51
|
Pentoxifylline triggers autophagy via ER stress response that interferes with Pentoxifylline induced apoptosis in human melanoma cells. Biochem Pharmacol 2016; 103:17-28. [PMID: 26793997 DOI: 10.1016/j.bcp.2015.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022]
Abstract
Pentoxifylline (PTX), a non-specific phosphodiesterase inhibitor is known to inhibit the growth of various cancer cells including melanoma. Here in this study, we have found that PTX induces autophagy in human melanoma cell lines (A375 and MeWo). Induction of autophagy is associated with the increase in Atg5 expression as knockdown of Atg5 effectively inhibited PTX mediated autophagy. A decrease in mTOR activation was also observed after PTX treatment. We observed that autophagy was activated as a downstream effector mechanism of ER stress induced by PTX. ER stress response was confirmed by upregulation of IRE-1α, GRP78 and CHOP expression. PTX treatment also resulted in an increase in intracellular calcium (Ca(2+)) level. Ca(2+) is the central player as blocking Ca(2+) by intracellular calcium chelator (BAPTA-AM) effectively inhibited the PTX induced ER stress response as well as autophagy. Moreover, silencing of CHOP also resulted in autophagy inhibition with a decrease in Atg5 expression. Collectively, PTX triggers ER stress response followed by induction of autophagy via involvement of Ca(2+)→CHOP→Atg5 signalling cascade. Interestingly, inhibition of intracellular calcium level by BAPTA-AM significantly increased PTX mediated cell death by augmenting intrinsic apoptotic pathway. Inhibition of autophagy by the ATG5 siRNA and pharmacological inhibitor, chloroquine also enhances PTX induced cell death. Taken together, our results clearly indicate that activation of ER stress response and autophagy provides resistance to PTX mediated apoptosis, and thus, interferes with the anticancer activity of PTX in human melanoma cells.
Collapse
|
52
|
Meunier E, Broz P. Interferon-inducible GTPases in cell autonomous and innate immunity. Cell Microbiol 2015; 18:168-80. [DOI: 10.1111/cmi.12546] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Etienne Meunier
- Focal Area Infection Biology, Biozentrum; University of Basel; Basel Switzerland
| | - Petr Broz
- Focal Area Infection Biology, Biozentrum; University of Basel; Basel Switzerland
| |
Collapse
|
53
|
Protective immunity against acute toxoplasmosis in BALB/c mice induced by a DNA vaccine encoding Toxoplasma gondii elongation factor 1-alpha. BMC Infect Dis 2015; 15:448. [PMID: 26497908 PMCID: PMC4619988 DOI: 10.1186/s12879-015-1220-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Toxoplasma gondii can infect almost all warm-blood animals including human beings. The high incidence and severe damage that can be caused by T. gondii infection clearly indicates the need for the development of a vaccine. T. gondii elongation factor 1-alpha (TgEF-1α) plays an important role in pathogenesis and host cell invasion for this parasite. The aim of this study was to evaluate the immune protective efficacy of a DNA vaccine encoding TgEF-1α gene against acute T. gondii infection in mice. METHODS A DNA vaccine (pVAX-EF-1α) encoding T. gondii EF-1a (TgEF-1α) gene was constructed and its immune response and protective efficacy against lethal challenge in BALB/c mice were evaluated. RESULTS Mice inoculated with the pVAX-EF-1α vaccine had a high level of specific anti-T. gondii antibodies and produced high levels of IFN-gamma, interleukin (IL)-4, and IL-17. The expression levels of MHC-I and MHC-II molecules as well as the percentages of both CD4(+) and CD8(+) T cells in mice vaccinated with pVAX-EF-1α were significantly increased (p < 0.05), compared with those in all the mice from control groups (blank control, PBS, and pVAXI). Immunization with pVAX-EF-1α significantly (p < 0.05) prolonged mouse survival time to 14.1 ± 1.7 days after challenge infection with the virulent T. gondii RH strain, compared with mice in the control groups which died within 8 days. CONCLUSIONS DNA vaccination with pVAX-EF-1α triggered strong humoral and cellular responses and induced effective protection in mice against acute T. gondii infection, indicating that TgEF-1α is a promising vaccine candidate against acute toxoplasmosis.
