51
|
Barbosa AS, Abreu PAE, Neves FO, Atzingen MV, Watanabe MM, Vieira ML, Morais ZM, Vasconcellos SA, Nascimento ALTO. A newly identified leptospiral adhesin mediates attachment to laminin. Infect Immun 2006; 74:6356-64. [PMID: 16954400 PMCID: PMC1695492 DOI: 10.1128/iai.00460-06] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Several pathogens, including spirochetes, have been shown to express surface proteins that interact with the extracellular matrix (ECM). This adhesin-mediated binding process seems to be a crucial step in the colonization of host tissues. This study examined the interaction of putative leptospiral outer membrane proteins with laminin, collagen type I, collagen type IV, cellular fibronectin, and plasma fibronectin. Six predicted coding sequences selected from the Leptospira interrogans serovar Copenhageni genome were cloned, and proteins were expressed, purified by metal affinity chromatography, and characterized by circular dichroism spectroscopy. Their capacity to mediate attachment to ECM components was evaluated by binding assays. We have identified a leptospiral protein encoded by LIC12906, named Lsa24 (leptospiral surface adhesin; 24 kDa) that binds strongly to laminin. Attachment of Lsa24 to laminin was specific, dose dependent, and saturable. Laminin oxidation by sodium metaperiodate reduced the protein-laminin interaction in a concentration-dependent manner, indicating that laminin sugar moieties are crucial for this interaction. Triton X-114-solubilized extract of L. interrogans and phase partitioning showed that Lsa24 was exclusively in the detergent phase, indicating that it is a component of the leptospiral membrane. Moreover, Lsa24 partially inhibited leptospiral adherence to immobilized laminin. This newly identified membrane protein may play a role in mediating adhesion of L. interrogans to the host. To our knowledge, this is the first leptospiral adhesin with laminin-binding properties reported to date.
Collapse
Affiliation(s)
- Angela S Barbosa
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Li X, Liu X, Beck DS, Kantor FS, Fikrig E. Borrelia burgdorferi lacking BBK32, a fibronectin-binding protein, retains full pathogenicity. Infect Immun 2006; 74:3305-13. [PMID: 16714558 PMCID: PMC1479267 DOI: 10.1128/iai.02035-05] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BBK32, a fibronectin-binding protein of Borrelia burgdorferi, is one of many surface lipoproteins that are differentially expressed by the Lyme disease spirochete at various stages of its life cycle. The level of BBK32 expression in B. burgdorferi is highest during infection of the mammalian host and lowest in flat ticks. This temporal expression profile, along with its fibronectin-binding activity, strongly suggests that BBK32 may play an important role in Lyme pathogenesis in the host. To test this hypothesis, we constructed an isogenic BBK32 deletion mutant from wild-type B. burgdorferi B31 by replacing the BBK32 gene with a kanamycin resistance cassette through homologous recombination. We examined both the wild-type strain and the BBK32 deletion mutant extensively in the experimental mouse-tick model of the Borrelia life cycle. Our data indicated that B. burgdorferi lacking BBK32 retained full pathogenicity in mice, regardless of whether mice were infected artificially by syringe inoculation or naturally by tick bite. The loss of BBK32 expression in the mutant had no adverse effect on spirochete acquisition (mouse-to-tick) and transmission (tick-to-mouse) processes. These results suggest that additional B. burgdorferi proteins can complement the function of BBK32, fibronectin binding or otherwise, during the natural spirochete life cycle.
