery. These data show that A:T-rich RIP'd DNA efficiently directs methylation of H3K9, which in turn, directs methylation of associated cytosines.
Collapse
|
55
|
Veerappan CS, Avramova Z, Moriyama EN. Evolution of SET-domain protein families in the unicellular and multicellular Ascomycota fungi. BMC Evol Biol 2008; 8:190. [PMID: 18593478 PMCID: PMC2474616 DOI: 10.1186/1471-2148-8-190] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 07/01/2008] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The evolution of multicellularity is accompanied by the occurrence of differentiated tissues, of organismal developmental programs, and of mechanisms keeping the balance between proliferation and differentiation. Initially, the SET-domain proteins were associated exclusively with regulation of developmental genes in metazoa. However, finding of SET-domain genes in the unicellular yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe suggested that SET-domain proteins regulate a much broader variety of biological programs. Intuitively, it is expected that the numbers, types, and biochemical specificity of SET-domain proteins of multicellular versus unicellular forms would reflect the differences in their biology. However, comparisons across the unicellular and multicellular domains of life are complicated by the lack of knowledge of the ancestral SET-domain genes. Even within the crown group, different biological systems might use the epigenetic 'code' differently, adapting it to organism-specific needs. Simplifying the model, we undertook a systematic phylogenetic analysis of one monophyletic fungal group (Ascomycetes) containing unicellular yeasts, Saccharomycotina (hemiascomycetes), and a filamentous fungal group, Pezizomycotina (euascomycetes). RESULTS Systematic analysis of the SET-domain genes across an entire eukaryotic phylum has outlined clear distinctions in the SET-domain gene collections in the unicellular and in the multicellular (filamentous) relatives; diversification of SET-domain gene families has increased further with the expansion and elaboration of multicellularity in animal and plant systems. We found several ascomycota-specific SET-domain gene groups; each was unique to either Saccharomycotina or Pezizomycotina fungi. Our analysis revealed that the numbers and types of SET-domain genes in the Saccharomycotina did not reflect the habitats, pathogenicity, mechanisms of sexuality, or the ability to undergo morphogenic transformations. However, novel genes have appeared for functions associated with the transition to multicellularity. Descendents of most of the SET-domain gene families found in the filamentous fungi could be traced in the genomes of extant animals and plants, albeit as more complex structural forms. CONCLUSION SET-domain genes found in the filamentous species but absent from the unicellular sister group reflect two alternative evolutionary events: deletion from the yeast genomes or appearance of novel structures in filamentous fungal groups. There were no Ascomycota-specific SET-domain gene families (i.e., absent from animal and plant genomes); however, plants and animals share SET-domain gene subfamilies that do not exist in the fungi. Phylogenetic and gene-structure analyses defined several animal and plant SET-domain genes as sister groups while those of fungal origin were basal to them. Plants and animals also share SET-domain subfamilies that do not exist in fungi.
Collapse
|
56
|
Brosch G, Loidl P, Graessle S. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev 2008; 32:409-39. [PMID: 18221488 PMCID: PMC2442719 DOI: 10.1111/j.1574-6976.2007.00100.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 11/13/2007] [Indexed: 12/19/2022] Open
Abstract
The readout of the genetic information of eukaryotic organisms is significantly regulated by modifications of DNA and chromatin proteins. Chromatin alterations induce genome-wide and local changes in gene expression and affect a variety of processes in response to internal and external signals during growth, differentiation, development, in metabolic processes, diseases, and abiotic and biotic stresses. This review aims at summarizing the roles of histone H1 and the acetylation and methylation of histones in filamentous fungi and links this knowledge to the huge body of data from other systems. Filamentous fungi show a wide range of morphologies and have developed a complex network of genes that enables them to use a great variety of substrates. This fact, together with the possibility of simple and quick genetic manipulation, highlights these organisms as model systems for the investigation of gene regulation. However, little is still known about regulation at the chromatin level in filamentous fungi. Understanding the role of chromatin in transcriptional regulation would be of utmost importance with respect to the impact of filamentous fungi in human diseases and agriculture. The synthesis of compounds (antibiotics, immunosuppressants, toxins, and compounds with adverse effects) is also likely to be regulated at the chromatin level.