Collapse
|
54
|
A Noncanonical Autophagy Pathway Restricts Toxoplasma gondii Growth in a Strain-Specific Manner in IFN-γ-Activated Human Cells. mBio 2015; 6:e01157-15. [PMID: 26350966 PMCID: PMC4600106 DOI: 10.1128/mbio.01157-15] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A core set of autophagy proteins is required for gamma interferon (IFN-γ)-mediated clearance of Toxoplasma gondii in the mouse because of their control of several downstream effectors, including immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs). However, these effectors are absent (i.e., IRGs) from or nonessential (i.e., GBPs) in IFN-γ-activated human cells, raising the question of how these cells control parasite replication. Here, we define a novel role for ubiquitination and recruitment of autophagy adaptors in the strain-specific control of T. gondii replication in IFN-γ-activated human cells. Vacuoles containing susceptible strains of T. gondii became ubiquitinated, recruited the adaptors p62 and NDP52, and were decorated with LC3. Parasites within LC3-positive vacuoles became enclosed in multiple layers of host membranes, resulting in stunting of parasite replication. However, LC3-positive T. gondii-containing vacuoles did not fuse with endosomes and lysosomes, indicating that this process is fundamentally different from xenophagy, a form of autophagy involved in the control of intracellular bacterial pathogens. Genetic knockout of ATG16L or ATG7 reverted the membrane encapsulation and restored parasite replication, indicating that core autophagy proteins involved in LC3 conjugation are important in the control of parasite growth. Despite a role for the core autophagy machinery in this process, upstream activation through Beclin 1 was not sufficient to enhance the ubiquitination of T. gondii-containing vacuoles, suggesting a lack of reliance on canonical autophagy. These findings demonstrate a new mechanism for IFN-γ-dependent control of T. gondii in human cells that depends on ubiquitination and core autophagy proteins that mediate membrane engulfment and restricted growth. Autophagy is a process of cellular remodeling that allows the cell to recycle senescent organelles and recapture nutrients. During innate immune responses in the mouse, autophagy is recruited to help target intracellular pathogens and thus eliminate them. However, the antimicrobial mediators that depend on autophagy in the mouse are not conserved in humans, raising the issue of how human cells control intracellular pathogens. Our study defines a new pathway for the control of the ubiquitous intracellular parasite T. gondii in human cells activated by IFN-γ. Recruitment of autophagy adaptors resulted in engulfment of the parasite in multiple membranes and growth impairment. Although susceptible type 2 and 3 stains of T. gondii were captured by this autophagy-dependent pathway, type 1 strains were able to avoid entrapment.
Collapse
|
55
|
Yan X, Ji Y, Liu X, Suo X. Nitric oxide stimulates early egress of Toxoplasma gondii tachyzoites from Human foreskin fibroblast cells. Parasit Vectors 2015; 8:420. [PMID: 26264067 PMCID: PMC4534117 DOI: 10.1186/s13071-015-1037-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Egress is a vital step in the life cycle of Toxoplasma gondii which attracts attentions of many groups. Previous studies have shown that exogenous nitric oxide (NO) stimulates the early egress of T. gondii from infected peritoneal macrophages, a kind of immune cells. However, because Toxoplasma forms cysts in brain and muscle tissues, the development of autonomous immunity in non-immune cells is vital for limiting parasite burden and cyst formation. Therefore, we attempted to investigate whether exogenous NO could induce the early egress of T. gondii from infected non-immune cells. METHODS T. gondii tachyzoites were cultured in human foreskin fibroblast (HFF) cells and were then treated with NO released by sodium nitroferricyanide (III) dihydrate (SNP). The egressed parasites were analysed by flow cytometry. RESULTS The results showed that NO induced the early egress of parasites from HFF cells before completing their intracellular life cycles. We also found that the occurrence of egress was dependent on intracellular calcium (Ca(2+)) levels and the mobility of the parasite. Compared with freshly isolated tachyzoites, the developmental ability and virulence of egressed tachyzoites presented no difference. CONCLUSIONS Taken together, our findings demonstrate a novel assay for the analysis of egress signalling mechanisms and an avenue of parasite clearance by hosts of T. gondii.
