51
|
Lim CK, Villada JC, Chalifour A, Duran MF, Lu H, Lee PKH. Designing and Engineering Methylorubrum extorquens AM1 for Itaconic Acid Production. Front Microbiol 2019; 10:1027. [PMID: 31143170 PMCID: PMC6520949 DOI: 10.3389/fmicb.2019.01027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023] Open
Abstract
Methylorubrum extorquens (formerly Methylobacterium extorquens) AM1 is a methylotrophic bacterium with a versatile lifestyle. Various carbon sources including acetate, succinate and methanol are utilized by M. extorquens AM1 with the latter being a promising inexpensive substrate for use in the biotechnology industry. Itaconic acid (ITA) is a high-value building block widely used in various industries. Given that no wildtype methylotrophic bacteria are able to utilize methanol to produce ITA, we tested the potential of M. extorquens AM1 as an engineered host for this purpose. In this study, we successfully engineered M. extorquens AM1 to express a heterologous codon-optimized gene encoding cis-aconitic acid decarboxylase. The engineered strain produced ITA using acetate, succinate and methanol as the carbon feedstock. The highest ITA titer in batch culture with methanol as the carbon source was 31.6 ± 5.5 mg/L, while the titer and productivity were 5.4 ± 0.2 mg/L and 0.056 ± 0.002 mg/L/h, respectively, in a scaled-up fed-batch bioreactor under 60% dissolved oxygen saturation. We attempted to enhance the carbon flux toward ITA production by impeding poly-β-hydroxybutyrate accumulation, which is used as carbon and energy storage, via mutation of the regulator gene phaR. Unexpectedly, ITA production by the phaR mutant strain was not higher even though poly-β-hydroxybutyrate concentration was lower. Genome-wide transcriptomic analysis revealed that phaR mutation in the ITA-producing strain led to complex rewiring of gene transcription, which might result in a reduced carbon flux toward ITA production. Besides poly-β-hydroxybutyrate metabolism, we found evidence that PhaR might regulate the transcription of many other genes including those encoding other regulatory proteins, methanol dehydrogenases, formate dehydrogenases, malate:quinone oxidoreductase, and those synthesizing pyrroloquinoline quinone and thiamine co-factors. Overall, M. extorquens AM1 was successfully engineered to produce ITA using acetate, succinate and methanol as feedstock, further supporting this bacterium as a feasible host for use in the biotechnology industry. This study showed that PhaR could have a broader regulatory role than previously anticipated, and increased our knowledge of this regulator and its influence on the physiology of M. extorquens AM1.
Collapse
Affiliation(s)
- Chee Kent Lim
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Juan C Villada
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Annie Chalifour
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Maria F Duran
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Hongyuan Lu
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
52
|
Contrasting in vitro and in vivo methanol oxidation activities of lanthanide-dependent alcohol dehydrogenases XoxF1 and ExaF from Methylobacterium extorquens AM1. Sci Rep 2019; 9:4248. [PMID: 30862918 PMCID: PMC6414531 DOI: 10.1038/s41598-019-41043-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/28/2019] [Indexed: 11/19/2022] Open
Abstract
Lanthanide (Ln) elements are utilized as cofactors for catalysis by XoxF-type methanol dehydrogenases (MDHs). A primary assumption is that XoxF enzymes produce formate from methanol oxidation, which could impact organisms that require formaldehyde for assimilation. We report genetic and phenotypic evidence showing that XoxF1 (MexAM1_1740) from Methylobacterium extorquens AM1 produces formaldehyde, and not formate, during growth with methanol. Enzyme purified with lanthanum or neodymium oxidizes formaldehyde. However, formaldehyde oxidation via 2,6-dichlorophenol-indophenol (DCPIP) reduction is not detected in cell-free extracts from wild-type strain methanol- and lanthanum-grown cultures. Formaldehyde activating enzyme (Fae) is required for Ln methylotrophic growth, demonstrating that XoxF1-mediated production of formaldehyde is essential. Addition of exogenous lanthanum increases growth rate with methanol by 9–12% but does not correlate with changes to methanol consumption or formaldehyde accumulation. Transcriptomics analysis of lanthanum methanol growth shows upregulation of xox1 and downregulation of mxa genes, consistent with the Ln-switch, no differential expression of formaldehyde conversion genes, downregulation of pyrroloquinoline quinone (PQQ) biosynthesis genes, and upregulation of fdh4 formate dehydrogenase (FDH) genes. Additionally, the Ln-dependent ethanol dehydrogenase ExaF reduces methanol sensitivity in the fae mutant strain when lanthanides are present, providing evidence for the capacity of an auxiliary role for ExaF during Ln-dependent methylotrophy.