Collapse
Affiliation(s)
- Gerald Brosch
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, Innsbruck, Austria
| | | | | |
Collapse
|
57
|
Larschan E, Alekseyenko AA, Gortchakov AA, Peng S, Li B, Yang P, Workman JL, Park PJ, Kuroda MI. MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol Cell 2008; 28:121-33. [PMID: 17936709 DOI: 10.1016/j.molcel.2007.08.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 06/05/2007] [Accepted: 08/03/2007] [Indexed: 11/30/2022]
Abstract
In Drosophila, X chromosome dosage compensation requires the male-specific lethal (MSL) complex, which associates with actively transcribed genes on the single male X chromosome to upregulate transcription approximately 2-fold. We found that on the male X chromosome, or when MSL complex is ectopically localized to an autosome, histone H3K36 trimethylation (H3K36me3) is a strong predictor of MSL binding. We isolated mutants lacking Set2, the H3K36me3 methyltransferase, and found that Set2 is an essential gene in both sexes of Drosophila. In set2 mutant males, MSL complex maintains X specificity but exhibits reduced binding to target genes. Furthermore, recombinant MSL3 protein preferentially binds nucleosomes marked by H3K36me3 in vitro. Our results support a model in which MSL complex uses high-affinity sites to initially recognize the X chromosome and then associates with many of its targets through sequence-independent features of transcribed genes.
Collapse
Affiliation(s)
- Erica Larschan
- Howard Hughes Medical Institute, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou JP, Steinmetz A, Shen WH. Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 2008. [PMID: 18070919 DOI: 10.1128/mcb.01607-1607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Histone lysines can be mono-, di-, or trimethylated, providing an ample magnitude of epigenetic information for transcription regulation. In fungi, SET2 is the sole methyltransferase responsible for mono-, di-, and trimethylation of H3K36. Here we show that in Arabidopsis thaliana, the degree of H3K36 methylation is regulated by distinct methyltransferases. The SET2 homologs SDG8 and SDG26 each can methylate oligonucleosomes in vitro, and both proteins are localized in the nucleus. While the previously reported loss-of-function sdg8 mutants have an early-flowering phenotype, the loss-of-function sdg26 mutants show a late-flowering phenotype. Consistently, several MADS-box flowering repressors are down-regulated by sdg8 but up-regulated by sdg26. The sdg8 but not the sdg26 mutant plants show a dramatically reduced level of both di- and trimethyl-H3K36 and an increased level of monomethyl-H3K36. SDG8 is thus specifically required for di- and trimethylation of H3K36. Our results further establish that H3K36 di- and tri- but not monomethylation correlates with transcription activation. Finally, we show that SDG8 and VIP4, which encodes a component of the PAF1 complex, act independently and synergistically in transcription regulation. Together our results reveal that the deposition of H3K36 methylation is finely regulated, possibly to cope with the complex regulation of growth and development in higher eukaryotes.
Collapse
Affiliation(s)
- Lin Xu
- Institut de Biologie Moléculaire des Plantes-CNRS, 12 Rue du Général Zimmer, 67084 Strasbourg Cédex, France
| | | | | | | | | | | | | |
Collapse
|
59
|
Yamada-Okabe T, Matsumoto N. Decreased serum dependence in the growth of NIH3T3 cells from the overexpression of human nuclear receptor-binding SET-domain-containing protein 1 (NSD1) or fission yeast su(var)3-9, enhancer-of-zeste, trithorax 2 (SET2). Cell Biochem Funct 2008; 26:146-50. [PMID: 17437319 DOI: 10.1002/cbf.1413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nuclear receptor-binding SET-domain-containing protein 1 (NSD1), a culprit gene for Sotos syndrome, contains a su(var)3-9, enhancer-of-zeste, trithorax (SET) domain that is responsible for histone methyltransferase activity and other domains such as plant homeodomain (PHD) and proline-tryptophan-tryptophan-proline (PWWP) involved in protein-protein interactions in the C-terminal half of NSD1. To elucidate the function of NSD1 on cell growth, we overexpressed NSD1 in NIH3T3 cells. Cells overexpressing NSD1 grew in the presence of 2% serum, whereas vector transfected cells did not. Overexpression of the C-terminal half of NSD1 but not the N-terminal half of NSD1 also produced cell growth under low serum concentration. Furthermore, overexpression in NIH3T3 of Schizosaccharomyces pombe SET2 which has a SET domain but not PHD or PWWP domains conferred the reduced serum dependence. Thus, the SET domain of NSD1 is involved in cell growth by modulating serum dependence.