Collapse
Affiliation(s)
- Xin Li
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar St., New Haven, CT 06520-8031, USA
| | | | | | | | | |
Collapse
|
53
|
Seshu J, Esteve-Gassent MD, Labandeira-Rey M, Kim JH, Trzeciakowski JP, Höök M, Skare JT. Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi. Mol Microbiol 2006; 59:1591-601. [PMID: 16468997 DOI: 10.1111/j.1365-2958.2005.05042.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Borrelia burgdorferi, the aetiological agent of Lyme disease, utilizes multiple adhesins to interact with both the arthropod vector and mammalian hosts it colonizes. One such adhesive molecule is a surface-exposed fibronectin-binding lipoprotein, designated BBK32. Previous characterization of BBK32-mediated fibronectin binding has been limited to biochemical analyses due to the difficulty in mutagenizing infectious isolates of B. burgdorferi. Here we report an alternative method to inactivate bbk32 via allelic exchange through use of a low-passage variant of B. burgdorferi strain B31 that is more readily transformed. The resulting mutant does not synthesize BBK32, exhibits reduced fibronectin binding in solid phase assays and manifests decreased interactions with mouse fibroblast cells relative to both the infectious parent and genetic complement. Furthermore, the bbk32 knockout was significantly attenuated in the murine model of Lyme disease, whereas a genetically complemented control was not, indicating that BBK32 is necessary for maximal B. burgdorferi infection in the mouse. To our knowledge this is the first mutational analysis of a surface exposed, functional borrelial lipoprotein adhesin whose activity is associated with the mammalian host environment. By analogy with other pathogens that utilize fibronectin binding as an important virulence determinant, the borrelial fibronectin-BBK32 interaction is likely to be important in B. burgdorferi-specific pathogenic mechanisms, particularly in the context of dissemination, secondary colonization and/or persistence.
Collapse
Affiliation(s)
- J Seshu
- Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Science Center, 407 Reynolds Medical Building, College Station, 77843, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Fikrig E, Narasimhan S. Borrelia burgdorferi–Traveling incognito? Microbes Infect 2006; 8:1390-9. [PMID: 16698304 DOI: 10.1016/j.micinf.2005.12.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 12/26/2005] [Indexed: 01/13/2023]
Abstract
We outline in this review how Borrelia burgdorferi, the causative agent of Lyme disease, moves from the tick to the vertebrate host, and what molecules are potentially involved in this challenging commute. The survival strategies utilized by the spirochete during transmission and the initial stages of infection are discussed.
Collapse
Affiliation(s)
- Erol Fikrig
- Section of Rheumatology, Department of Medicine, Yale University School of Medicine, Room 525A, 300 Cedar Street, New Haven, CT 06520-8031, USA.
| | | |
Collapse
|
55
|
Fischer JR, LeBlanc KT, Leong JM. Fibronectin binding protein BBK32 of the Lyme disease spirochete promotes bacterial attachment to glycosaminoglycans. Infect Immun 2006; 74:435-41. [PMID: 16368999 PMCID: PMC1346595 DOI: 10.1128/iai.74.1.435-441.2006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, causes a multisystemic illness that can affect the skin, heart, joints, and nervous system and is capable of attachment to diverse cell types. Among the host components recognized by this spirochete are fibronectin and glycosaminoglycans (GAGs). Three surface-localized GAG-binding bacterial ligands, Bgp, DbpA, and DbpB, have been previously identified, but recent studies suggested that at least one additional GAG-binding ligand is expressed on the spirochetal surface when the spirochete is adapted to the mammalian host environment. BBK32 is a surface lipoprotein that is produced during infection and that has been shown to bind to fibronectin. In this study, we show that, when BBK32 was produced from a shuttle vector in an otherwise nonadherent high-passage B. burgdorferi strain, the protein localized on the bacterial surface and conferred attachment to fibronectin and to mammalian cell monolayers. In addition, the high-passage strain producing BBK32 bound to purified preparations of the GAGs dermatan sulfate and heparin, as well as to these GAGs on the surfaces of cultured mammalian cells. Recombinant BBK32 recognized purified heparin, indicating that the bacterial attachment to GAGs was due to direct binding by BBK32. This GAG-binding activity of BBK32 is apparently independent of fibronectin recognition, because exogenous heparin had no effect on BBK32-mediated bacterial binding to fibronectin.
