51
|
Elshaarawy RFM, Mustafa FHA, Herbst A, Farag AEM, Janiak C. Surface functionalization of chitosan isolated from shrimp shells, using salicylaldehyde ionic liquids in exploration for novel economic and ecofriendly antibiofoulants. RSC Adv 2016. [DOI: 10.1039/c5ra27489c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
52
|
Hugerth LW, Larsson J, Alneberg J, Lindh MV, Legrand C, Pinhassi J, Andersson AF. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol 2015; 16:279. [PMID: 26667648 PMCID: PMC4699468 DOI: 10.1186/s13059-015-0834-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/12/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Microbes are main drivers of biogeochemical cycles in oceans and lakes. Although the genome is a foundation for understanding the metabolism, ecology and evolution of an organism, few bacterioplankton genomes have been sequenced, partly due to difficulties in cultivating them. RESULTS We use automatic binning to reconstruct a large number of bacterioplankton genomes from a metagenomic time-series from the Baltic Sea, one of world's largest brackish water bodies. These genomes represent novel species within typical freshwater and marine clades, including clades not previously sequenced. The genomes' seasonal dynamics follow phylogenetic patterns, but with fine-grained lineage-specific variations, reflected in gene-content. Signs of streamlining are evident in most genomes, and estimated genome sizes correlate with abundance variation across filter size fractions. Comparing the genomes with globally distributed metagenomes reveals significant fragment recruitment at high sequence identity from brackish waters in North America, but little from lakes or oceans. This suggests the existence of a global brackish metacommunity whose populations diverged from freshwater and marine relatives over 100,000 years ago, long before the Baltic Sea was formed (8000 years ago). This markedly contrasts to most Baltic Sea multicellular organisms, which are locally adapted populations of freshwater or marine counterparts. CONCLUSIONS We describe the gene content, temporal dynamics and biogeography of a large set of new bacterioplankton genomes assembled from metagenomes. We propose that brackish environments exert such strong selection that lineages adapted to them flourish globally with limited influence from surrounding aquatic communities.
Collapse
Affiliation(s)
- Luisa W Hugerth
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Stockholm, Sweden.
| | - John Larsson
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Barlastgatan 11, SE-39182, Kalmar, Sweden.
| | - Johannes Alneberg
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Stockholm, Sweden.
| | - Markus V Lindh
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Barlastgatan 11, SE-39182, Kalmar, Sweden.
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Barlastgatan 11, SE-39182, Kalmar, Sweden.
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Barlastgatan 11, SE-39182, Kalmar, Sweden.
| | - Anders F Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Stockholm, Sweden.
| |
Collapse
|
53
|
Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther 2015; 13:1499-516. [PMID: 26646248 DOI: 10.1586/14787210.2015.1100533] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
S. aureus colonizes both artificial and tissue surfaces in humans causing chronic persistent infections that are difficult to cure. It is a notorious pathogen due to its antibiotic recalcitrance and phenotypic adaptability, both of which are facilitated by its ability to develop biofilms. S. aureus biofilms challenge conventional anti-infective approaches, most notably antibiotic therapy. Therefore there is an unmet need to develop and include parallel approaches that target S. aureus biofilm infections. This review discusses two broad anti-infective strategies: (1) preventative approaches (anti-biofilm surface coatings, the inclusion of biofilm-specific vaccine antigens); and (2) approaches aimed at eradicating established S. aureus biofilms, particularly those associated with implant infections. Advances in understanding the distinct nature of S. aureus biofilm development and pathogenesis have led to growing optimism in S. aureus biofilm targeted anti-infective strategies. Further research is needed however, to see the successful administration and validation of these approaches to the diverse types of infections caused by S. aureus biofilms from multiple clinical strains.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA
| | - Daniel J Wozniak
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA.,b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| | - Paul Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA.,d Department of Orthopedics , The Ohio State University College of Medicine , Columbus , OH , USA.,e Department of Engineering Sciences, National Centre for Advanced Tribology at Southampton (nCATS) , University of Southampton , Southampton , UK
| | - Luanne Hall-Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| |
Collapse
|
54
|
Vasu D, Sunitha MM, Srikanth L, Swarupa V, Prasad UV, Sireesha K, Yeswanth S, Kumar PS, Venkatesh K, Chaudhary A, Sarma PVGK. In Staphylococcus aureus the regulation of pyruvate kinase activity by serine/threonine protein kinase favors biofilm formation. 3 Biotech 2015; 5:505-512. [PMID: 28324552 PMCID: PMC4522715 DOI: 10.1007/s13205-014-0248-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus, a natural
inhabitant of nasopharyngeal tract, survives mainly as biofilms. Previously we have observed that S. aureus ATCC 12600 grown under anaerobic conditions exhibited high rate of biofilm formation and l-lactate dehydrogenase activity. Thus, the concentration of pyruvate plays a critical role in S. aureus, which is primarily catalyzed by pyruvate kinase (PK). Analyses of the PK gene sequence (JN645815) revealed presence of PknB site in PK gene indicating that phosphorylation may be influencing the functioning of PK. To establish this hypothesis the pure enzymes of S. aureus ATCC 12600 were obtained by expressing these genes in PK 1 and PV 1 (JN695616) clones and passing the cytosolic fractions through nickel metal chelate column. The molecular weights of pure recombinant PK and PknB are 63 and 73 kDa, respectively. The enzyme kinetics of pure PK showed KM of 0.69 ± 0.02 µM, while the KM of PknB for stpks (stpks = NLCNIPCSALLSSDITASVNCAK) substrate was 0.720 ± 0.08 mM and 0.380 ± 0.07 mM for autophosphorylation. The phosphorylated PK exhibited 40 % reduced activity (PK = 0.2 ± 0.015 μM NADH/min/ml to P-PK = 0.12 ± 0.01 μM NADH/min/ml). Elevated synthesis of pyruvate kinase was observed in S. aureus ATCC 12600 grown in anaerobic conditions suggesting that the formed pyruvate is more utilized in the synthesis phase, supporting increased rate of biofilm formation.
Collapse
Affiliation(s)
- D Vasu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - M M Sunitha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - L Srikanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - V Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - U Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - K Sireesha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - S Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - P Santhosh Kumar
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - K Venkatesh
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - Abhijit Chaudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India.
| |
Collapse
|
55
|
High Prevalence of Icaadbc Genes Responsible for Biofilm Formation in Clinical Isolates of Staphylococcus aureus From Hospitalized Children. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2015. [DOI: 10.5812/pedinfect.20703v2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
56
|
Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 2015; 80:7-12. [PMID: 26103134 DOI: 10.1080/09168451.2015.1058701] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell's decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.
Collapse
Affiliation(s)
- Masanori Toyofuku
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Tomohiro Inaba
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Tatsunori Kiyokawa
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Nozomu Obana
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Yutaka Yawata
- b Departoment of Civil and Environmental Engineering , Massachusetts Institute of Technology , Cambridge , USA
| | - Nobuhiko Nomura
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
57
|
Jakubovics NS, Robinson JC, Samarian DS, Kolderman E, Yassin SA, Bettampadi D, Bashton M, Rickard AH. Critical roles of arginine in growth and biofilm development by Streptococcus gordonii. Mol Microbiol 2015; 97:281-300. [PMID: 25855127 DOI: 10.1111/mmi.13023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2015] [Indexed: 01/13/2023]
Abstract
Streptococcus gordonii is an oral commensal and an early coloniser of dental plaque. In vitro, S. gordonii is conditionally auxotrophic for arginine in monoculture but biosynthesises arginine when coaggregated with Actinomyces oris. Here, we investigated the arginine-responsive regulatory network of S. gordonii and the basis for conditional arginine auxotrophy. ArcB, the catabolic ornithine carbamoyltransferase involved in arginine degradation, was also essential for arginine biosynthesis. However, arcB was poorly expressed following arginine depletion, indicating that arcB levels may limit S. gordonii arginine biosynthesis. Arginine metabolism gene expression was tightly co-ordinated by three ArgR/AhrC family regulators, encoded by argR, ahrC and arcR genes. Microarray analysis revealed that > 450 genes were regulated in response to rapid shifts in arginine concentration, including many genes involved in adhesion and biofilm formation. In a microfluidic salivary biofilm model, low concentrations of arginine promoted S. gordonii growth, whereas high concentrations (> 5 mM arginine) resulted in dramatic reductions in biofilm biomass and changes to biofilm architecture. Collectively, these data indicate that arginine metabolism is tightly regulated in S. gordonii and that arginine is critical for gene regulation, cellular growth and biofilm formation. Manipulating exogenous arginine concentrations may be an attractive approach for oral biofilm control.