Collapse
|
53
|
Nguyen AD, Kim D, Lee EY. A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol. BMC Genomics 2019; 20:130. [PMID: 30755173 PMCID: PMC6373157 DOI: 10.1186/s12864-019-5487-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background Methanotrophs play an important role in biotechnological applications, with their ability to utilize single carbon (C1) feedstock such as methane and methanol to produce a range of high-value compounds. A newly isolated obligate methanotroph strain, Methylomonas sp. DH-1, became a platform strain for biotechnological applications because it has proven capable of producing chemicals, fuels, and secondary metabolites from methane and methanol. In this study, transcriptome analysis with RNA-seq was used to investigate the transcriptional change of Methylomonas sp. DH-1 on methane and methanol. This was done to improve knowledge about C1 assimilation and secondary metabolite pathways in this promising, but under-characterized, methane-bioconversion strain. Results We integrated genomic and transcriptomic analysis of the newly isolated Methylomonas sp. DH-1 grown on methane and methanol. Detailed transcriptomic analysis indicated that (i) Methylomonas sp. DH-1 possesses the ribulose monophosphate (RuMP) cycle and the Embden–Meyerhof–Parnas (EMP) pathway, which can serve as main pathways for C1 assimilation, (ii) the existence and the expression of a complete serine cycle and a complete tricarboxylic acid (TCA) cycle might contribute to methane conversion and energy production, and (iii) the highly active endogenous plasmid pDH1 may code for essential metabolic processes. Comparative transcriptomic analysis on methane and methanol as a sole carbon source revealed different transcriptional responses of Methylomonas sp. DH-1, especially in C1 assimilation, secondary metabolite pathways, and oxidative stress. Especially, these results suggest a shift of central metabolism when substrate changed from methane to methanol in which formaldehyde oxidation pathway and serine cycle carried more flux to produce acetyl-coA and NADH. Meanwhile, downregulation of TCA cycle when grown on methanol may suggest a shift of its main function is to provide de novo biosynthesis, but not produce NADH. Conclusions This study provides insights into the transcriptomic profile of Methylomonas sp. DH-1 grown on major carbon sources for C1 assimilation, providing in-depth knowledge on the metabolic pathways of this strain. These observations and analyses can contribute to future metabolic engineering with the newly isolated, yet under-characterized, Methylomonas sp. DH-1 to enhance its biochemical application in relevant industries. Electronic supplementary material The online version of this article (10.1186/s12864-019-5487-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering & School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
54
|
Kim SJ, Yoon J, Im DK, Kim YH, Oh MK. Adaptively evolved Escherichia coli for improved ability of formate utilization as a carbon source in sugar-free conditions. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:207. [PMID: 31497067 PMCID: PMC6720381 DOI: 10.1186/s13068-019-1547-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/24/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Formate converted from CO2 reduction has great potential as a sustainable feedstock for biological production of biofuels and biochemicals. Nevertheless, utilization of formate for growth and chemical production by microbial species is limited due to its toxicity or the lack of a metabolic pathway. Here, we constructed a formate assimilation pathway in Escherichia coli and applied adaptive laboratory evolution to improve formate utilization as a carbon source in sugar-free conditions. RESULTS The genes related to the tetrahydrofolate and serine cycles from Methylobacterium extorquens AM1 were overexpressed for formate assimilation, which was proved by the 13C-labeling experiments. The amino acids detected by GC/MS showed significant carbon labeling due to biomass production from formate. Then, 150 serial subcultures were performed to screen for evolved strains with improved ability to utilize formate. The genomes of evolved mutants were sequenced and the mutations were associated with formate dehydrogenation, folate metabolism, and biofilm formation. Last, 90 mg/L of ethanol production from formate was achieved using fed-batch cultivation without addition of sugars. CONCLUSION This work demonstrates the effectiveness of the introduction of a formate assimilation pathway, combined with adaptive laboratory evolution, to achieve the utilization of formate as a carbon source. This study suggests that the constructed E. coli could serve as a strain to exploit formate and captured CO2.