Collapse
Affiliation(s)
- Joshua R Fischer
- Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | |
Collapse
|
56
|
Grubhoffer L, Golovchenko M, Vancová M, Zacharovová-Slavícková K, Rudenko N, Oliver JH. Lyme borreliosis: insights into tick-/host-borrelia relations. Folia Parasitol (Praha) 2006; 52:279-94. [PMID: 16405291 DOI: 10.14411/fp.2005.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lyme borreliosis (LB) is a serious infectious disease of humans and some domestic animals in temperate regions of the Northern Hemisphere. It is caused by certain spirochetes in the Borrelia burgdorferi sensu lato (s.l.) species complex. The complex consists of 11 species (genospecies). Borrelia burgdorferi sensu stricto (s.s.), Borrelia garinii and Borrelia afzelii are the major agents of human disease. Borrelia burgdorferi s.l. species are transmitted mainly by ticks belonging to the Ixodes ricinus species complex plus a few additional species not currently assigned to the complex. B. burgdorferi infections may produce an acute or chronic disease with a wide array of clinical symptoms such as erythema migrans (EM), carditis, arthritis, neuroborreliosis, and acrodermatitis chronica atrophicans (ACA). Differences in LB spirochetes 'genospecies' and strains/isolates determine the occurrence and severity of this multi-system disease. Accurate and reliable identification of the LB spirochetes in ticks as well as knowledge of their prevalence are essential for prevention against the disease and development of an effective vaccine. An overview of the knowledge of molecular factors with emphasis on potential protein-carbohydrate interactions in the tick-borrelia system is the main focus of this review.
Collapse
Affiliation(s)
- Libor Grubhoffer
- Institute of Parasitology, Academy of Sciences of the Czech Republic and Faculty of Biological Sciences, University of South Bohemia, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic.
| | | | | | | | | | | |
Collapse
|
57
|
Coburn J, Fischer JR, Leong JM. Solving a sticky problem: new genetic approaches to host cell adhesion by the Lyme disease spirochete. Mol Microbiol 2005; 57:1182-95. [PMID: 16101994 DOI: 10.1111/j.1365-2958.2005.04759.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Lyme disease spirochetes, comprised of at least three closely related species, Borrelia burgdorferi, Borrelia garinii and Borrelia afzelii, are fascinating and enigmatic bacterial pathogens. They are maintained by tick-mediated transmission between mammalian hosts, usually small rodents. The ability of these bacteria, which have relatively small genomes, to survive and disseminate in both an immunocompetent mammal and in an arthropod vector suggests that they have evolved elegant and indispensable strategies for interacting with their hosts. Recognition of specific mammalian and tick tissues is likely to be essential for successful completion of the enzootic life cycle but, given the historical difficulties in genetic manipulation of these organisms, characterization of factors promoting cell adhesion has until recently largely been confined to either the manipulation of host cells or the analysis of potential bacterial ligands in the form of recombinant proteins. These studies have led to the identification of several mammalian receptors for Lyme disease spirochetes, including glycosaminoglycans, decorin, fibronectin and integrins, as well as a tick receptor for the bacterium, and also candidate cognate bacterial ligands. Recent advances in our ability to genetically manipulate Lyme disease spirochetes, particularly B. burgdorferi, are now providing us with firm evidence that these ligands indeed do promote bacterial adherence to host cells, and with new insights into the roles of these multifacted Borrelia-host cell interactions during mammalian and arthropod infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Division of Geographic Medicine and Infectious Diseases, Tufts-New England Medical Center, Box 41, 750 Washington Street, Boston, MA 02111, USA
| | | | | |
Collapse
|
58
|
Abstract
Lyme borreliosis continues to be a significant public health problem. Because of good public education, the incidence of Lyme arthritis and other late-stage symptoms has not increased in tandem with the increases in early infection. There have been major advances in the understanding of the pathogenesis of Lyme arthritis. The understanding of mechanisms of arthritis in Lyme borreliosis may also shed light on the mechanisms of disease in other infectious and noninfectious arthritides.