Collapse
Affiliation(s)
- Xinlei Yan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China. .,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yongsheng Ji
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China. .,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China. .,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,Key Laboratory of Zoonosis of Ministry of Agriculture & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China. .,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,Key Laboratory of Zoonosis of Ministry of Agriculture & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
56
|
Xu Y, Zhang NZ, Wang M, Dong H, Feng SY, Guo HC, Zhu XQ. A long-lasting protective immunity against chronic toxoplasmosis in mice induced by recombinant rhoptry proteins encapsulated in poly (lactide-co-glycolide) microparticles. Parasitol Res 2015; 114:4195-203. [PMID: 26243574 DOI: 10.1007/s00436-015-4652-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii infection in humans and animals is a worldwide zoonosis. Prevention and control of toxoplasmosis based on vaccination is one of the promising strategies. In the present study, recombinant T. gondii rhoptry proteins 38 and 18 (TgROP38 and TgROP18) were encapsulated into poly (lactide-co-glycolide) (PLG) (1:1), respectively, to obtain the stable water-in-oil-in-water double emulsion. Female Kunming mice were then immunized with the protein vaccines twice at a 2-week interval. Eight weeks after the second immunization, 10 mice from each group were challenged with T. gondii PRU strain (genotype II). The entrapment rates of PLG-rROP38 and PLG-rROP18 ranged from 65.5 to 77.7% and 58.1 to 72.3%, respectively. Immunization of mice with rROP38 and rROP18 proteins encapsulated into PLG microparticles elicited strongly humoral and cell-mediated responses against T. gondii, associated with relatively high levels of total IgG, IgG2a isotype, and IFN-γ, as well as the mixed Th1/Th2 immunity responses. Immunization with various protein vaccines induced significant reduction of the brain cysts after chronic infection with the T. gondii PRU strain, and the most effective protection was achieved in the PLG-rROP38-rROP18-immunized mice, with a cyst reduction of 81.3%. The findings of the present study indicated that recombinant rhoptry antigens encapsulated in PLG could maintain the protein immunogenicity in an extended period and elicit effective protection against chronic T. gondii infection, which has implications for the development of long-lasting vaccines against chronic toxoplasmosis in animals.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Sheng-Yong Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
57
|
Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N, Matsuura Y, Pann-Ghill S, Hayashi M, Ebisu S, Takeda K, Akira S, Yamamoto M. Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii. THE JOURNAL OF IMMUNOLOGY 2014; 192:3328-35. [PMID: 24563254 DOI: 10.4049/jimmunol.1302822] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-γ mediates cellular innate immunity against an intracellular parasite, Toxoplasma gondii, by inducing immunity-related GTPases such as p47 IFN-γ-regulated GTPases (IRGs) and p65 guanylate-binding proteins (GBPs), which also participate in antibacterial responses via autophagy. An essential autophagy protein, Atg5, was previously shown to play a critical role in anti-T. gondii cell-autonomous immunity. However, the involvement of other autophagy proteins remains unknown. In this study, we show that essential autophagy proteins differentially participate in anti-T. gondii cellular immunity by recruiting IFN-γ-inducible GTPases. IFN-γ-induced suppression of T. gondii proliferation and recruitment of an IRG Irgb6 and GBPs are profoundly impaired in Atg7- or Atg16L1-deficient cells. In contrast, cells lacking other essential autophagy proteins, Atg9a and Atg14, are capable of mediating the anti-T. gondii response and recruiting Irgb6 and GBPs to the parasites. Although IFN-γ also stimulates anti-T. gondii cellular immunity in humans, whether this response requires GBPs and human autophagy proteins remains to be seen. To analyze the role of human ATG16L1 and GBPs in IFN-γ-mediated anti-T. gondii responses, human cells lacking ATG16L1 or GBPs were generated by the Cas9/CRISPR genome-editing technique. Although both ATG16L1 and GBPs are dispensable for IFN-γ-induced inhibition of T. gondii proliferation in the human cells, human ATG16L1 is also required for the recruitment of GBPs. Taken together, human ATG16L1 and mouse autophagy components Atg7 and Atg16L1, but not Atg9a and Atg14, participate in the IFN-γ-induced recruitment of the immunity-related GTPases to the intracellular pathogen.
Collapse
Affiliation(s)
- Jun Ohshima
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
Induction of immunity that limits Toxoplasma gondii infection in mice is critically dependent on the activation of the innate immune response. In this study, we investigated the role of cytoplasmic nucleotide-binding domain and leucine-rich repeat containing a pyrin domain (NLRP) inflammasome sensors during acute toxoplasmosis in mice. We show that in vitro Toxoplasma infection of murine bone marrow-derived macrophages activates the NLRP3 inflammasome, resulting in the rapid production and cleavage of interleukin-1β (IL-1β), with no measurable cleavage of IL-18 and no pyroptosis. Paradoxically, Toxoplasma-infected mice produced large quantities of IL-18 but had no measurable IL-1β in their serum. Infection of mice deficient in NLRP3, caspase-1/11, IL-1R, or the inflammasome adaptor protein ASC led to decreased levels of circulating IL-18, increased parasite replication, and death. Interestingly, mice deficient in NLRP1 also displayed increased parasite loads and acute mortality. Using mice deficient in IL-18 and IL-18R, we show that this cytokine plays an important role in limiting parasite replication to promote murine survival. Our findings reveal T. gondii as a novel activator of the NLRP1 and NLRP3 inflammasomes in vivo and establish a role for these sensors in host resistance to toxoplasmosis. Inflammasomes are multiprotein complexes that are a major component of the innate immune system. They contain “sensor” proteins that are responsible for detecting various microbial and environmental danger signals and function by activating caspase-1, an enzyme that mediates cleavage and release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. Toxoplasma gondii is a highly successful protozoan parasite capable of infecting a wide range of host species that have variable levels of resistance. We report here that T. gondii is a novel activator of the NLRP1 and NLRP3 inflammasomes in vivo and establish a role for these sensors in host resistance to toxoplasmosis. Using mice deficient in IL-18 and IL-18R, we show that the IL-18 cytokine plays a pivotal role by limiting parasite replication to promote murine survival.
Collapse
|