Collapse
Affiliation(s)
- Seung-Jin Kim
- 1Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Jihee Yoon
- 1Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Dae-Kyun Im
- 1Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Yong Hwan Kim
- 2School of Energy and Chemical Engineering, UNIST, Ulju-gun, Ulsan, 44919 Republic of Korea
| | - Min-Kyu Oh
- 1Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
55
|
Habibi A, Nalband M, Jalilnejad E. Experimentation and CFD modeling of continuous degradation of formaldehyde by immobilized Ralstonia eutropha in a semi-pilot-scale plug flow bioreactor. Bioprocess Biosyst Eng 2018; 42:485-497. [PMID: 30539242 DOI: 10.1007/s00449-018-2052-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/30/2018] [Indexed: 11/29/2022]
Abstract
This study focuses on continuous formaldehyde (FA) biodegradation by Ralstonia eutropha immobilized on polyurethane foam in a semi-pilot-scale plug flow packed-bed bioreactor. The stepwise increasing of the influent FA concentration from 43.9 to 1325.1 mg L-1 was studied in the bioreactor during 70 days of operation. A complete removal of FA was achieved for inlet concentration up to 425.5 mg L-1 and the initial specific biodegradation rate reached to its maximum value about 44.3 mg gcell-1 h-1 at 425.5 mg L-1. However, further increase of inlet concentration resulted in decrease of the biodegradation performance of the immobilized cells due to the inhibitory effect of FA on the enzymatic system involved in the biodegradation process. Based on kinetic modeling results, the Luong equation with the following constants could best describe the behavior of the bio-system: maximum specific FA biodegradation rate (qmax) of 124 mg gcell-1 h-1, half-saturation constant (KS) of 337.2 mg L-1, maximum degradable FA concentration (Smax) of 1582 mg L-1, and shape factor (n) of 1.49. Also, three-dimensional simulation of the bioreactor was performed using an integrated computational fluid dynamics (CFD) approach that takes into account both the biokinetic constants of the immobilized system as well as the fluid properties under steady-state condition. Eulerian computations successfully anticipated the concentration gradients through the reactor for different inlet FA concentrations, and uniform vertical velocity pathlines and non-dispersed plug flow inside the reactor were verified by the presented velocity distribution and flow streamlines.
Collapse
Affiliation(s)
- Alireza Habibi
- Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| | - Mehran Nalband
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Elham Jalilnejad
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran.