Collapse
Affiliation(s)
- Linden Hu
- Division of Geographic Medicine and Infectious Diseases, Tufts-New England Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
59
|
Raibaud S, Schwarz-Linek U, Kim JH, Jenkins HT, Baines ER, Gurusiddappa S, Höök M, Potts JR. Borrelia burgdorferi binds fibronectin through a tandem beta-zipper, a common mechanism of fibronectin binding in staphylococci, streptococci, and spirochetes. J Biol Chem 2005; 280:18803-9. [PMID: 15737988 DOI: 10.1074/jbc.m501731200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BBK32 is a fibronectin-binding protein from the Lyme disease-causing spirochete Borrelia burgdorferi. In this study, we show that BBK32 shares sequence similarity with fibronectin module-binding motifs previously identified in proteins from Streptococcus pyogenes and Staphylococcus aureus. Nuclear magnetic resonance spectroscopy and isothermal titration calorimetry are used to confirm the binding sites of BBK32 peptides within the N-terminal domain of fibronectin and to measure the affinities of the interactions. Comparison of chemical shift perturbations in fibronectin F1 modules on binding of peptides from BBK32, FnBPA from S. aureus, and SfbI from S. pyogenes provides further evidence for a shared mechanism of binding. Despite the different locations of the bacterial attachment sites in BBK32 compared with SfbI from S. pyogenes and FnBPA from S. aureus, an antiparallel orientation is observed for binding of the N-terminal domain of fibronectin to each of the pathogens. Thus, these phylogenetically and morphologically distinct bacterial pathogens have similar mechanisms for binding to human fibronectin.
Collapse
Affiliation(s)
- Sophie Raibaud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Kim JH, Singvall J, Schwarz-Linek U, Johnson BJB, Potts JR, Höök M. BBK32, a fibronectin binding MSCRAMM from Borrelia burgdorferi, contains a disordered region that undergoes a conformational change on ligand binding. J Biol Chem 2004; 279:41706-14. [PMID: 15292204 DOI: 10.1074/jbc.m401691200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BBK32 is a fibronectin-binding lipoprotein on Borrelia burgdorferi, the causative agent of Lyme disease. Analysis using secondary structure prediction programs suggested that BBK32 is composed of two domains, an N-terminal segment lacking well defined secondary structure and a C-terminal segment composed largely of alpha-helices. Analysis of purified recombinant forms of the two domains by circular dichroism spectroscopy, gel permeation chromatography, and intrinsic viscosity determination were consistent with an N-terminal-extended, unstructured segment and a C-terminal globular domain in BBK32. Solid phase binding experiments suggest that the unstructured N-terminal domain binds fibronectin. Analysis of changes in circular dichroism spectra of the N-terminal segment of BBK32 upon binding of the N-terminal domain of fibronectin revealed an increase in beta-sheet content in the complex. Hence, BBK32, which belongs to a different family of proteins and shows no overall sequence similarity with the fibronectin binding MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) of Gram-positive bacteria, binds fibronectin by a mechanism that is reminiscent of the "tandem beta-zipper" previously demonstrated for the fibronectin binding of streptococcal adhesins.
