51
|
Xin L, Vargas-Inchaustegui DA, Raimer SS, Kelly BC, Hu J, Zhu L, Sun J, Soong L. Type I IFN receptor regulates neutrophil functions and innate immunity to Leishmania parasites. THE JOURNAL OF IMMUNOLOGY 2010; 184:7047-56. [PMID: 20483775 DOI: 10.4049/jimmunol.0903273] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I IFNs exert diverse effector and regulatory functions in host immunity to viral and nonviral infections; however, the role of endogenous type I IFNs in leishmaniasis is unclear. We found that type I IFNR-deficient (IFNAR-/-) mice developed attenuated lesions and reduced Ag-specific immune responses following infection with Leishmania amazonensis parasites. The marked reduction in tissue parasites, even at 3 d in IFNAR-/- mice, seemed to be indicative of an enhanced innate immunity. Further mechanistic analyses indicated distinct roles for neutrophils in parasite clearance; IFNAR-/- mice displayed a rapid and sustained infiltration of neutrophils, but a limited recruitment of CD11b+Ly-6C+ inflammatory monocytes, into inflamed tissues; interactions between IFNAR-/-, but not wild-type (WT) or STAT1-/-, neutrophils and macrophages greatly enhanced parasite killing in vitro; and infected IFNAR-/- neutrophils efficiently released granular enzymes and had elevated rates of cell apoptosis. Furthermore, although coinjection of parasites with WT neutrophils or adoptive transfer of WT neutrophils into IFNAR-/- recipients significantly enhanced infection, the coinjection of parasites with IFNAR-/- neutrophils greatly reduced parasite survival in WT recipients. Our findings reveal an important role for type I IFNs in regulating neutrophil/monocyte recruitment, neutrophil turnover, and Leishmania infection and provide new insight into innate immunity to protozoan parasites.
Collapse
Affiliation(s)
- Lijun Xin
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Modulation of dendritic cell responses by parasites: a common strategy to survive. J Biomed Biotechnol 2010; 2010:357106. [PMID: 20204070 PMCID: PMC2829630 DOI: 10.1155/2010/357106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/18/2009] [Indexed: 12/28/2022] Open
Abstract
Parasitic infections are one of the most important causes of morbidity and mortality in our planet and the immune responses triggered by these organisms are critical to determine their outcome. Dendritic cells are key elements for the development of immunity against parasites; they control the responses required to eliminate these pathogens while maintaining host homeostasis. However, there is evidence showing that parasites can influence and regulate dendritic cell function in order to promote a more permissive environment for their survival. In this review we will focus on the strategies protozoan and helminth parasites have developed to interfere with dendritic cell activities as well as in the possible mechanisms involved.
Collapse
|
53
|
Distinct roles for MyD88 and Toll-like receptor 2 during Leishmania braziliensis infection in mice. Infect Immun 2009; 77:2948-56. [PMID: 19364834 DOI: 10.1128/iai.00154-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that Leishmania braziliensis infection can activate murine dendritic cells (DCs) and upregulate signaling pathways that are essential for the initiation of innate immunity. However, it remains unclear whether Toll-like receptors (TLRs) are involved in L. braziliensis-mediated DC activation. To address this issue, we generated bone marrow-derived DCs from MyD88(-/-) and TLR2(-/-) mice and examined their responsiveness to parasite infection. While wild-type DCs were efficiently activated to produce cytokines and prime naïve CD4(+) T cells, L. braziliensis-infected MyD88(-/-) DCs exhibited less activation and decreased production of interleukin-12 (IL-12) p40. Furthermore, MyD88(-/-) mice were more susceptible to infection in that they developed larger and prolonged lesions compared to those in control mice. In sharp contrast, the lack of TLR2 resulted in an enhanced DC activation and increased IL-12 p40 production after infection. As such, L. braziliensis-infected TLR2(-/-) DCs were more competent in priming naïve CD4(+) T cells in vitro than were their controls, findings which correlated with an increased gamma interferon production in vivo and enhanced resistance to infection. Our results suggest that while MyD88 is indispensable for the generation of protective immunity to L. braziliensis, TLR2 seems to have a regulatory role during infection.