Collapse
Affiliation(s)
- Toshiko Yamada-Okabe
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan.
| | | |
Collapse
|
60
|
Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 2007; 27:406-20. [PMID: 18157086 PMCID: PMC2168397 DOI: 10.1038/sj.emboj.7601967] [Citation(s) in RCA: 404] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 12/03/2007] [Indexed: 12/21/2022] Open
Abstract
Understanding the function of histone modifications across inducible genes in mammalian cells requires quantitative, comparative analysis of their fate during gene activation and identification of enzymes responsible. We produced high-resolution comparative maps of the distribution and dynamics of H3K4me3, H3K36me3, H3K79me2 and H3K9ac across c-fos and c-jun upon gene induction in murine fibroblasts. In unstimulated cells, continuous turnover of H3K9 acetylation occurs on all K4-trimethylated histone H3 tails; distribution of both modifications coincides across promoter and 5′ part of the coding region. In contrast, K36- and K79-methylated H3 tails, which are not dynamically acetylated, are restricted to the coding regions of these genes. Upon stimulation, transcription-dependent increases in H3K4 and H3K36 trimethylation are seen across coding regions, peaking at 5′ and 3′ ends, respectively. Addressing molecular mechanisms involved, we find that Huntingtin-interacting protein HYPB/Setd2 is responsible for virtually all global and transcription-dependent H3K36 trimethylation, but not H3K36-mono- or dimethylation, in these cells. These studies reveal four distinct layers of histone modification across inducible mammalian genes and show that HYPB/Setd2 is responsible for H3K36 trimethylation throughout the mouse nucleus.
Collapse
|
61
|
Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 2007; 28:1348-60. [PMID: 18070919 DOI: 10.1128/mcb.01607-07] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Histone lysines can be mono-, di-, or trimethylated, providing an ample magnitude of epigenetic information for transcription regulation. In fungi, SET2 is the sole methyltransferase responsible for mono-, di-, and trimethylation of H3K36. Here we show that in Arabidopsis thaliana, the degree of H3K36 methylation is regulated by distinct methyltransferases. The SET2 homologs SDG8 and SDG26 each can methylate oligonucleosomes in vitro, and both proteins are localized in the nucleus. While the previously reported loss-of-function sdg8 mutants have an early-flowering phenotype, the loss-of-function sdg26 mutants show a late-flowering phenotype. Consistently, several MADS-box flowering repressors are down-regulated by sdg8 but up-regulated by sdg26. The sdg8 but not the sdg26 mutant plants show a dramatically reduced level of both di- and trimethyl-H3K36 and an increased level of monomethyl-H3K36. SDG8 is thus specifically required for di- and trimethylation of H3K36. Our results further establish that H3K36 di- and tri- but not monomethylation correlates with transcription activation. Finally, we show that SDG8 and VIP4, which encodes a component of the PAF1 complex, act independently and synergistically in transcription regulation. Together our results reveal that the deposition of H3K36 methylation is finely regulated, possibly to cope with the complex regulation of growth and development in higher eukaryotes.
Collapse
|
62
|
Stabell M, Larsson J, Aalen RB, Lambertsson A. Drosophila dSet2 functions in H3-K36 methylation and is required for development. Biochem Biophys Res Commun 2007; 359:784-9. [PMID: 17560546 DOI: 10.1016/j.bbrc.2007.05.189] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Accepted: 05/28/2007] [Indexed: 11/28/2022]
Abstract
Lysine methylation has important functions in biological processes that range from heterochromatin formation to transcription regulation. Here, we demonstrate that Drosophila dSet2 encodes a developmentally essential histone H3 lysine 36 (K36) methyltransferase. Larvae subjected to RNA interference-mediated (RNAi) suppression of dSet2 lack dSet2 expression and H3-K36 methylation, indicating that dSet2 is the sole enzyme responsible for this modification in Drosophila melanogaster. dSet2 RNAi blocks puparium formation and adult development, and causes partial (blister) separation of the dorsal and ventral wing epithelia, defects suggesting a failure of the ecdysone-controlled genetic program. A transheterozygous EcR null mutation/dSet2 RNAi combination produces a complete (balloon) separation of the wing surfaces, revealing a genetic interaction between EcR and dSet2. Using immunoprecipitation, we demonstrate that dSet2 associates with the hyperphosphorylated form of RNA polymerase II (RNAPII).