Collapse
Affiliation(s)
| | - Jill C Robinson
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek S Samarian
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Ethan Kolderman
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Sufian A Yassin
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Deepti Bettampadi
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Bashton
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Alexander H Rickard
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
58
|
Ünlü A, Tanriseven A, Sezen İY, Çelik A. A new lipase as a pharmaceutical target for battling infections caused byStaphylococcus aureus: Gene cloning and biochemical characterization. Biotechnol Appl Biochem 2015; 62:642-51. [DOI: 10.1002/bab.1316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/06/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Aişe Ünlü
- Department of Chemistry; Gebze Institute of Technology; Gebze, Kocaeli Turkey
| | - Aziz Tanriseven
- Department of Chemistry; Gebze Institute of Technology; Gebze, Kocaeli Turkey
| | - İ. Yavuz Sezen
- Department of Molecular Biology and Genetics; Gebze Institute of Technology; Gebze-Kocaeli Turkey
| | - Ayhan Çelik
- Department of Chemistry; Gebze Institute of Technology; Gebze, Kocaeli Turkey
| |
Collapse
|
59
|
Venkateswara Prasad U, Vasu D, Yeswanth S, Swarupa V, Sunitha MM, Choudhary A, Sarma PVGK. Phosphorylation controls the functioning ofStaphylococcus aureusisocitrate dehydrogenase – favours biofilm formation. J Enzyme Inhib Med Chem 2015; 30:655-61. [DOI: 10.3109/14756366.2014.959945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
60
|
Ghasemian A, Najar-Peerayeh S, Bakhshi B. The Comparison of Staphylococcus aureus Isolated From Blood and Wound Specimens for Genes Encoding Polysaccharide Intercellular Adhesion (PIA). ACTA ACUST UNITED AC 2015. [DOI: 10.17795/ajcmi-25171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
61
|
The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. mBio 2014; 5:e01667-14. [PMID: 25182325 PMCID: PMC4173787 DOI: 10.1128/mbio.01667-14] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biofilm formation by Staphylococcus aureus involves the formation of an extracellular matrix, but the composition of this matrix has been uncertain. Here we report that the matrix is largely composed of cytoplasmic proteins that reversibly associate with the cell surface in a manner that depends on pH. We propose a model for biofilm formation in which cytoplasmic proteins are released from cells in stationary phase. These proteins associate with the cell surface in response to decreasing pH during biofilm formation. Rather than utilizing a dedicated matrix protein, S. aureus appears to recycle cytoplasmic proteins that moonlight as components of the extracellular matrix. Staphylococcus aureus is a leading cause of multiantibiotic-resistant nosocomial infections and is often found growing as a biofilm in catheters and chronic wounds. Biofilm formation is an important pathogenicity strategy that enhances resistance to antimicrobials, thereby limiting treatment options and ultimately contributing to increased morbidity and mortality. Cells in a biofilm are held together by an extracellular matrix that consists in whole or in part of protein, but the nature of the proteins in the S. aureus matrix is not well understood. Here we postulate that S. aureus recycles proteins from the cytoplasm to form the extracellular matrix. This strategy, of cytoplasmic proteins moonlighting as matrix proteins, could allow enhanced flexibility and adaptability for S. aureus in forming biofilms under infection conditions and could promote the formation of mixed-species biofilms in chronic wounds.
Collapse
|
62
|
Lebeaux D, Chauhan A, Létoffé S, Fischer F, de Reuse H, Beloin C, Ghigo JM. pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms. J Infect Dis 2014; 210:1357-66. [PMID: 24837402 DOI: 10.1093/infdis/jiu286] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Limitations in treatment of biofilm-associated bacterial infections are often due to subpopulation of persistent bacteria (persisters) tolerant to high concentrations of antibiotics. Based on the increased aminoglycoside efficiency under alkaline conditions, we studied the combination of gentamicin and the clinically compatible basic amino acid L-arginine against planktonic and biofilm bacteria both in vitro and in vivo. METHODS Using Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli bioluminescent strains, we studied the combination of L-arginine and gentamicin against planktonic persisters through time-kill curves of late stationary-phase cultures. In vitro biofilm tolerance towards gentamicin was assessed using PVC 96 well-plates assays. Efficacy of gentamicin as antibiotic lock treatment (ALT) at 5 mg/mL at different pH was evaluated in vivo using a model of totally implantable venous access port (TIVAP) surgically implanted in rats. RESULTS We demonstrated that a combination of gentamicin and the clinically compatible basic amino acid L-arginine increases in vitro planktonic and biofilm susceptibility to gentamicin, with 99% mortality amongst clinically relevant pathogens, i.e. S. aureus, E. coli and P. aeruginosa persistent bacteria. Moreover, although gentamicin local treatment alone showed poor efficacy in a clinically relevant in vivo model of catheter-related infection, gentamicin supplemented with L-arginine led to complete, long-lasting eradication of S. aureus and E. coli biofilms, when used locally. CONCLUSION Given that intravenous administration of L-arginine to human patients is well tolerated, combined use of aminoglycoside and the non-toxic adjuvant L-arginine as catheter lock solution could constitute a new option for the eradication of pathogenic biofilms.
Collapse
Affiliation(s)
- David Lebeaux
- Department of Microbiology, Genetics of Biofilms Unit
| | | | | | - Frédéric Fischer
- Department of Microbiology, Helicobacter Pathogenesis Unit, Institut Pasteur, Paris, France
| | - Hilde de Reuse
- Department of Microbiology, Helicobacter Pathogenesis Unit, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
63
|
Ammons MCB, Tripet BP, Carlson RP, Kirker KR, Gross MA, Stanisich JJ, Copié V. Quantitative NMR metabolite profiling of methicillin-resistant and methicillin-susceptible Staphylococcus aureus discriminates between biofilm and planktonic phenotypes. J Proteome Res 2014; 13:2973-85. [PMID: 24809402 PMCID: PMC4059261 DOI: 10.1021/pr500120c] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Wound bioburden in the form of colonizing biofilms is a major contributor to nonhealing wounds. Staphylococcus aureus is a Gram-positive, facultative anaerobe commonly found in chronic wounds; however, much remains unknown about the basic physiology of this opportunistic pathogen, especially with regard to the biofilm phenotype. Transcriptomic and proteomic analysis of S. aureus biofilms have suggested that S. aureus biofilms exhibit an altered metabolic state relative to the planktonic phenotype. Herein, comparisons of extracellular and intracellular metabolite profiles detected by (1)H NMR were conducted for methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) S. aureus strains grown as biofilm and planktonic cultures. Principal component analysis distinguished the biofilm phenotype from the planktonic phenotype, and factor loadings analysis identified metabolites that contributed to the statistical separation of the biofilm from the planktonic phenotype, suggesting that key features distinguishing biofilm from planktonic growth include selective amino acid uptake, lipid catabolism, butanediol fermentation, and a shift in metabolism from energy production to assembly of cell-wall components and matrix deposition. These metabolite profiles provide a basis for the development of metabolite biomarkers that distinguish between biofilm and planktonic phenotypes in S. aureus and have the potential for improved diagnostic and therapeutic use in chronic wounds.