| |
Collapse
|
56
|
Bang J, Lee SY. Assimilation of formic acid and CO 2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc Natl Acad Sci U S A 2018; 115:E9271-E9279. [PMID: 30224468 PMCID: PMC6176599 DOI: 10.1073/pnas.1810386115] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gaseous one-carbon (C1) compounds or formic acid (FA) converted from CO2 can be an attractive raw material for bio-based chemicals. Here, we report the development of Escherichia coli strains assimilating FA and CO2 through the reconstructed tetrahydrofolate (THF) cycle and reverse glycine cleavage (gcv) pathway. The Methylobacterium extorquens formate-THF ligase, methenyl-THF cyclohydrolase, and methylene-THF dehydrogenase genes were expressed to allow FA assimilation. The gcv reaction was reversed by knocking out the repressor gene (gcvR) and overexpressing the gcvTHP genes. This engineered strain synthesized 96% and 86% of proteinogenic glycine and serine, respectively, from FA and CO2 in a glucose-containing medium. Native serine deaminase converted serine to pyruvate, showing 4.5% of pyruvate-forming flux comes from FA and CO2 The pyruvate-forming flux from FA and CO2 could be increased to 14.9% by knocking out gcvR, pflB, and serA, chromosomally expressing gcvTHP under trc, and overexpressing the reconstructed THF cycle, gcvTHP, and lpd genes in one vector. To reduce glucose usage required for energy and redox generation, the Candida boidinii formate dehydrogenase (Fdh) gene was expressed. The resulting strain showed specific glucose, FA, and CO2 consumption rates of 370.2, 145.6, and 14.9 mg⋅g dry cell weight (DCW)-1⋅h-1, respectively. The C1 assimilation pathway consumed 21.3 wt% of FA. Furthermore, cells sustained slight growth using only FA and CO2 after glucose depletion, suggesting that combined use of the C1 assimilation pathway and C. boidinii Fdh will be useful for eventually developing a strain capable of utilizing FA and CO2 without an additional carbon source such as glucose.
Collapse
Affiliation(s)
- Junho Bang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea;
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea
- BioInformatics Research Center, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea
- BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea
| |
Collapse
|
57
|
A modified serine cycle in Escherichia coli coverts methanol and CO 2 to two-carbon compounds. Nat Commun 2018; 9:3992. [PMID: 30266898 PMCID: PMC6162302 DOI: 10.1038/s41467-018-06496-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
Microbial utilization of renewable one-carbon compounds, such as methane, methanol, formic acid, and CO2, has emerged as a potential approach to increase the range of carbon sources for bioproduction and address climate change issues. Here, we modify the natural serine cycle present in methylotrophs and build an adapted pathway for Escherichia coli, which allows microorganism to condense methanol (or formate) together with bicarbonate to produce various products. We introduce the modified cycle into E. coli and demonstrate its capability for one-carbon assimilation through growth complementation and isotope labeling experiments. We also demonstrate conversion of methanol to ethanol by utilizing the modified serine cycle in an engineered E. coli strain, achieving a reaction yet to be accomplished by a one-pot chemical process. This work provides a platform to utilize various renewable one-carbon compounds as carbon sources for biosynthesis through a modified serine cycle in E. coli.
Collapse
|
58
|
Yishai O, Bouzon M, Döring V, Bar-Even A. In Vivo Assimilation of One-Carbon via a Synthetic Reductive Glycine Pathway in Escherichia coli. ACS Synth Biol 2018; 7:2023-2028. [PMID: 29763299 DOI: 10.1021/acssynbio.8b00131] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Assimilation of one-carbon compounds presents a key biochemical challenge that limits their use as sustainable feedstocks for microbial growth and production. The reductive glycine pathway is a synthetic metabolic route that could provide an optimal way for the aerobic assimilation of reduced C1 compounds. Here, we show that a rational integration of native and foreign enzymes enables the tetrahydrofolate and glycine cleavage/synthase systems to operate in the reductive direction, such that Escherichia coli satisfies all of its glycine and serine requirements from the assimilation of formate and CO2. Importantly, the biosynthesis of serine from formate and CO2 does not lower the growth rate, indicating high flux that is able to provide 10% of cellular carbon. Our findings assert that the reductive glycine pathway could support highly efficient aerobic assimilation of C1-feedstocks.