Collapse
|
54
|
Boggiatto PM, Jie F, Ghosh M, Gibson-Corley KN, Ramer-Tait AE, Jones DE, Petersen CA. Altered dendritic cell phenotype in response to Leishmania amazonensis amastigote infection is mediated by MAP kinase, ERK. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1818-26. [PMID: 19349356 DOI: 10.2353/ajpath.2009.080905] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Initiation of productive immune responses against Leishmania depends on the successful transition of dendritic cells (DC) from an immature to a mature phenotype. This process is characterized by high CD40 surface expression as well as interleukin-12 production, which are frequently seen in response to L. major infection. In vivo footpad infection of C3HeB/FeJ mice for 7 days with L. amazonensis promoted an immature CD11c(+) DC phenotype characterized by both significantly low CD40 surface expression and significantly decreased interleukin-12p40 production compared with L. major infection of these same mice. In vitro infection of bone marrow-derived dendritic cells with L. amazonensis amastigotes resulted in rapid and significant phosphorylation of the mitogen activated protein kinase, extracellular signal-regulated kinase 1/2, observed within minutes of exposure to the parasite. Infection with L. amazonensis promastigotes led to increased 1/2 phosphorylation after 4 hours of infection compared with L. major infection, which correlated with promastigote transformation into amastigotes. Treatment of bone marrow-derived dendritic cells with a mitogen activated protein kinase kinase-specific inhibitor, PD98059, led to regained surface CD40 expression and interleukin-12p40 production following L. amazonensis amastigote infection compared with non-treated, infected DC. Treatment of L. amazonensis-infected mice with the highly-specific mitogen activated protein kinase kinase inhibitor, CI-1040, enhanced surface CD40 expression on CD11c(+) DC obtained from the draining lymph node. L. amazonensis amastigotes, through activation of extracellular signal-regulated kinase 1/2, inhibit the ability of DC to undergo proper maturation both in vitro and in vivo.
Collapse
|
55
|
Abstract
Recent reports have provided convincing evidence that IL-17-producing T cells play a key role in the pathogenesis of organ-specific autoimmune diseases, a function previously attributed exclusively to IFN-gamma-secreting Th1 cells. Furthermore, it appears that IL-17-producing T cells can also function with Th1 cells to mediate protective immunity to pathogens. Although much of the focus has been on IL-17-secreting CD4+ T cells, termed Th17 cells, CD8+ T cells, gammadelta T cells and NKT cells are also capable of secreting IL-17. The differentiation of Th17 cells from naïve T cells appears to involve signals from TGF-beta, IL-6, IL-21, IL-1beta and IL-23. Furthermore, IL-1alpha or IL-1beta in synergy with IL-23 can promote IL-17 secretion from memory T cells. The induction or function of Th17 cells is regulated by cytokines secreted by the other major subtypes of T cells, including IFN-gamma, IL-4, IL-10 and at high concentrations, TGF-beta. The main function of IL-17-secreting T cells is to mediate inflammation, by stimulating production of inflammatory cytokines, such as TNF-alpha, IL-1beta and IL-6, and inflammatory chemokines that promote the recruitment of neutrophils and macrophages.
Collapse
Affiliation(s)
- Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland.
| |
Collapse
|
56
|
Pereira BAS, Alves CR. Immunological characteristics of experimental murine infection with Leishmania (Leishmania) amazonensis. Vet Parasitol 2008; 158:239-55. [PMID: 18922635 DOI: 10.1016/j.vetpar.2008.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/02/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
Abstract
The murine models of Leishmania infection are well-studied and suitable models for studying this disease, which, despite its incidence of nearly 2 million new cases worldwide per year and its prevalence of 12 million cases, has been a somewhat neglected disease. Data obtained using such models are important for a better understanding of the disease in humans due to similarities in physiology and the advantage provided by the uniform infection profile within each mouse strain. In this review, we focus on studies of experimental murine infection with Leishmania (Leishmania) amazonensis, a species that has been associated with infections exhibiting various clinical features in humans. Mainly, we point out and discuss reports on: the effects of variations of the inoculum (such as strain, site, and size) in the establishment and development of the infection; characteristics of the infection in distinct mouse strains; and, the effects and subversions of the infection on components of the host innate and adaptive immune responses. The results obtained in these studies show that L. (L.) amazonensis infection in mice presents some unique features and immunoregulatory mechanisms, making it an interesting model for obtaining further knowledge of potential drugs targets and immunotherapy in Leishmania infection.