Collapse
Affiliation(s)
- Mary Cloud B Ammons
- The Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §The Center for Biofilm Engineering, Montana State University , Bozeman, Montana 59717, United States
| | | | | | | | | | | | | |
Collapse
|
64
|
Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J Bacteriol 2014; 196:2277-89. [PMID: 24727224 DOI: 10.1128/jb.00051-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Allelic replacement mutants were constructed within arginine deiminase (arcA1 and arcA2) to assess the function of the arginine deiminase (ADI) pathway in organic acid resistance and biofilm formation of Staphylococcus epidermidis 1457. A growth-dependent acidification assay (pH ∼5.0 to ∼5.2) determined that strain 1457 devoid of arginine deiminase activity (1457 ΔADI) was significantly less viable than the wild type following depletion of glucose and in the presence of arginine. However, no difference in viability was noted for individual 1457 ΔarcA1 (native) or ΔarcA2 (arginine catabolic mobile element [ACME]-derived) mutants, suggesting that the native and ACME-derived ADIs are compensatory in S. epidermidis. Furthermore, flow cytometry and electron paramagnetic resonance spectroscopy results suggested that organic acid stress resulted in oxidative stress that could be partially rescued by the iron chelator dipyridyl. Collectively, these results suggest that formation of hydroxyl radicals is partially responsible for cell death via organic acid stress and that ADI-derived ammonia functions to counteract this acid stress. Finally, static biofilm assays determined that viability, ammonia synthesis, and pH were reduced in strain 1457 ΔADI following 120 h of growth in comparison to strain 1457 and the arcA1 and arcA2 single mutants. It is hypothesized that ammonia synthesis via the ADI pathway is important to reduce pH stress in specific microniches that contain high concentrations of organic acids.
Collapse
|
65
|
Henry-Stanley MJ, Hess DJ, Wells CL. Aminoglycoside inhibition of Staphylococcus aureus biofilm formation is nutrient dependent. J Med Microbiol 2014; 63:861-869. [PMID: 24696518 DOI: 10.1099/jmm.0.068130-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Biofilms represent microbial communities, encased in a self-produced matrix or extracellular polymeric substance. Microbial biofilms are likely responsible for a large proportion of clinically significant infections and the multicellular nature of biofilm existence has been repeatedly associated with antibiotic resistance. Classical in vitro antibiotic-susceptibility testing utilizes artificial growth media and planktonic microbes, but this method may not account for the variability inherent in environments subject to biofilm growth in vivo. Experiments were designed to test the hypothesis that nutrient concentration can modulate the antibiotic susceptibility of Staphylococcus aureus biofilms. Developing S. aureus biofilms initiated on surgical sutures, and in selected experiments planktonic cultures, were incubated for 16 h in 66 % tryptic soy broth, 0.2 % glucose (1× TSBg), supplemented with bactericidal concentrations of gentamicin, streptomycin, ampicillin or vancomycin. In parallel experiments, antibiotics were added to growth medium diluted one-third (1/3× TSBg) or concentrated threefold (3× TSBg). Following incubation, viable bacteria were enumerated from planktonic cultures or suture sonicates, and biofilm biomass was assayed using spectrophotometry. Interestingly, bactericidal concentrations of gentamicin (5 µg gentamicin ml(-1)) and streptomycin (32 µg streptomycin ml(-1)) inhibited biofilm formation in samples incubated in 1/3× or 1× TSBg, but not in samples incubated in 3× TSBg. The nutrient dependence of aminoglycoside susceptibility is not only associated with biofilm formation, as planktonic cultures incubated in 3× TSBg in the presence of gentamicin also showed antibiotic resistance. These findings appeared specific for aminoglycosides because biofilm formation was inhibited in all three growth media supplemented with bactericidal concentrations of the cell wall-active antibiotics, ampicillin and vancomycin. Additional experiments showed that the ability of 3× TSBg to overcome the antibacterial effects of gentamicin was associated with decreased uptake of gentamicin by S. aureus. Uptake is known to be decreased at low pH, and the kinetic change in pH of growth medium from biofilms incubated in 5 µg gentamicin ml(-1) in the presence of 3× TSBg was decreased when compared with pH determinations from biofilms formed in 1/3× or 1× TSBg. These studies underscore the importance of environmental factors, including nutrient concentration and pH, on the antibiotic susceptibility of S. aureus planktonic and biofilm bacteria.
Collapse
Affiliation(s)
| | - Donavon J Hess
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Carol L Wells
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
66
|
Rajalakshmi S, Fathima A, Rao JR, Nair BU. Antibacterial activity of copper(ii) complexes against Staphylococcus aureus. RSC Adv 2014. [DOI: 10.1039/c4ra03241a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
[Cu(bitpy)2]2+ showed better antistaphylococcal activity than [Cu(bitpy)(dmp)]2+. SEM and confocal microscopy showed the damage caused by complex 2 is more effective than 1. Complex 2 can be better used as an anti-biofouling agent.
Collapse
Affiliation(s)
- Subramaniyam Rajalakshmi
- Council of Scientific and Industrial Research (CSIR) – Central Leather Research Institute (CLRI)
- Chemical Laboratory
- Chennai 600 020, India
| | - Aafreen Fathima
- Council of Scientific and Industrial Research (CSIR) – Central Leather Research Institute (CLRI)
- Chemical Laboratory
- Chennai 600 020, India
| | - Jonnalagadda Raghava Rao
- Council of Scientific and Industrial Research (CSIR) – Central Leather Research Institute (CLRI)
- Chemical Laboratory
- Chennai 600 020, India
| | - Balachandran Unni Nair
- Council of Scientific and Industrial Research (CSIR) – Central Leather Research Institute (CLRI)
- Chemical Laboratory
- Chennai 600 020, India
| |
Collapse
|
67
|
Snowden JN, Beaver M, Beenken K, Smeltzer M, Horswill AR, Kielian T. Staphylococcus aureus sarA regulates inflammation and colonization during central nervous system biofilm formation. PLoS One 2013; 8:e84089. [PMID: 24386336 PMCID: PMC3875531 DOI: 10.1371/journal.pone.0084089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 11/20/2013] [Indexed: 11/21/2022] Open
Abstract
Infection is a frequent and serious complication following the treatment of hydrocephalus with CSF shunts, with limited therapeutic options because of biofilm formation along the catheter surface. Here we evaluated the possibility that the sarA regulatory locus engenders S. aureus more resistant to immune recognition in the central nervous system (CNS) based on its reported ability to regulate biofilm formation. We utilized our established model of CNS catheter-associated infection, similar to CSF shunt infections seen in humans, to compare the kinetics of bacterial titers, cytokine production and inflammatory cell influx elicited by wild type S. aureus versus an isogenic sarA mutant. The sarA mutant was more rapidly cleared from infected catheters compared to its isogenic wild type strain. Consistent with this finding, several pro-inflammatory cytokines and chemokines, including IL-17, CXCL1, and IL-1β were significantly increased in the brain following infection with the sarA mutant versus wild type S. aureus, in agreement with the fact that the sarA mutant displayed impaired biofilm growth and favored a planktonic state. Neutrophil influx into the infected hemisphere was also increased in the animals infected with the sarA mutant compared to wild type bacteria. These changes were not attributable to extracellular protease activity, which is increased in the context of SarA mutation, since similar responses were observed between sarA and a sarA/protease mutant. Overall, these results demonstrate that sarA plays an important role in attenuating the inflammatory response during staphylococcal biofilm infection in the CNS via a mechanism that remains to be determined.
