Tan S, Noto JM, Romero-Gallo J, Peek RM, Amieva MR. Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface.
PLoS Pathog 2011;
7:e1002050. [PMID:
21589900 PMCID:
PMC3093365 DOI:
10.1371/journal.ppat.1002050]
[Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/11/2011] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche.
Helicobacter pylori (Hp) is a bacterium that chronically infects the stomach of humans and can lead to serious illness. To survive in the stomach, the bacteria intimately interact with the epithelial lining. Some inject the virulence protein CagA into the host cells, and we previously showed that CagA helps Hp survive and grow directly on the epithelial cell surface. Iron is one of the limiting factors that infectious bacteria must acquire from their host. Using a model polarized epithelium system, we discovered that CagA is able to alter the internalization, intracellular transport, and polarity of the transferrin/transferrin receptor iron uptake system. This allows the bacteria to shuttle iron across the epithelium and suggests a novel mechanism of iron acquisition from host cells, enabling Hp growth on the cell surface. Another major virulence factor of Hp, VacA, is also involved in this process. To test the role of CagA in iron acquisition in vivo, we infected iron-deficient Mongolian gerbils and found that CagA-deficient bacteria had a decreased ability to colonize the stomach. Our study illustrates how microbes that chronically infect our mucosal surfaces can manipulate the epithelium to acquire micronutrients from host cells and grow on the cell surface.
Collapse