Collapse
Affiliation(s)
- Bernardo Acácio Santini Pereira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
57
|
Role of natural killer cells in modulating dendritic cell responses to Leishmania amazonensis infection. Infect Immun 2008; 76:5100-9. [PMID: 18794295 DOI: 10.1128/iai.00438-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of the interaction between natural killer (NK) cells and dendritic cells (DCs) in the expansion of antiviral and antitumor immune responses is well-documented; however, limited information on DC-NK cell interaction during parasitic infections is available. Given that some Leishmania parasites are known to prevent or suppress DC activation, we developed a DC-NK cell coculture system to examine the role of NK cells in modulating the functions of Leishmania-infected DCs. We found that the addition of freshly isolated, resting NK cells significantly promoted the activation of DCs that were preinfected with Leishmania amazonensis promastigotes and that these activated DCs, in turn, stimulated NK cell activation mostly via cell contact-dependent mechanisms. Notably, L. amazonensis amastigote infection failed to activate DCs, and this lack of DC activation could be partially reversed by the addition of preactivated NK (ANK) cells but not resting NK cells. Moreover, the adoptive transfer of ANK cells into L. amazonensis-infected mice markedly increased DC and T-cell activation and reduced tissue parasite loads at 1 and 3 weeks postinfection. These results suggest differential roles of DC-NK cell cross talk at different stages of Leishmania infection and provide new insight into the interplay of components of the innate immune system during parasitic infection.
Collapse
|
58
|
Wheat WH, Pauken KE, Morris RV, Titus RG. Lutzomyia longipalpis salivary peptide maxadilan alters murine dendritic cell expression of CD80/86, CCR7, and cytokine secretion and reprograms dendritic cell-mediated cytokine release from cultures containing allogeneic T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:8286-98. [PMID: 18523295 DOI: 10.4049/jimmunol.180.12.8286] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Leishmania protozoan parasites, the etiologic agent of leishmaniasis, are transmitted exclusively by phlebotomine sand flies of the genera Phlebotomus and Lutzomyia. In addition to parasites, the infectious bite inoculum contains arthropod salivary components. One well-characterized salivary component from Lutzomyia longipalpis is maxadilan (MAX), a vasodilator acting via the type I receptor for the pituitary cyclic AMP activating peptide. MAX has been shown to elicit immunomodulatory effects potentially dictating immune responses to Leishmania parasites. When exposed to MAX, both resting and LPS-stimulated dendritic cells (DCs) show reduced CD80 and CD86 expression on most DCs in vitro. However, CD86 expression is increased significantly on a subpopulation of DCs. Furthermore, MAX treatment promoted secretion of type 2 cytokines (IL-6 and IL-10) while reducing production of type 1 cytokines (IL-12p40, TNF-alpha, and IFN-gamma) by LPS-stimulated DCs. A similar trend was observed in cultures of MAX-treated DCs containing naive allogeneic CD4(+) T cells: type 2 cytokines (IL-6 and IL-13) increased while type 1 cytokines (TNF-alpha and IFN-gamma) decreased. Additionally, the proinflammatory cytokine IL-1beta was increased in cultures containing MAX-treated mature DCs. MAX treatment of LPS-stimulated DCs also prevented optimal surface expression of CCR7 in vitro. These MAX-dependent effects were evident in DCs from both Leishmania major-susceptible (BALB/c) and -resistant (C3H/HeN) murine strains. These data suggest that modification of DC phenotype and function by MAX likely affects crucial cellular components that determine the pathological response to infection with Leishmania.