Collapse
Affiliation(s)
- Jessica N. Snowden
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| | - Matt Beaver
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Karen Beenken
- Department of Microbiology and Immunology, University for Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Mark Smeltzer
- Department of Microbiology and Immunology, University for Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Alexander R. Horswill
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
68
|
Liebeke M, Lalk M. Staphylococcus aureus metabolic response to changing environmental conditions - a metabolomics perspective. Int J Med Microbiol 2013; 304:222-9. [PMID: 24439195 DOI: 10.1016/j.ijmm.2013.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/30/2013] [Accepted: 11/25/2013] [Indexed: 01/16/2023] Open
Abstract
Microorganisms preserve their metabolic function against a wide range of external perturbations including biotic or abiotic factors by utilizing cellular adaptations to maintain cell homeostasis. Functional genomics aims to detect such adaptive alterations on the level of transcriptome, proteome and metabolome to understand system wide changes and to identify interactions between the different levels of biochemical organization. Microbial metabolomics measures metabolites, the direct biochemical response to the environment, and is pivotal to the understanding of the variability and dynamics of bacterial cell metabolism. Metabolomics can measure many different types of compounds including primary metabolites, secondary metabolites, second messengers, quorum sensing compounds and others, which all contribute to the complex bacterial response to an environmental change. Recent data confirmed that many metabolic processes in pathogenic bacteria are linked to virulence and invasive capabilities. Deciphering bacterial metabolism in response to specific environmental conditions and in specific genetic backgrounds will help map the complex network between the metabolome and the other "-omes". Here, we will review a selection of case studies for the pathogenic Gram-positive bacterium Staphylococcus aureus and summarize the current state of metabolomics literature covering staphylococci metabolism under different physiological states.
Collapse
Affiliation(s)
- Manuel Liebeke
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
69
|
Janssens M, Van der Mijnsbrugge A, Sánchez Mainar M, Balzarini T, De Vuyst L, Leroy F. The use of nucleosides and arginine as alternative energy sources by coagulase-negative staphylococci in view of meat fermentation. Food Microbiol 2013; 39:53-60. [PMID: 24387852 DOI: 10.1016/j.fm.2013.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 12/31/2022]
Abstract
The ability of coagulase-negative staphylococci (CNS) to use alternative energy sources in meat may partially explain their occurrence in fermented meats. Of 61 CNS strains tested, all metabolized adenosine and inosine in a meat simulation medium (MSM). The ability to catabolize arginine via the arginine deiminase (ADI) pathway varied between strains. All tested strains of Staphylococcus carnosus and Staphylococcus epidermidis possessed an arcA gene and showed ADI activity, whereas other species, such as Staphylococcus equorum and Staphylococcus succinus, did not. Arginine catabolic mobile elements (ACME), as in the positive control S. epidermidis ATCC 12228, were uncommon and only found in Staphylococcus xylosus 3PA6 (sausage isolate) and Staphylococcus chromogenes G222 (teat apex isolate). Monoculture experiments were performed in MSM with S. carnosus 833 and SS3-4, S. xylosus G211, and S. epidermidis ATCC 12228 and 2S7-4. At all pH values tested (5.3, 5.8, and 6.5), the strains of S. carnosus catabolized arginine faster than the strains of S. xylosus and S. epidermidis. Only at pH 6.5 could a low ADI activity be found for S. xylosus G211. Increased ADI activity occurred in the case of the ACME-positive S. epidermidis ATCC 12228, when compared to the ACME-negative S. epidermidis 2S7-4.
Collapse
Affiliation(s)
- M Janssens
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - A Van der Mijnsbrugge
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - M Sánchez Mainar
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - T Balzarini
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - L De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - F Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
70
|
Deletion of arcD in Streptococcus pneumoniae D39 impairs its capsule and attenuates virulence. Infect Immun 2013; 81:3903-11. [PMID: 23918778 DOI: 10.1128/iai.00778-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The arginine deiminase system (ADS) is associated with arginine catabolism and plays a role in virulence of several pathogenic bacteria. In Streptococcus pneumoniae, the ADS genes exist as a locus consisting of arcABCDT. A recent genome-wide mutagenesis approach revealed that both arcD and arcT are potentially essential in a chinchilla otitis media (OM) model. In the present study, we generated ΔarcD, ΔarcT, and ΔarcDT mutants by homologous recombination and evaluated their infectivity. Our results showed that only arcD, and not arcT, of an OM isolate is required during chinchilla middle ear infection. Additionally, D39 ΔarcD exhibited enhanced nasopharyngeal colonization and was attenuated in both mouse pneumonia and bacteremia models. In vitro, D39 ΔarcD displayed enhanced adherence to A549 epithelial cells and increased phagocytosis by J774A.1 macrophages compared to those with the parental strain. This mutant also exhibited an impaired capsule, as detected using electron microscopy, immunofluorescence, and a capsule assay. We demonstrated that the capsule defect in the D39 ΔarcD mutant may not be associated with a deficiency in arginine but rather is likely caused by a loss of interaction between the capsule and the transmembrane protein ArcD.
Collapse
|
71
|
Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 2013; 3:a010306. [PMID: 23545571 DOI: 10.1101/cshperspect.a010306] [Citation(s) in RCA: 518] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Biofilm formation constitutes an alternative lifestyle in which microorganisms adopt a multicellular behavior that facilitates and/or prolongs survival in diverse environmental niches. Biofilms form on biotic and abiotic surfaces both in the environment and in the healthcare setting. In hospital wards, the formation of biofilms on vents and medical equipment enables pathogens to persist as reservoirs that can readily spread to patients. Inside the host, biofilms allow pathogens to subvert innate immune defenses and are thus associated with long-term persistence. Here we provide a general review of the steps leading to biofilm formation on surfaces and within eukaryotic cells, highlighting several medically important pathogens, and discuss recent advances on novel strategies aimed at biofilm prevention and/or dissolution.
Collapse
Affiliation(s)
- Maria Kostakioti
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110-1010, USA
| | | | | |
Collapse
|
72
|
Guidelines for the prevention of intravascular catheter-related infections: recommendations relevant to interventional radiology for venous catheter placement and maintenance. J Vasc Interv Radiol 2013; 23:997-1007. [PMID: 22840801 DOI: 10.1016/j.jvir.2012.04.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 01/27/2023] Open
|
73
|
Bertini G, Elia S, Ceciarini F, Dani C. Reduction of catheter-related bloodstream infections in preterm infants by the use of catheters with the AgION antimicrobial system. Early Hum Dev 2013; 89:21-5. [PMID: 22841551 DOI: 10.1016/j.earlhumdev.2012.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/26/2012] [Accepted: 07/08/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The present study aims to assess if use of a silver zeolite-impregnated umbilical catheter (AgION technology) can decrease the occurrence of catheter-related bloodstream infection (CRBSIs) in preterm infants. STUDY DESIGN Infants with gestational age<30weeks were randomized to receive an AgION impregnated or non-impregnated polyurethane umbilical venous catheter (UVC). The primary endpoint was the incidence of CRBSIs during the time the UVC was in place. RESULTS We studied 86 infants, 41 of whom received the AgION catheter and 45 the non-impregnated catheter. During umbilical venous catheterization 2% of infants in the AgION group developed CRBSI in comparison with 22% of infants in the control group (p=0.005). AgION catheters were well tolerated and none of the patients showed signs attributable to silver toxicity. CONCLUSIONS The AgION-impregnated UVCs were effective in decreasing the development of CRBSIs in preterm infants compared to non-impregnated polyurethane UVCs.
Collapse
Affiliation(s)
- Giovanna Bertini
- Department of Surgical and Medical Critical Care, Section of Neonatology, Careggi University Hospital of Florence, Viale Morgagni, 85, 50134 Florence, Italy
| | | | | | | |
Collapse
|
74
|
Abstract
Medically relevant biofilms have gained a significant level of interest, in part because of the epidemic rise in obesity and an aging population in the developed world. The associated comorbidities of chronic wounds such as pressure ulcers, venous leg ulcers, and diabetic foot wounds remain recalcitrant to the therapies available currently. Development of chronicity in the wound is due primarily to an inability to complete the wound healing process owing to the presence of a bioburden, specifically bacterial biofilms. New therapies are clearly needed which specifically target biofilms. Lactoferrin is a multifaceted molecule of the innate immune system found primarily in milk. While further investigation is warranted to elucidate mechanisms of action, in vitro analyses of lactoferrin and its derivatives have demonstrated that these complex molecules are structurally and functionally well suited to address the heterogeneity of bacterial biofilms. In addition, use of lactoferrin and its derivatives has proven promising in the clinic.