Collapse
Affiliation(s)
- Oren Yishai
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Volker Döring
- Genoscope, Institut François Jacob, CEA, Evry, France
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
59
|
Schada von Borzyskowski L, Carrillo M, Leupold S, Glatter T, Kiefer P, Weishaupt R, Heinemann M, Erb TJ. An engineered Calvin-Benson-Bassham cycle for carbon dioxide fixation in Methylobacterium extorquens AM1. Metab Eng 2018; 47:423-433. [DOI: 10.1016/j.ymben.2018.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
|
60
|
Claassens NJ, Sánchez-Andrea I, Sousa DZ, Bar-Even A. Towards sustainable feedstocks: A guide to electron donors for microbial carbon fixation. Curr Opin Biotechnol 2018; 50:195-205. [PMID: 29453021 DOI: 10.1016/j.copbio.2018.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022]
Abstract
The replacement of fossil and agricultural feedstocks with sustainable alternatives for the production of chemicals and fuels is a societal and environmental necessity. This challenge can be tackled by using inorganic or one-carbon compounds as electron donors for microbial CO2 fixation and bioproduction. Yet, considering the wide array of microbial electron donors, which are the best suited for bioindustry? Here, we propose criteria to evaluate these compounds, considering factors such as production methods, physicochemical properties, and microbial utilization. H2, CO, and formate emerge as the most promising electron donors as they can be produced electrochemically at high efficiency and, importantly, have reduction potentials low enough to directly reduce the cellular electron carriers. Still, further research towards the production and utilization of other electron donors-especially phosphite-might unlock the full potential of microbial CO2 fixation and bioproduction.
Collapse
Affiliation(s)
- Nico Joannes Claassens
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Diana Zita Sousa
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
61
|
Bringel F, Vuilleumier S. Metabolic Regulation: A Master Role for Ribulose-1,5-Bisphosphate in One-Carbon Assimilation. Curr Biol 2017; 27:R1127-R1129. [PMID: 29065298 DOI: 10.1016/j.cub.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Engineering organisms for biotechnology applications requires knowledge of their essential genes and associated regulatory networks. A new study of methylotrophic metabolism in Methylobacterium reveals essentiality of the unregulated, off-pathway phosphoribulokinase gene and an unexpected key regulatory role for its product ribulose-1,5-bisphosphate.
Collapse
Affiliation(s)
- Françoise Bringel
- Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France.
| | - Stéphane Vuilleumier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France
| |
Collapse
|
62
|
Yishai O, Goldbach L, Tenenboim H, Lindner SN, Bar-Even A. Engineered Assimilation of Exogenous and Endogenous Formate in Escherichia coli. ACS Synth Biol 2017; 6:1722-1731. [PMID: 28558223 DOI: 10.1021/acssynbio.7b00086] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Decoupling biorefineries from land use and agriculture is a major challenge. As formate can be produced from various sources, e.g., electrochemical reduction of CO2, microbial formate-assimilation has the potential to become a sustainable feedstock for the bioindustry. However, organisms that naturally grow on formate are limited by either a low biomass yield or by a narrow product spectrum. The engineering of a model biotechnological microbe for growth on formate via synthetic pathways represents a promising approach to tackle this challenge. Here, we achieve a critical milestone for two such synthetic formate-assimilation pathways in Escherichia coli. Our engineering strategy involves the division of the pathways into metabolic modules; the activity of each module-providing at least one essential building block-is selected for in an appropriate auxotrophic strain. We demonstrate that formate can serve as a sole source of all cellular C1-compounds, including the beta-carbon of serine. We further show that by overexpressing the native threonine cleavage enzymes, the entire cellular glycine requirement can be provided by threonine biosynthesis and degradation. Together, we confirm the simultaneous activity of all pathway segments of the synthetic serine-threonine cycle. We go beyond the formate bioeconomy concept by showing that, under anaerobic conditions, formate produced endogenously by pyruvate formate-lyase can replace exogenous formate. The resulting prototrophic strain constitutes a substantial rewiring of central metabolism in which C1, glycine, and serine metabolism proceed via a unique set of pathways. This strain can serve as a platform for future metabolic-engineering efforts and could further pave the way for investigating the plasticity of metabolic networks.