Collapse
Affiliation(s)
- Marianne Stabell
- Institute of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, NO-0316 Oslo, Norway
| | | | | | | |
Collapse
|
63
|
Engh I, Würtz C, Witzel-Schlömp K, Zhang HY, Hoff B, Nowrousian M, Rottensteiner H, Kück U. The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. EUKARYOTIC CELL 2007; 6:831-43. [PMID: 17351077 PMCID: PMC1899833 DOI: 10.1128/ec.00269-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fruiting body formation in ascomycetes is a highly complex process that is under polygenic control and is a fundamental part of the fungal sexual life cycle. However, the molecular determinants regulating this cellular process are largely unknown. Here we show that the sterile pro40 mutant is defective in a 120-kDa WW domain protein that plays a pivotal role in fruiting body maturation of the homothallic ascomycete Sordaria macrospora. Although WW domains occur in many eukaryotic proteins, homologs of PRO40 are present only in filamentous ascomycetes. Complementation analysis with different pro40 mutant strains, using full-sized or truncated versions of the wild-type pro40 gene, revealed that the C terminus of PRO40 is crucial for restoring the fertile phenotype. Using differential centrifugation and protease protection assays, we determined that a PRO40-FLAG fusion protein is located within organelles. Further microscopic investigations of fusion proteins with DsRed or green fluorescent protein polypeptides showed a colocalization of PRO40 with HEX-1, a Woronin body-specific protein. However, the integrity of Woronin bodies is not affected in mutant strains of S. macrospora and Neurospora crassa, as shown by fluorescence microscopy, sedimentation, and immunoblot analyses. We discuss the function of PRO40 in fruiting body formation.
Collapse
Affiliation(s)
- Ines Engh
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Cheng X, Zhang X. Structural dynamics of protein lysine methylation and demethylation. Mutat Res 2007; 618:102-15. [PMID: 17374386 PMCID: PMC2588418 DOI: 10.1016/j.mrfmmm.2006.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 05/25/2006] [Indexed: 10/23/2022]
Abstract
Lysine methylation plays a central role in the "histone code" that regulates chromatin structure, impacts transcription, and responds to DNA damage. A single lysine can be mono-, di-, tri-methylated, or unmethylated, with different functional consequences for each of the four forms. This review (written in the early 2006) described structural aspects of methylation of histone lysine residues by two enzyme families with entirely different structural scaffolding (the SET proteins and Dot1p), and the protein motifs that recognize (decode) these methyl-lysine signals. We also discuss the recently discovered protein lysine demethylating enzymes (LSD1 and JmjC domains).
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
65
|
Bender LB, Suh J, Carroll CR, Fong Y, Fingerman IM, Briggs SD, Cao R, Zhang Y, Reinke V, Strome S. MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development 2006; 133:3907-17. [PMID: 16968818 PMCID: PMC2435371 DOI: 10.1242/dev.02584] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germ cell development in C. elegans requires that the X chromosomes be globally silenced during mitosis and early meiosis. We previously found that the nuclear proteins MES-2, MES-3, MES-4 and MES-6 regulate the different chromatin states of autosomes versus X chromosomes and are required for germline viability. Strikingly, the SET-domain protein MES-4 is concentrated on autosomes and excluded from the X chromosomes. Here, we show that MES-4 has histone H3 methyltransferase (HMT) activity in vitro, and is required for histone H3K36 dimethylation in mitotic and early meiotic germline nuclei and early embryos. MES-4 appears unlinked to transcription elongation, thus distinguishing it from other known H3K36 HMTs. Based on microarray analysis, loss of MES-4 leads to derepression of X-linked genes in the germ line. We discuss how an autosomally associated HMT may participate in silencing genes on the X chromosome, in coordination with the direct silencing effects of the other MES proteins.