Collapse
Affiliation(s)
- M C Ammons
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| | | |
Collapse
|
75
|
Cugini C, Stephens DN, Nguyen D, Kantarci A, Davey ME. Arginine deiminase inhibits Porphyromonas gingivalis surface attachment. MICROBIOLOGY-SGM 2012; 159:275-285. [PMID: 23242802 DOI: 10.1099/mic.0.062695-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The oral cavity is host to a complex microbial community whose maintenance depends on an array of cell-to-cell interactions and communication networks, with little known regarding the nature of the signals or mechanisms by which they are sensed and transmitted. Determining the signals that control attachment, biofilm development and outgrowth of oral pathogens is fundamental to understanding pathogenic biofilm development. We have previously identified a secreted arginine deiminase (ADI) produced by Streptococcus intermedius that inhibited biofilm development of the commensal pathogen Porphyromonas gingivalis through downregulation of genes encoding the major (fimA) and minor (mfa1) fimbriae, both of which are required for proper biofilm development. Here we report that this inhibitory effect is dependent on enzymic activity. We have successfully cloned, expressed and defined the conditions to ensure that ADI from S. intermedius is enzymically active. Along with the cloning of the wild-type allele, we have created a catalytic mutant (ADIC399S), in which the resulting protein is not able to catalyse the hydrolysis of l-arginine to l-citrulline. P. gingivalis is insensitive to the ADIC399S catalytic mutant, demonstrating that enzymic activity is required for the effects of ADI on biofilm formation. Biofilm formation is absent under l-arginine-deplete conditions, and can be recovered by the addition of the amino acid. Taken together, the results indicate that arginine is an important signal that directs biofilm formation by this anaerobe. Based on our findings, we postulate that ADI functions to reduce arginine levels and, by a yet to be identified mechanism, signals P. gingivalis to alter biofilm development. ADI release from the streptococcal cell and its cross-genera effects are important findings in understanding the nature of inter-bacterial signalling and biofilm-mediated diseases of the oral cavity.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.,Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | | | - Daniel Nguyen
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA
| | - Alpdogan Kantarci
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA
| | - Mary E Davey
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.,Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
76
|
Zhang L, Thomas JC, Didelot X, Robinson DA. Molecular signatures identify a candidate target of balancing selection in an arcD-like gene of Staphylococcus epidermidis. J Mol Evol 2012; 75:43-54. [PMID: 23053194 DOI: 10.1007/s00239-012-9520-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 09/24/2012] [Indexed: 01/19/2023]
Abstract
A comparative population genetics study revealed high levels of nucleotide polymorphism and intermediate-frequency alleles in an arcC gene of Staphylococcus epidermidis, but not in a homologous gene of the more aggressive human pathogen, Staphylococcus aureus. Further investigation showed that the arcC genes used in the multilocus sequence typing schemes of these two species were paralogs. Phylogenetic analyses of arcC-containing loci, including the arginine catabolic mobile element, from both species, suggested that these loci had an eventful history involving gene duplications, rearrangements, deletions, and horizontal transfers. The peak signatures in the polymorphic S. epidermidis locus were traced to an arcD-like gene adjacent to arcC; these signatures consisted of unusually elevated Tajima's D and π/K ratios, which were robust to assumptions about recombination and species divergence time and among the most elevated in the S. epidermidis genome. Amino acid polymorphisms, including one that differed in polarity and hydropathy, were located in the peak signatures and defined two allelic lineages. Recombination events were detected between these allelic lineages and potential donors and recipients of S. epidermidis were identified in each case. By comparison, the orthologous gene of S. aureus showed no unusual signatures. The ArcD-like protein belonged to the unknown ion transporter 3 family and appeared to be unrelated to ArcD from the arginine deiminase pathway. These studies report the first comparative population genetics results for staphylococci and the first statistical evidence for a candidate target of balancing selection in S. epidermidis.
Collapse
Affiliation(s)
- Liangfen Zhang
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
77
|
Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog 2012; 8:e1002744. [PMID: 22685403 PMCID: PMC3369951 DOI: 10.1371/journal.ppat.1002744] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/26/2012] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that colonizes the skin and mucosal surfaces of mammals. Persistent staphylococcal infections often involve surface-associated communities called biofilms. Here we report the discovery of a novel extracellular fibril structure that promotes S. aureus biofilm integrity. Biochemical and genetic analysis has revealed that these fibers have amyloid-like properties and consist of small peptides called phenol soluble modulins (PSMs). Mutants unable to produce PSMs were susceptible to biofilm disassembly by matrix degrading enzymes and mechanical stress. Previous work has associated PSMs with biofilm disassembly, and we present data showing that soluble PSM peptides disperse biofilms while polymerized peptides do not. This work suggests the PSMs' aggregation into amyloid fibers modulates their biological activity and role in biofilms.
Collapse
Affiliation(s)
- Kelly Schwartz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Adnan K. Syed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rachel E. Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexander H. Rickard
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Blaise R. Boles
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
78
|
Sun JL, Zhang SK, Chen JY, Han BZ. Metabolic profiling of Staphylococcus aureus cultivated under aerobic and anaerobic conditions with (1)H NMR-based nontargeted analysis. Can J Microbiol 2012; 58:709-18. [PMID: 22571732 DOI: 10.1139/w2012-046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a major pathogen in the medical area and food-producing sector. Detailed analyses of its basic cell physiology will help comprehensively understand this pathogen, which will be useful for developing novel diagnostic and treatment tools. Oxygen is one of the most crucial growth-limiting factors for S. aureus. In this study, to characterize and distinguish metabolic profiles of S. aureus cultivated under aerobic and anaerobic conditions, nontargeted analyses of both types of cultures were carried out using (1)H nuclear magnetic resonance spectroscopy. Fifty compounds were identified by Chenomx software. Characteristics of metabolic profiles were achieved by using principal components analysis. During aerobic growth, S. aureus mainly consumed glucose, alanine, arginine, glycine, isoleucine, leucine, phenylalanine, and acetate. Meanwhile, it accumulated 17 metabolites, mainly 2-oxoglutarate, isobutyrate, isovalerate, succinate, and ethanol. Under anaerobic condition, S. aureus mainly consumed glucose, arginine, and threonine. Meanwhile, it accumulated 13 metabolites, mainly ethanol, lactate, and ornithine. The representative metabolites that could most significantly differentiate metabolic profiles of S. aureus were isobutyrate, isovalerate, and succinate in aerobic cultivation; and lactate, ethanol, and ornithine in anaerobic cultivation. Among these metabolites, isobutyrate and ornithine were present only in aerobic and anaerobic culture, respectively.
Collapse
Affiliation(s)
- Ji-Lu Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, People's Republic of China
| | | | | | | |
Collapse
|
79
|
Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis. PLoS One 2012; 7:e34398. [PMID: 22496800 PMCID: PMC3319582 DOI: 10.1371/journal.pone.0034398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/27/2012] [Indexed: 12/02/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections, traits facilitated by the ability to quickly acquire and transfer virulence determinants. A 150 kb pathogenicity island (PAI) comprised of genes contributing to virulence is found in many enterococcal isolates and is known to undergo horizontal transfer. We have shown that the PAI-encoded transcriptional regulator PerA contributes to pathogenicity in the mouse peritonitis infection model. In this study, we used whole-genome microarrays to determine the PerA regulon. The PerA regulon is extensive, as transcriptional analysis showed 151 differentially regulated genes. Our findings reveal that PerA coordinately regulates genes important for metabolism, amino acid degradation, and pathogenicity. Further transcriptional analysis revealed that PerA is influenced by bicarbonate. Additionally, PerA influences the ability of E. faecalis to bind to human platelets. Our results suggest that PerA is a global transcriptional regulator that coordinately regulates genes responsible for enterococcal pathogenicity.