Collapse
Affiliation(s)
- Oren Yishai
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Leander Goldbach
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Hezi Tenenboim
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Steffen N. Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
63
|
Zhang W, Zhang T, Wu S, Wu M, Xin F, Dong W, Ma J, Zhang M, Jiang M. Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy. RSC Adv 2017. [DOI: 10.1039/c6ra27038g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Methanol represents an attractive non-food raw material in biotechnological processes from an economic and process point of view. It is vital to elucidate methanol metabolic pathways, which will help to genetically construct non-native methylotrophs.
Collapse
Affiliation(s)
- Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Ting Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Sihua Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Mingke Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
| |
Collapse
|
64
|
Yishai O, Lindner SN, Gonzalez de la Cruz J, Tenenboim H, Bar-Even A. The formate bio-economy. Curr Opin Chem Biol 2016; 35:1-9. [DOI: 10.1016/j.cbpa.2016.07.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
|
65
|
Ponnudurai R, Kleiner M, Sayavedra L, Petersen JM, Moche M, Otto A, Becher D, Takeuchi T, Satoh N, Dubilier N, Schweder T, Markert S. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME JOURNAL 2016; 11:463-477. [PMID: 27801908 PMCID: PMC5270565 DOI: 10.1038/ismej.2016.124] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/28/2016] [Accepted: 08/10/2016] [Indexed: 12/28/2022]
Abstract
The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate
symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a
sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the
last decades, the degree of interdependence between the three symbiotic
partners, their individual metabolic contributions, as well as the mechanism of
carbon transfer from the symbionts to the host are poorly understood. We used a
combination of proteomics and genomics to investigate the physiology and
metabolism of the individual symbiotic partners. Our study revealed that key
metabolic functions are most likely accomplished jointly by B. azoricus
and its symbionts: (1) CO2 is pre-concentrated by the host for carbon
fixation by the sulfur-oxidizing symbiont, and (2) the host replenishes
essential biosynthetic TCA cycle intermediates for the sulfur-oxidizing
symbiont. In return (3), the sulfur oxidizer may compensate for the host's
putative deficiency in amino acid and cofactor biosynthesis. We also identified
numerous ‘symbiosis-specific' host proteins by comparing
symbiont-containing and symbiont-free host tissues and symbiont fractions. These
proteins included a large complement of host digestive enzymes in the gill that
are likely involved in symbiont digestion and carbon transfer from the symbionts
to the host.
Collapse
Affiliation(s)
- Ruby Ponnudurai
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Manuel Kleiner
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Lizbeth Sayavedra
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jillian M Petersen
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Martin Moche
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Andreas Otto
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Nicole Dubilier
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Thomas Schweder
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
66
|
Cho DH, Jang MG, Kim YH. Formatotrophic Production of Poly-β-hydroxybutyric Acid (PHB) from Methylobacterium sp. using Formate as the Sole Carbon and Energy Source. KOREAN CHEMICAL ENGINEERING RESEARCH 2016. [DOI: 10.9713/kcer.2016.54.5.719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
67
|
Fu Y, Beck DAC, Lidstrom ME. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1. BMC Microbiol 2016; 16:156. [PMID: 27435978 PMCID: PMC4949768 DOI: 10.1186/s12866-016-0778-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. (13)C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. RESULTS The major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways. Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. CONCLUSIONS In this study, (13)C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.
Collapse
Affiliation(s)
- Yanfen Fu
- Department of Chemical Engineering, University of Washington, 616 NE Northlake Place, Benjamin Hall Room 440, Seattle, 98105, WA, USA
| | - David A C Beck
- Department of Chemical Engineering, University of Washington, 616 NE Northlake Place, Benjamin Hall Room 440, Seattle, 98105, WA, USA.,eScience Institute, University of Washington, 616 NE, Northlake Place, Seattle, 98195, WA, USA
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, 616 NE Northlake Place, Benjamin Hall Room 440, Seattle, 98105, WA, USA. .,Department of Microbiology, University of Washington, 616 NE, Northlake Place, Seattle, 98195, WA, USA.