Collapse
Affiliation(s)
- Jung Hwa Kim
- Center for Extracellular Matrix Biology, Albert B. Alkek Institute of Biosciences and Technology, Texas A and M University System Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
61
|
Zambrano MC, Beklemisheva AA, Bryksin AV, Newman SA, Cabello FC. Borrelia burgdorferi binds to, invades, and colonizes native type I collagen lattices. Infect Immun 2004; 72:3138-46. [PMID: 15155615 PMCID: PMC415685 DOI: 10.1128/iai.72.6.3138-3146.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi binds strongly to the extracellular matrix and cells of the connective tissue, a binding apparently mediated by specific proteins and proteoglycans. We investigated the interactions between B. burgdorferi cells and intact type I collagen using hydrated lattices that reproduce features of in vivo collagen matrices. B. burgdorferi cells of several strains adhered avidly to these acellular matrices by a mechanism that was not mediated by decorin or other proteoglycans. Moreover, following adhesion to these matrices, B. burgdorferi grew and formed microcolonies. The collagen used in these studies was confirmed to lack decorin by immunoblot analysis; B. burgdorferi cells lacking the decorin adhesin bound readily to intact collagen matrices. B. burgdorferi also bound to collagen lattices that incorporated enzymes that degraded glycosaminoglycan chains in any residual proteoglycans. Binding of the bacteria to intact collagen was nonetheless specific, as bacteria did not bind agar and showed only minimal binding to bovine serum albumin, gelatin, pepsinized type I collagen, and intact collagen that had been misassembled under nonphysiological pH and ionic-strength conditions. Proteinase K treatment of B. burgdorferi cells decreased the binding, as did a lack of flagella, suggesting that surface-exposed proteins and motility may be involved in the ability of B. burgdorferi to interact with intact collagen matrices. The high efficiency of binding of B. burgdorferi strains to intact collagen matrices permits replacement of the commonly used isotopic binding assay with visual fluorescent microscopic assays and will facilitate future studies of these interactions.
Collapse
Affiliation(s)
- Maria C Zambrano
- Department of Microbiology and Immunology, New York Medical College, Basic Science Building, Valhalla, NY 10595-1690, USA
| | | | | | | | | |
Collapse
|
62
|
Schwarz-Linek U, Höök M, Potts JR. The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 2004; 52:631-41. [PMID: 15101971 DOI: 10.1111/j.1365-2958.2004.04027.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many pathogenic Gram-positive bacteria produce cell wall-anchored proteins that bind to components of the extracellular matrix (ECM) of the host. These bacterial MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) are thought to play a critical role in infection. One group of MSCRAMMs, produced by staphylococci and streptococci, targets fibronectin (Fn, a glycoprotein found in the ECM and body fluids of vertebrates) using repeats in the C-terminal region of the bacterial protein. These bacterial Fn-binding proteins (FnBPs) mediate adhesion to host tissue and bacterial uptake into non-phagocytic host cells. Recent studies on interactions between the host and bacterial proteins at the residue-specific level and on the mechanism of host cell invasion are providing a much clearer picture of these processes.
Collapse
Affiliation(s)
- Ulrich Schwarz-Linek
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
63
|
Hodzic E, Feng S, Freet KJ, Barthold SW. Borrelia burgdorferi population dynamics and prototype gene expression during infection of immunocompetent and immunodeficient mice. Infect Immun 2003; 71:5042-55. [PMID: 12933847 PMCID: PMC187352 DOI: 10.1128/iai.71.9.5042-5055.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The population dynamics of Borrelia burgdorferi were quantified by real-time PCR targeting the flaB gene in skin (inoculation site, noninoculation site, and ear), heart (heart base and ventricle), quadriceps muscle, and the tibiotarsal joint at 1, 2, 4, 6, and 8 weeks after intradermal inoculation in C3H and C3H-scid mice. In addition, RNA transcription was assessed for several prototype genes, including flaB, ospA, ospC, dbpA, arp, vlsE, fbp, oppA-2, and p37-42. Spirochete numbers were equivalent in C3H and C3H-scid mice at 1 or 2 weeks and then declined in C3H mice, but they continued to rise and then plateaued in C3H-scid mice. Gene transcription was likewise higher in C3H-scid mice than in C3H mice, particularly at 4 or more weeks of infection. Gene transcription showed variation among tissues, with the highest levels of transcription in heart and joint tissue, which are sites of inflammation.
Collapse
Affiliation(s)
- Emir Hodzic
- Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
64
|
Abstract
Treatment-resistant Lyme arthritis (TRLA) develops in 10% of Lyme arthritis patients and is characterized by continuous joint inflammation that does not resolve with antibiotic therapy. TRLA is associated with HLA-DRB1*0401 and related alleles, as well as with an immune response to the Borrelia burgdorferi (Bb) outer surface protein A (OspA). The immunodominant epitope of OspA in the context of HLA-DRB1*0401 corresponds to amino acids 165-173 (OspA165-173). The human Lymphocyte Function Antigen-1 (hLFA1alpha) contains a peptide with homology to OspA165-173. Treatment-resistant Lyme arthritis patients' T cells, cloned based on their ability to bind OspA165-173-loaded HLA-DRB1*0401 tetramers, respond to OspA and hLFA1alpha with a different cytokine profile, suggesting that hLFA1alpha acts as a partial agonist with a potential role in the perpetuation of joint inflammation.