Collapse
|
80
|
McDonald T, Drescher KM, Weber A, Tracy S. Creatinine inhibits bacterial replication. J Antibiot (Tokyo) 2012; 65:153-156. [DOI: 10.1038/ja.2011.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
81
|
RpiR homologues may link Staphylococcus aureus RNAIII synthesis and pentose phosphate pathway regulation. J Bacteriol 2011; 193:6187-96. [PMID: 21926234 DOI: 10.1128/jb.05930-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a medically important pathogen that synthesizes a wide range of virulence determinants. The synthesis of many staphylococcal virulence determinants is regulated in part by stress-induced changes in the activity of the tricarboxylic acid (TCA) cycle. One metabolic change associated with TCA cycle stress is an increased concentration of ribose, leading us to hypothesize that a pentose phosphate pathway (PPP)-responsive regulator mediates some of the TCA cycle-dependent regulatory effects. Using bioinformatics, we identified three potential ribose-responsive regulators that belong to the RpiR family of transcriptional regulators. To determine whether these RpiR homologues affect PPP activity and virulence determinant synthesis, the rpiR homologues were inactivated, and the effects on PPP activity and virulence factor synthesis were assessed. Two of the three homologues (RpiRB and RpiRC) positively influence the transcription of the PPP genes rpiA and zwf, while the third homologue (RpiRA) is slightly antagonistic to the other homologues. In addition, inactivation of RpiRC altered the temporal transcription of RNAIII, the effector molecule of the agr quorum-sensing system. These data confirm the close linkage of central metabolism and virulence determinant synthesis, and they establish a metabolic override for quorum-sensing-dependent regulation of RNAIII transcription.
Collapse
|
82
|
Jardeleza C, Foreman A, Baker L, Paramasivan S, Field J, Tan LW, Wormald PJ. The effects of nitric oxide on Staphylococcus aureus biofilm growth and its implications in chronic rhinosinusitis. Int Forum Allergy Rhinol 2011; 1:438-44. [PMID: 22144052 DOI: 10.1002/alr.20083] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/01/2011] [Accepted: 06/21/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND The relationship between sinonasal nitric oxide (NO) levels and the pathogenic organism Staphylococcus aureus is yet to be established. High NO levels measured in healthy sinuses likely contribute to maintenance of relative sterility. Lower concentrations such as is found in the sinuses of chronic rhinosinusitis (CRS) patients may decrease this effect. S. aureus in biofilm form has recently been implicated in recalcitrant CRS, its isolation predicting a higher risk of posttreatment reinfection. This in vitro study aims to characterize the changes in S. aureus biofilm formation when exposed to different NO levels mimicking the normal and diseased NO sinus concentrations reported in previous literature in an in vitro setting. METHODS S. aureus ATCC 25923 and 7 clinical isolates were cultured in biofilm form using the MBEC device and the established biofilms exposed to 1 to 1000 μM NO concentrations. Biofilms were visualized using Live/Dead Baclight stain and confocal scanning laser microscopy, and quantified using Comstat2, a biofilm quantification software. RESULTS Biofilm biomass decreases from an average of 0.105 to 0.057 μm(3) /μm(2) at higher NO concentrations (125-1000 μM), but is increased to 0.470 μm(3) /μm(2) at lower NO concentrations (0.9-2.0 μM). The average biomass at high vs low concentrations are statistically significant (p < 0.001). CONCLUSION S. aureus biofilm formation varies across exposure to different NO levels, with antibiofilm effects at higher concentrations, and enhanced biofilm formation at lower or subphysiologic concentrations. These results coincide with the often dualistic function of NO, and have implications in its future use in the treatment of CRS.
Collapse
Affiliation(s)
- Camille Jardeleza
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, South Australia
| | | | | | | | | | | | | |
Collapse
|
83
|
O'Grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, Lipsett PA, Masur H, Mermel LA, Pearson ML, Raad II, Randolph AG, Rupp ME, Saint S. Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control 2011; 39:S1-34. [PMID: 21511081 DOI: 10.1016/j.ajic.2011.01.003] [Citation(s) in RCA: 716] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 12/14/2022]
Affiliation(s)
- Naomi P O'Grady
- Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
O'Grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, Lipsett PA, Masur H, Mermel LA, Pearson ML, Raad II, Randolph AG, Rupp ME, Saint S. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis 2011; 52:e162-93. [PMID: 21460264 DOI: 10.1093/cid/cir257] [Citation(s) in RCA: 1234] [Impact Index Per Article: 94.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Naomi P O'Grady
- Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Arce Miranda JE, Sotomayor CE, Albesa I, Paraje MG. Oxidative and nitrosative stress in Staphylococcus aureus biofilm. FEMS Microbiol Lett 2010; 315:23-9. [DOI: 10.1111/j.1574-6968.2010.02164.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
86
|
Zhu T, Lou Q, Wu Y, Hu J, Yu F, Qu D. Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile. BMC Microbiol 2010; 10:287. [PMID: 21073699 PMCID: PMC2996381 DOI: 10.1186/1471-2180-10-287] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 11/12/2010] [Indexed: 11/16/2022] Open
Abstract
Background Staphylococcus epidermidis has emerged as one of the most important nosocomial pathogens, mainly because of its ability to colonize implanted biomaterials by forming a biofilm. Extensive studies are focused on the molecular mechanisms involved in biofilm formation. The LytSR two-component regulatory system regulates autolysis and biofilm formation in Staphylococcus aureus. However, the role of LytSR played in S. epidermidis remained unknown. Results In the present study, we demonstrated that lytSR knock-out in S. epidermidis did not alter susceptibility to Triton X-100 induced autolysis. Quantitative murein hydrolase assay indicated that disruption of lytSR in S. epidermidis resulted in decreased activities of extracellular murein hydrolases, although zymogram showed no apparent differences in murein hydrolase patterns between S. epidermidis strain 1457 and its lytSR mutant. Compared to the wild-type counterpart, 1457ΔlytSR produced slightly more biofilm, with significantly decreased dead cells inside. Microarray analysis showed that lytSR mutation affected the transcription of 164 genes (123 genes were upregulated and 41 genes were downregulated). Specifically, genes encoding proteins responsible for protein synthesis, energy metabolism were downregulated, while genes involved in amino acid and nucleotide biosynthesis, amino acid transporters were upregulated. Impaired ability to utilize pyruvate and reduced activity of arginine deiminase was observed in 1457ΔlytSR, which is consistent with the microarray data. Conclusions The preliminary results suggest that in S. epidermidis LytSR two-component system regulates extracellular murein hydrolase activity, bacterial cell death and pyruvate utilization. Based on the microarray data, it appears that lytSR inactivation induces a stringent response. In addition, LytSR may indirectly enhance biofilm formation by altering the metabolic status of the bacteria.
Collapse
Affiliation(s)
- Tao Zhu
- Key laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College of Fudan University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
87
|
Fey PD. Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? Curr Opin Microbiol 2010; 13:610-5. [PMID: 20884280 DOI: 10.1016/j.mib.2010.09.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 01/28/2023]
Abstract
It is well accepted that bacterial pathogens growing in a biofilm are recalcitrant to the action of most antibiotics and are resistant to the innate immune system. New treatment modalities are greatly warranted to effectively eradicate these infections. However, bacteria growing in a biofilm are metabolically unique in comparison to the bacteria growing in a planktonic state. Unfortunately, most antibiotics have been developed to inhibit the growth of bacteria in a planktonic mode of growth. This review focuses on the metabolism and physiology of biofilm growth with special emphasis on staphylococci. Future treatment options should include targeting unique metabolic niches found within bacterial biofilms in addition to the enzymes or compounds that inhibit biofilm accumulation molecules and/or interact with quorum sensing and intercellular bacterial communication.