Collapse
Affiliation(s)
- William H Wheat
- Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
59
|
Wanasen N, Soong L. L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol Res 2008; 41:15-25. [PMID: 18040886 DOI: 10.1007/s12026-007-8012-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Leishmaniasis is a vector-borne disease found in many countries worldwide. The causative agent of the disease, Leishmania spp., lives as an obligate intracellular parasite within mammalian hosts. Since tissue macrophages are major target cells for parasite replication, the outcome of infection depends largely on the activation status of these cells. L-arginine is a crucial amino acid required for both nitric oxide (NO)-mediated parasite killing and polyamine-mediated parasite replication. This review highlights the significance of L-arginine as a factor determining the outcomes of Leishmania infection in vitro and its influences on host immune responses in vivo. Various therapeutic approaches targeting L-arginine metabolic pathways during infections with Leishmania are also discussed.
Collapse
Affiliation(s)
- Nanchaya Wanasen
- Department of Microbiology, Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infections, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | |
Collapse
|
60
|
Vargas-Inchaustegui DA, Xin L, Soong L. Leishmania braziliensis infection induces dendritic cell activation, ISG15 transcription, and the generation of protective immune responses. THE JOURNAL OF IMMUNOLOGY 2008; 180:7537-45. [PMID: 18490754 DOI: 10.4049/jimmunol.180.11.7537] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leishmania (Viannia) braziliensis is the causative agent of cutaneous and mucosal leishmaniasis in South America, and the latter is a severe and disfiguring form of the disease. Our understanding of how L. braziliensis parasites interact with dendritic cells (DCs) is limited, partially due to the difficulty in generating axenic amastigotes. In this study, we successfully generated axenic amastigotes of L. braziliensis and used them to test the hypothesis that L. braziliensis infection efficiently triggers innate responses in DCs and the subsequent adaptive immune responses for parasite clearance. This study has revealed unique immunological features of L. braziliensis infection. Firstly, axenic amastigotes showed higher infectivity and the potential to stimulate C57BL/6 (B6) bone marrow-derived dendritic cells to produce IL-12p40 when compared with their promastigote counterparts. Both parasite-carrying and bystander DCs displayed an activated (CD11c(high)CD45RB(-)CD83(+)CD40(+)CD80(+)) phenotype. Secondly, L. braziliensis infection triggered transcription and phosphorylation of STAT molecules and IFN-stimulated gene 15 (ISG15). Finally, the self-healing of the infection in mice was correlated to the expansion of IFN-gamma- and IL-17-producing CD4(+) cells, suggesting the existence of active mechanisms to regulate local inflammation. Collectively, this study supports the view that innate responses at the DC level determine parasite-specific T cell responses and disease outcomes.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | |
Collapse
|
61
|
Xin L, Li K, Soong L. Down-regulation of dendritic cell signaling pathways by Leishmania amazonensis amastigotes. Mol Immunol 2008; 45:3371-82. [PMID: 18538399 DOI: 10.1016/j.molimm.2008.04.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/03/2008] [Accepted: 04/12/2008] [Indexed: 11/18/2022]
Abstract
We have previously reported a link between a deficient Th1 response to Leishmania amazonensis (La) parasites and profound impairments in the cytokine/chemokine network at early stages of the infection. To define the molecular basis of these deficiencies, we focused on early and intracellular events in La-infected dendritic cells (DCs) in this study. La amastigote-infected DCs were less mature and less potent antigen-presenting cells (APC) than their promastigote-infected counterparts, as judged by the lower expression of CD40 and CD83, suppressed cytokine expression (IL-12p40 and IL-10), reduced effectiveness for priming CD4+ T cells from naïve or infected mice. Infection with La promastigotes, but not amastigotes, triggered transient expression of IL-12p40 by DC. Both forms of parasites markedly suppressed IL-12p40, IL-12p70, and IL-6 production and increased IL-10 production when DCs were treated with LPS, IFN-gamma/LPS or IFN-alpha/LPS as positive stimuli. Of note, pre-infection of DCs with live amastigotes resulted in multiple alterations in innate signaling pathways, including degradation of STAT2, decreased phosphorylation of STAT1, 2, 3 and ERK1/2, and markedly reduced expression of interferon regulatory factor-1 (IRF-1) and IRF-8, some of which were partially reversed by pretreatment of parasites with proteasome or protease inhibitors. The impaired IL-12 production in infected DCs was not attributed to increased IL-10 production. Together, our data suggest that La parasites, especially in their intracellular forms, have evolved unique strategies to actively down-regulate early innate signaling events, resulting in impaired DC function and Th1 activation.