Collapse
|
65
|
Coburn J, Medrano M, Cugini C. Borrelia burgdorferi and its tropisms for adhesion molecules in the joint. Curr Opin Rheumatol 2002; 14:394-8. [PMID: 12118173 DOI: 10.1097/00002281-200207000-00010] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Borrelia burgdorferi, the spirochete that causes Lyme disease, has evolved elegant strategies for interacting with its mammalian hosts. Among them are several distinct mechanisms of adhesion to cells and extracellular matrix components. The mammalian receptors for B. burgdorferi that have been most thoroughly studied, and for which candidate bacterial ligands have been identified, are decorin, fibronectin, glycosaminoglycans, and beta3-chain integrins. This diversity of adhesion mechanisms allows B. burgdorferi to infect multiple tissues, including the synovial tissues of the joints.
Collapse
Affiliation(s)
- Jenifer Coburn
- New England Medical Center, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
66
|
Liang FT, Nelson FK, Fikrig E. DNA microarray assessment of putative Borrelia burgdorferi lipoprotein genes. Infect Immun 2002; 70:3300-3. [PMID: 12011030 PMCID: PMC128019 DOI: 10.1128/iai.70.6.3300-3303.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A DNA microarray containing fragments of 137 Borrelia burgdorferi B31 putative lipoprotein genes was used to examine Lyme disease spirochetes. DNA from B. burgdorferi sensu stricto B31, 297, and N40; Borrelia garinii IP90; and Borrelia afzelii P/Gau was fluorescently labeled and hybridized to the microarray, demonstrating the degree to which the individual putative lipoprotein genes were conserved among the genospecies. These data show that a DNA microarray can globally examine the genes encoding B. burgdorferi lipoproteins.
Collapse
Affiliation(s)
- Fang Ting Liang
- Section of Rheumatology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut 06520-8031, USA
| | | | | |
Collapse
|
67
|
Massey RC, Kantzanou MN, Fowler T, Day NP, Schofield K, Wann ER, Berendt AR, Höök M, Peacock SJ. Fibronectin-binding protein A of Staphylococcus aureus has multiple, substituting, binding regions that mediate adherence to fibronectin and invasion of endothelial cells. Cell Microbiol 2001; 3:839-51. [PMID: 11736995 DOI: 10.1046/j.1462-5822.2001.00157.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Invasive Staphylococcus aureus infection frequently involves bacterial seeding from the bloodstream to other body tissues, a process necessarily involving interactions between circulating bacteria and vascular endothelial cells. Staphylococcus aureus fibronectin-binding protein is central to the invasion of endothelium, fibronectin forming a bridge between bacterial fibronectin-binding proteins and host cell receptors. To dissect further the mechanisms of invasion of endothelial cells by S. aureus, a series of truncated FnBPA proteins that lacked one or more of the A, B, C or D regions were expressed on the surface of S. aureus and tested in fibronectin adhesion, endothelial cell adhesion and invasion assays. We found that this protein has multiple, substituting, fibronectin-binding regions, each capable of conferring both adherence to fibronectin and endothelial cells, and endothelial cell invasion. By expressing S. aureus FnBPA on the surface of the non-invasive Gram-positive organism Lactococcus lactis, we have found that no other bacterial factor is required for invasion. Furthermore, we have demonstrated that, as with other cell types, invasion of endothelial cells is mediated by integrin alpha5beta1. These findings may be of relevance to the development of preventive measures against systemic infection, and bacterial spread in the bacteraemic patient.
Collapse
Affiliation(s)
- R C Massey
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|