Collapse
Affiliation(s)
- Paul D Fey
- University of Nebraska Medical Center, Department of Pathology and Microbiology, Omaha, NE 68198-5900, USA.
| |
Collapse
|
88
|
Fey PD, Olson ME. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol 2010; 5:917-33. [PMID: 20521936 DOI: 10.2217/fmb.10.56] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Staphylococcus epidermidis is a highly significant nosocomial pathogen mediating infections primarily associated with indwelling biomaterials (e.g., catheters and prostheses). In contrast to Staphylococcus aureus, virulence properties associated with S. epidermidis are few and biofilm formation is the defining virulence factor associated with disease, as demonstrated by animal models of biomaterial-related infections. However, other virulence factors, such as phenol-soluble modulins and poly-gamma-DL-glutamic acid, have been recently recognized that thwart innate immune system mechanisms. Formation of S. epidermidis biofilm is typically considered a four-step process consisting of adherence, accumulation, maturation and dispersal. This article will discuss recent advances in the study of these four steps, including accumulation, which can be either polysaccharide or protein mediated. It is hypothesized that studies focused on understanding the biological function of each step in staphylococcal biofilm formation will yield new treatment modalities to treat these recalcitrant infections.
Collapse
Affiliation(s)
- Paul D Fey
- Department of Pathology & Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| | | |
Collapse
|
89
|
Cell surface hydrophobicity, biofilm formation, adhesives properties and molecular detection of adhesins genes in Staphylococcus aureus associated to dental caries. Microb Pathog 2010; 49:14-22. [DOI: 10.1016/j.micpath.2010.03.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 11/18/2022]
|
90
|
Abstract
How does a quiescent symbiont of a nematode worm know when to turn nasty? Metabolic analysis and genetic knockouts confirm that model insect pathogens can sense L-proline in insect blood. This not only serves as a wake-up call, activating secondary metabolite virulence factors, but also provides an energy source for a metabolic shift appropriate for adaptation to the host environment.
Collapse
Affiliation(s)
- Nick Waterfield
- Department of Biology and Biochemistry, The University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
91
|
Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN, Rice KC, Horswill AR, Bayles KW, Smeltzer MS. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS One 2010; 5:e10790. [PMID: 20520723 PMCID: PMC2875390 DOI: 10.1371/journal.pone.0010790] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/30/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The accessory gene regulator (agr) and staphylococcal accessory regulator (sarA) play opposing roles in Staphylococcus aureus biofilm formation. There is mounting evidence to suggest that these opposing roles are therapeutically relevant in that mutation of agr results in increased biofilm formation and decreased antibiotic susceptibility while mutation of sarA has the opposite effect. To the extent that induction of agr or inhibition of sarA could potentially be used to limit biofilm formation, this makes it important to understand the epistatic relationships between these two loci. METHODOLOGY/PRINCIPAL FINDINGS We generated isogenic sarA and agr mutants in clinical isolates of S. aureus and assessed the relative impact on biofilm formation. Mutation of agr resulted in an increased capacity to form a biofilm in the 8325-4 laboratory strain RN6390 but had little impact in clinical isolates S. aureus. In contrast, mutation of sarA resulted in a reduced capacity to form a biofilm in all clinical isolates irrespective of the functional status of agr. This suggests that the regulatory role of sarA in biofilm formation is independent of the interaction between sarA and agr and that sarA is epistatic to agr in this context. This was confirmed by demonstrating that restoration of sarA function restored the ability to form a biofilm even in the corresponding agr mutants. Mutation of sarA in clinical isolates also resulted in increased production of extracellular proteases and extracellular nucleases, both of which contributed to the biofilm-deficient phenotype of sarA mutants. However, studies comparing different strains with and without proteases inhibitors and/or mutation of the nuclease genes demonstrated that the agr-independent, sarA-mediated repression of extracellular proteases plays a primary role in this regard. CONCLUSIONS AND SIGNIFICANCE The results we report suggest that inhibitors of sarA-mediated regulation could be used to limit biofilm formation in S. aureus and that the efficacy of such inhibitors would not be limited by spontaneous mutation of agr in the human host.
Collapse
Affiliation(s)
- Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lara N. Mrak
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Linda M. Griffin
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Agnieszka K. Zielinska
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lindsey N. Shaw
- Department of Biology, University of South Florida, Tampa, Florida, United States of America
| | - Kelly C. Rice
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Alexander R. Horswill
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Kenneth W. Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
92
|
Wu XH, Yu HL, Ba ZY, Chen JY, Sun HG, Han BZ. Sampling methods for NMR-based metabolomics of Staphylococcus aureus. Biotechnol J 2010; 5:75-84. [PMID: 19824021 DOI: 10.1002/biot.200900038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To select an appropriate sampling method for comparison of metabolite profiles between planktonic and biofilm Staphylococcus aureus using NMR techniques, we evaluated three methods: quenching-centrifugation (QC), filtration-quenching (FQ) and filtration-quenching-lyophilization (FQL). We found differences in metabolite loss, yield, reproducibility and metabolite profile. QC caused severe metabolite leakage and possible decomposition of nucleotides. FQ achieved high yields and reproducibility, although it had the disadvantages of long filtration and rinse times before quenching. FQL resulted in a loss of a few metabolites and a lower yield due to lyophilization. Although the biomarkers discovered by each method were nearly the same and seemed insensitive to technical variances, we conclude that FQ is the most appropriate sampling method because of its high yield and reproducibility.
Collapse
Affiliation(s)
- Xiao-He Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
93
|
Tricarboxylic acid cycle-dependent synthesis of Staphylococcus aureus Type 5 and 8 capsular polysaccharides. J Bacteriol 2010; 192:1459-62. [PMID: 20061474 DOI: 10.1128/jb.01377-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus capsule synthesis requires the precursor N-acetyl-glucosamine; however, capsule is synthesized during post-exponential growth when the availability of N-acetyl-glucosamine is limited. Capsule biosynthesis also requires aerobic respiration, leading us to hypothesize that capsule synthesis requires tricarboxylic acid cycle intermediates. Consistent with this hypothesis, S. aureus tricarboxylic acid cycle mutants fail to make capsule.
Collapse
|
94
|
Zhu Y, Xiong YQ, Sadykov MR, Fey PD, Lei MG, Lee CY, Bayer AS, Somerville GA. Tricarboxylic acid cycle-dependent attenuation of Staphylococcus aureus in vivo virulence by selective inhibition of amino acid transport. Infect Immun 2009; 77:4256-64. [PMID: 19667045 PMCID: PMC2747957 DOI: 10.1128/iai.00195-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococci are the leading causes of endovascular infections worldwide. Commonly, these infections involve the formation of biofilms on the surface of biomaterials. Biofilms are a complex aggregation of bacteria commonly encapsulated by an adhesive exopolysaccharide matrix. In staphylococci, this exopolysaccharide matrix is composed of polysaccharide intercellular adhesin (PIA). PIA is synthesized when the tricarboxylic acid (TCA) cycle is repressed. The inverse correlation between PIA synthesis and TCA cycle activity led us to hypothesize that increasing TCA cycle activity would decrease PIA synthesis and biofilm formation and reduce virulence in a rabbit catheter-induced model of biofilm infection. TCA cycle activity can be induced by preventing staphylococci from exogenously acquiring a TCA cycle-derived amino acid necessary for growth. To determine if TCA cycle induction would decrease PIA synthesis in Staphylococcus aureus, the glutamine permease gene (glnP) was inactivated and TCA cycle activity, PIA accumulation, biofilm forming ability, and virulence in an experimental catheter-induced endovascular biofilm (endocarditis) model were determined. Inactivation of this major glutamine transporter increased TCA cycle activity, transiently decreased PIA synthesis, and significantly reduced in vivo virulence in the endocarditis model in terms of achievable bacterial densities in biofilm-associated cardiac vegetations, kidneys, and spleen. These data confirm the close linkage of TCA cycle activity and virulence factor production and establish that this metabolic linkage can be manipulated to alter infectious outcomes.