Collapse
Affiliation(s)
- Laurel B. Bender
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Authors for correspondence (e-mail: ; )
| | - Jinkyo Suh
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Coleen R. Carroll
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Youyi Fong
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ian M. Fingerman
- Department of Biochemistry, Purdue Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | - Scott D. Briggs
- Department of Biochemistry, Purdue Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | - Ru Cao
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Yi Zhang
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susan Strome
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Authors for correspondence (e-mail: ; )
| |
Collapse
|
66
|
Biswas D, Dutta-Biswas R, Mitra D, Shibata Y, Strahl BD, Formosa T, Stillman DJ. Opposing roles for Set2 and yFACT in regulating TBP binding at promoters. EMBO J 2006; 25:4479-89. [PMID: 16977311 PMCID: PMC1589996 DOI: 10.1038/sj.emboj.7601333] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 08/02/2006] [Indexed: 01/27/2023] Open
Abstract
Previous work links histone methylation by Set2 with transcriptional elongation. yFACT (Spt16-Pob3 and Nhp6) reorganizes nucleosomes and functions in both transcriptional initiation and elongation. We show that growth defects caused by spt16 or pob3 mutations can be suppressed by deleting SET2, suggesting that Set2 and yFACT have opposing roles. Set2 methylates K36 of histone H3, and K36 substitutions also suppress yFACT mutations. In contrast, set1 enhances yFACT mutations. Methylation at H3 K4 by Set1 is required for set2 to suppress yFACT defects. We did not detect an elongation defect at an 8 kb ORF in yFACT mutants. Instead, pob3 mutants displayed reduced binding of both pol II and TBP to the GAL1 promoter. Importantly, both GAL1 transcription and promoter binding of pol II and TBP are significantly restored in the pob3 set2 double mutant. Defects caused by an spt16 mutation are enhanced by either TBP or TFIIA mutants. These synthetic defects are suppressed by set2, demonstrating that yFACT and Set2 oppose one another during transcriptional initiation at a step involving DNA binding by TBP and TFIIA.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Rinku Dutta-Biswas
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Doyel Mitra
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Yoichiro Shibata
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Tim Formosa
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
67
|
Eissenberg JC, Shilatifard A, Dorokhov N, Michener DE. Cdk9 is an essential kinase in Drosophila that is required for heat shock gene expression, histone methylation and elongation factor recruitment. Mol Genet Genomics 2006; 277:101-14. [PMID: 17001490 DOI: 10.1007/s00438-006-0164-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 08/30/2006] [Indexed: 12/11/2022]
Abstract
Phosphorylation of the large RNA Polymerase II subunit C-terminal domain (CTD) is believed to be important in promoter clearance and for recruiting protein factors that function in messenger RNA synthesis and processing. P-TEFb is a protein kinase that targets the (CTD). The goal of this study was to identify chromatin modifications and associations that require P-TEFb activity in vivo. We knocked down the catalytic subunit of P-TEFb, Cdk9, in Drosophila melanogaster using RNA interference. Cdk9 knockdown flies die during metamorphosis. Phosphorylation at serine 2 and serine 5 of the CTD heptad repeat were both dramatically reduced in knockdown larvae. Hsp 70 mRNA induction by heat shock was attenuated in Cdk9 knockdown larvae. Both mono- and trimethylation of histone H3 at lysine 4 were dramatically reduced, suggesting a link between CTD phosphorylation and histone methylation in transcribed chromatin in vivo. Levels of the chromo helicase protein CHD1 were reduced in Cdk9 knockdown chromosomes, suggesting that CHD1 is targeted to chromosomes through P-TEFb-dependent histone methylation. Dimethylation of histone H3 at lysine 36 was significantly reduced in knockdown larvae, implicating CTD phosphorylation in the regulation of this chromatin modification. Binding of the RNA Polymerase II elongation factor ELL was reduced in knockdown chromosomes, suggesting that ELL is recruited to active polymerase via CTD phosphorylation.
Collapse
Affiliation(s)
- Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
68
|
Fuchs J, Demidov D, Houben A, Schubert I. Chromosomal histone modification patterns--from conservation to diversity. TRENDS IN PLANT SCIENCE 2006; 11:199-208. [PMID: 16546438 DOI: 10.1016/j.tplants.2006.02.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/03/2006] [Accepted: 02/27/2006] [Indexed: 05/07/2023]
Abstract
The organization of DNA into chromatin regulates expression and maintenance (replication, repair, recombination, segregation) of genetic information in a dynamic manner. The N-terminal tails of the nucleosomal core histones are subjected to post-translational modifications such as acetylation, methylation, phosphorylation, ubiquitination, glycosylation, ADP-ribosylation, carbonylation and sumoylation. These modifications, together with DNA methylation, control the folding of the nucleosomal array into higher order structures and mediate signalling for cellular processes. Although histones and their modifications are highly conserved, recent data show that chromosomal distribution of individual modifications (acetylation, methylation, phosphorylation) can differ along the cell cycle as well as among and between groups of eukaryotes. This implies the possibility of evolutionary divergence in reading the "histone code".