Collapse
Affiliation(s)
- Lijun Xin
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | |
Collapse
|
62
|
Soong L. Modulation of dendritic cell function by Leishmania parasites. THE JOURNAL OF IMMUNOLOGY 2008; 180:4355-60. [PMID: 18354154 DOI: 10.4049/jimmunol.180.7.4355] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interactions between Leishmania parasites and dendritic cells (DCs) are complex and involve paradoxical functions that can stimulate or halt T cell responses, leading to the control of infection or progression of disease. The magnitude and profile of DC activation vary greatly, depending upon the Leishmania species/strains, developmental stages, DC subsets, serum opsonization, and exogenous DC stimuli involved in the study. In general, the uptake of Leishmania parasites alone can trigger relatively weak and transient DC activation; however, the intracellular parasites (amastigotes) are capable of down-modulating LPS/IFN-gamma-stimulated DC activation via multiple mechanisms. This review will highlight current data regarding the initial interaction of DC subsets with invading parasites, the alterations of DC signaling pathways and function by amastigotes, and the impact of DC functions on protective immunity and disease pathogenesis. Available information provides insight into the mechanisms by which DCs discriminate between the types of pathogens and regulate appropriate immune responses.
Collapse
Affiliation(s)
- Lynn Soong
- Department of Microbiology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
63
|
Abstract
Recently, a paradigm shift has emerged in T-cell-mediated adaptive immunity. On the heels of the discovery of T cells with immunosuppressive function, so-called regulatory T cells (Tregs), the diversity of effector cells has expanded to include a third helper T cell, termed Th17. The appreciation that Th17 cells are products of a distinct effector pathway depended critically on observations made during investigations of mouse models of autoimmunity, advanced by discovery of the cytokines IL-17 and IL-23. These studies understandably led investigators to highlight the role played by Th17 cells in autoimmunity. Yet while the dysfunctional behavior of this phenotype as a contributor to inflammatory disease remains a central issue, this pathway evolved to meet a need for host protection against potential pathogens. It has become apparent that the Th17 pathway promotes host defense against certain extracellular bacteria and fungi, but more recent studies also implicate a role in protection against some protozoa and viruses. Here we review the experimental history that ultimately uncovered the existence and nature of Th17 cells, and then turn the reader's attention to what is currently known about Th17 cells as a bulwark against pathogens.
Collapse
|
64
|
Effects of CXCL10 on dendritic cell and CD4+ T-cell functions during Leishmania amazonensis infection. Infect Immun 2007; 76:161-9. [PMID: 17998308 DOI: 10.1128/iai.00825-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania amazonensis can cause progressive disease in most inbred strains of mice. We have previously reported that treatment with CXCL10 activates macrophage (MPhi) effector function(s) in parasite killing and significantly delays lesion development in susceptible C57BL/6 mice via enhanced gamma interferon (IFN-gamma) and interleukin 12 (IL-12) secretion; however, the mechanism underlying this enhanced immunity against L. amazonensis infection remains largely unresolved. In this study, we utilized stationary promastigotes to infect bone marrow-derived dendritic cells (DCs) of C57BL/6 mice and assessed the activation of DC subsets and the capacity of these DC subsets to prime CD4+ T cells in vitro. We found that CXCL10 induced IL-12 p40 production but reduced IL-10 production in uninfected DCs. Yet L. amazonensis-infected DCs produced elevated levels of IL-10 despite CXCL10 treatment. Elimination of endogenous IL-10 led to increased IL-12 p40 production in DCs as well as increased proliferation and IFN-gamma production by in vitro-primed CD4+ T cells. In addition, CXCL10-treated CD4+ T cells became more responsive to IL-12 via increased expression of the IL-12 receptor beta2 chain and produced elevated levels of IFN-gamma. This report indicates the utility of CXCL10 in generating a Th1-favored, proinflammatory response, which is a prerequisite for controlling Leishmania infection.
Collapse
|