Collapse
Affiliation(s)
- Yefei Zhu
- Department of Veterinary and Biomedical Sciences, University of Nebraska, 155 VBS, Fair St. and East Campus Loop, Lincoln, NE 68583-0905, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Rbf promotes biofilm formation by Staphylococcus aureus via repression of icaR, a negative regulator of icaADBC. J Bacteriol 2009; 191:6363-73. [PMID: 19684134 DOI: 10.1128/jb.00913-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We previously reported the identification of a gene, rbf, involved in the regulation of biofilm formation by Staphylococcus aureus 8325-4. In an effort to study the mechanism of regulation, microarrays were used to compare the transcription profiles of the wild-type strain with an rbf mutant and an rbf overexpression strain of the clinical isolate UAMS-1. Among the genes affected by rbf overexpression are those of the intercellular adhesion (ica) locus; however, expression of these genes was not affected by an rbf deletion in the chromosome. The icaADBC genes are responsible for production of poly-N-acetylglucosamine (PNAG), a major constituent of biofilm. The icaR gene encodes a negative regulator of icaADBC. In UAMS-1 carrying an Rbf-encoding plasmid, Rbf was found to repress icaR transcription with a concomitant increase in icaADBC expression and increased PNAG and biofilm production relative to isogenic strains lacking the plasmid. Sequencing of the rbf gene from UAMS-1 showed that there was a 2-bp insertion affecting the 50th codon of the rbf open reading frame, suggesting that rbf is a pseudogene in UAMS-1. This finding explains why deletion of rbf had no effect on biofilm formation in UAMS-1. To further characterize the Rbf regulation on biofilm we compared biofilm formation, icaA and icaR transcription, and PNAG production in 8325-4 and its isogenic rbf and icaR single mutants and an rbf icaR double mutant. Our results are consistent with a model wherein rbf represses synthesis of icaR, which in turn results in derepression of icaADBC and increased PNAG production. Furthermore, purified rbf did not bind to the icaR or icaA promoter region, suggesting that rbf controls expression of an unknown factor(s) that represses icaR. The role of rbf in controlling the S. aureus biofilm phenotype was further demonstrated in a clinical strain, MW2.
Collapse
|
96
|
Transcriptomic response of Lactococcus lactis in mixed culture with Staphylococcus aureus. Appl Environ Microbiol 2009; 75:4473-82. [PMID: 19429566 DOI: 10.1128/aem.02653-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanisms of interaction between Lactococcus lactis and the food pathogen Staphylococcus aureus are of crucial importance, as one major role of lactic acid bacteria (LAB) in fermented foods is to inhibit undesirable and pathogenic flora. It was never questioned if the presence of a pathogen can actively modify the gene expression patterns of LAB in a shared environment. In this study, transcriptome and biochemical analyses were combined to assess the dynamic response of L. lactis in a mixed culture with S. aureus. The presence of S. aureus hardly affected the growth of L. lactis but dramatically modified its gene expression profile. The main effect was related to earlier carbon limitation and a concomitantly lower growth rate in the mixed culture due to the consumption of glucose by both species. More specific responses involved diverse cellular functions. Genes associated with amino acid metabolism, ion transport, oxygen response, menaquinone metabolism, and cell surface and phage expression were differentially expressed in the mixed culture. This study led to new insights into possible mechanisms of interaction between L. lactis and S. aureus. Moreover, new and unexpected effects of L. lactis on the virulence of S. aureus were discovered, as described elsewhere (S. Even, C. Charlier, S. Nouaille, N. L. Ben Zakour, M. Cretenet, F. J. Cousin, M. Gautier, M. Cocaign-Bousquet, P. Loubière, and Y. Le Loir, Appl. Environ. Microbiol. 75:4459-4472, 2009).
Collapse
|
97
|
Nagarajan V, Smeltzer MS, Elasri MO. Genome-scale transcriptional profiling in Staphylococcus aureus : bringing order out of chaos. FEMS Microbiol Lett 2009; 295:204-10. [PMID: 19459979 DOI: 10.1111/j.1574-6968.2009.01595.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We used the Staphylococcus aureus microarray meta-database (SAMMD) to compare the transcriptional profiles defined by different experiments targeting the same phenomenon in S. aureus. We specifically examined differences associated with the accessory gene regulator (agr), the staphylococcal accessory regulator (sarA), and growth within a biofilm. We found that in all three cases, there was a striking lack of overlap between the transcriptional profiles. For instance, while all experiments focusing on biofilm formation identified hundreds of differentially expressed genes, only one of these was common to all transcriptomes. Several factors could potentially contribute to this variability including the use of different biofilm models, different growth media, different microarray platforms, and, perhaps most importantly, different strains of S. aureus. The last appeared to be particularly important in the case of the agr and sarA transcriptomes. While these results emphasize the need to introduce some degree of standardization into genome-scale, microarray-based transcriptional profiling experiments, they also demonstrate the need to consider multiple strains of S. aureus in order to avoid any strain-specific bias in the interpretation of results. Our comparisons also illustrate how identification of strain-dependent differences using SAMMD can lead to the development of specific hypotheses that can then be experimentally addressed. Based on this, we have added new features to SAMMD that allow for direct comparisons between transcriptional profiling experiments.
Collapse
Affiliation(s)
- Vijayaraj Nagarajan
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | | |
Collapse
|
98
|
Sambanthamoorthy K, Schwartz A, Nagarajan V, Elasri MO. The Role of msa in Staphylococcus aureus Biofilm Formation. BMC Microbiol 2008; 8:221. [PMID: 19087289 PMCID: PMC2648981 DOI: 10.1186/1471-2180-8-221] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 12/16/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is an important pathogen that forms biofilms. The global regulator sarA is essential for biofilm formation. Since the modulator of sarA (msa) is required for full expression of sarA and regulates several virulence factors, we examined the capacity of the msa mutant to form biofilm. RESULTS We found that mutation of msa results in reduced expression of sarA in biofilm and that the msa mutant formed a weak and unstable biofilm. The msa mutant is able to adhere to surfaces and begins to form biofilm but fails to mature indicating that the defect of the msa mutant biofilm is in the accumulation stage but not in primary adhesion. CONCLUSION The msa gene plays an important role in biofilm development which is likely due to its role in modulating the expression of sarA. This finding is significant because it identifies a new gene that plays a role in the development of biofilm.
Collapse
Affiliation(s)
- Karthik Sambanthamoorthy
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406-0001, USA.
| | | | | | | |
Collapse
|
99
|
Prentice AM, Gershwin ME, Schaible UE, Keusch GT, Victora CG, Gordon JI. New challenges in studying nutrition-disease interactions in the developing world. J Clin Invest 2008; 118:1322-9. [PMID: 18382744 DOI: 10.1172/jci34034] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Latest estimates indicate that nutritional deficiencies account for 3 million child deaths each year in less-developed countries. Targeted nutritional interventions could therefore save millions of lives. However, such interventions require careful optimization to maximize benefit and avoid harm. Progress toward designing effective life-saving interventions is currently hampered by some serious gaps in our understanding of nutrient metabolism in humans. In this Personal Perspective, we highlight some of these gaps and make some proposals as to how improved research methods and technologies can be brought to bear on the problems of undernourished children in the developing world.
Collapse
Affiliation(s)
- Andrew M Prentice
- MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
100
|
Abstract
CodY is a global regulatory protein that was first discovered in Bacillus subtilis, where it couples gene expression to changes in the pools of critical metabolites through its activation by GTP and branched-chain amino acids. Homologs of CodY can be found encoded in the genomes of nearly all low-G+C gram-positive bacteria, including Staphylococcus aureus. The introduction of a codY-null mutation into two S. aureus clinical isolates, SA564 and UAMS-1, through allelic replacement, resulted in the overexpression of several virulence genes. The mutant strains had higher levels of hemolytic activity toward rabbit erythrocytes in their culture fluid, produced more polysaccharide intercellular adhesin (PIA), and formed more robust biofilms than did their isogenic parent strains. These phenotypes were associated with derepressed levels of RNA for the hemolytic alpha-toxin (hla), the accessory gene regulator (agr) (RNAII and RNAIII/hld), and the operon responsible for the production of PIA (icaADBC). These data suggest that CodY represses, either directly or indirectly, the synthesis of a number of virulence factors of S. aureus.
Collapse
|