Collapse
Affiliation(s)
- Jörg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | | | | | |
Collapse
|
69
|
Nightingale KP, O'Neill LP, Turner BM. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 2006; 16:125-36. [PMID: 16503131 DOI: 10.1016/j.gde.2006.02.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 02/13/2006] [Indexed: 01/20/2023]
Abstract
The genetic code epitomises simplicity, near universality and absolute predictive power. By contrast, epigenetic information, in the form of histone modifications, is characterised by complexity, diversity and an overall tendency to respond to changes in genomic function rather than to predict them. Perhaps the transient changes in histone modifications involved in intranuclear signalling and ongoing chromatin functions mask stable, predictive modifications that lie beneath. The current rapid progress in unravelling the diversity and complexity of epigenetic information might eventually reveal an underlying histone or epigenetic code. But whether it does or not, it will certainly provide unprecedented opportunities, both for understanding how the genome responds to environmental and metabolic change and for manipulating its activities for experimental and therapeutic benefit.
Collapse
Affiliation(s)
- Karl P Nightingale
- Chromatin and Gene Expression Group, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
70
|
Vojnic E, Simon B, Strahl BD, Sattler M, Cramer P. Structure and Carboxyl-terminal Domain (CTD) Binding of the Set2 SRI Domain That Couples Histone H3 Lys36 Methylation to Transcription. J Biol Chem 2006; 281:13-5. [PMID: 16286474 DOI: 10.1074/jbc.c500423200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During mRNA elongation, the SRI domain of the histone H3 methyltransferase Set2 binds to the phosphorylated carboxyl-terminal domain (CTD) of RNA polymerase II. The solution structure of the yeast Set2 SRI domain reveals a novel CTD-binding fold consisting of a left-handed three-helix bundle. NMR titration shows that the SRI domain binds an Ser2/Ser5-phosphorylated CTD peptide comprising two heptapeptide repeats and three flanking NH2-terminal residues, whereas a single CTD repeat is insufficient for binding. Residues that show strong chemical shift perturbations upon CTD binding cluster in two regions. Both CTD tyrosine side chains contact the SRI domain. One of the tyrosines binds in the region with the strongest chemical shift perturbations, formed by the two NH2-terminal helices. Unexpectedly, the SRI domain fold resembles the structure of an RNA polymerase-interacting domain in bacterial sigma factors (domain sigma2 in sigma70).
Collapse
Affiliation(s)
- Erika Vojnic
- Gene Center, Department of Chemistry and Biochemistry, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
71
|
Morris SA, Shibata Y, Noma KI, Tsukamoto Y, Warren E, Temple B, Grewal SIS, Strahl BD. Histone H3 K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe. EUKARYOTIC CELL 2005; 4:1446-54. [PMID: 16087749 PMCID: PMC1214526 DOI: 10.1128/ec.4.8.1446-1454.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 05/29/2005] [Indexed: 11/20/2022]
Abstract
Set2 methylation of histone H3 at lysine 36 (K36) has recently been shown to be associated with RNA polymerase II (Pol II) elongation in Saccharomyces cerevisiae. However, whether this modification is conserved and associated with transcription elongation in other organisms is not known. Here we report the identification and characterization of the Set2 ortholog responsible for K36 methylation in the fission yeast Schizosaccharomyces pombe. We find that similar to the budding yeast enzyme, S. pombe Set2 is also a robust nucleosome-selective H3 methyltransferase that is specific for K36. Deletion of the S. pombe set2+ gene results in complete abolishment of K36 methylation as well as a slow-growth phenotype on plates containing synthetic medium. These results indicate that Set2 is the sole enzyme responsible for this modification in fission yeast and is important for cell growth under stressed conditions. Using the chromatin immunoprecipitation assay, we demonstrate that K36 methylation in S. pombe is associated with the transcribed regions of Pol II-regulated genes and is devoid in regions that are not transcribed by Pol II. Consistent with a role for Set2 in transcription elongation, we find that S. pombe Set2 associates with the hyperphosphorylated form of Pol II and can fully rescue K36 methylation and Pol II interaction in budding yeast cells deleted for Set2. These results, along with our finding that K36 methylation is highly conserved among eukaryotes, imply a conserved role for this modification in the transcription elongation process.
Collapse
Affiliation(s)
- Stephanie A Morris
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|