| |
Collapse
|
68
|
Michener JK, Vuilleumier S, Bringel F, Marx CJ. Transfer of a Catabolic Pathway for Chloromethane in Methylobacterium Strains Highlights Different Limitations for Growth with Chloromethane or with Dichloromethane. Front Microbiol 2016; 7:1116. [PMID: 27486448 PMCID: PMC4949252 DOI: 10.3389/fmicb.2016.01116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/04/2016] [Indexed: 11/14/2022] Open
Abstract
Chloromethane (CM) is an ozone-depleting gas, produced predominantly from natural sources, that provides an important carbon source for microbes capable of consuming it. CM catabolism has been difficult to study owing to the challenging genetics of its native microbial hosts. Since the pathways for CM catabolism show evidence of horizontal gene transfer, we reproduced this transfer process in the laboratory to generate new CM-catabolizing strains in tractable hosts. We demonstrate that six putative accessory genes improve CM catabolism, though heterologous expression of only one of the six is strictly necessary for growth on CM. In contrast to growth of Methylobacterium strains with the closely related compound dichloromethane (DCM), we find that chloride export does not limit growth on CM and, in general that the ability of a strain to grow on DCM is uncorrelated with its ability to grow on CM. This heterologous expression system allows us to investigate the components required for effective CM catabolism and the factors that limit effective catabolism after horizontal transfer.
Collapse
Affiliation(s)
- Joshua K Michener
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA; Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA; Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | | | | | - Christopher J Marx
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA; Department of Biological Sciences, University of IdahoMoscow, ID, USA; Institute for Bioinformatics and Evolutionary Studies, University of IdahoMoscow, ID, USA; Center for Modeling Complex Interactions, University of IdahoMoscow, ID, USA
| |
Collapse
|
69
|
Bar-Even A. Formate Assimilation: The Metabolic Architecture of Natural and Synthetic Pathways. Biochemistry 2016; 55:3851-63. [PMID: 27348189 DOI: 10.1021/acs.biochem.6b00495] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formate may become an ideal mediator between the physicochemical and biological realms, as it can be produced efficiently from multiple available sources, such as electricity and biomass, and serve as one of the simplest organic compounds for providing both carbon and energy to living cells. However, limiting the realization of formate as a microbial feedstock is the low diversity of formate-fixing enzymes and thereby the small number of naturally occurring formate-assimilation pathways. Here, the natural enzymes and pathways supporting formate assimilation are presented and discussed together with proposed synthetic routes that could permit growth on formate via existing as well as novel formate-fixing reactions. By considering such synthetic routes, the diversity of metabolic solutions for formate assimilation can be expanded dramatically, such that different host organisms, cultivation conditions, and desired products could be matched with the most suitable pathway. Astute application of old and new formate-assimilation pathways may thus become a cornerstone in the development of sustainable strategies for microbial production of value-added chemicals.
Collapse
Affiliation(s)
- Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology , Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
70
|
Nayak DD, Agashe D, Lee MC, Marx CJ. Selection Maintains Apparently Degenerate Metabolic Pathways due to Tradeoffs in Using Methylamine for Carbon versus Nitrogen. Curr Biol 2016; 26:1416-26. [PMID: 27212407 DOI: 10.1016/j.cub.2016.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 01/12/2023]
Abstract
Microorganisms often encode multiple non-orthologous metabolic modules that catalyze the same reaction. However, little experimental evidence actually demonstrates a selective basis for metabolic degeneracy. Many methylotrophs-microorganisms that grow on reduced single-carbon compounds-like Methylobacterium extorquens AM1 encode two routes for methylamine oxidation: the periplasmic methylamine dehydrogenase (MaDH) and the cytoplasmic N-methylglutamate (NMG) pathway. In Methylobacterium extorquens AM1, MaDH is essential for methylamine growth, but the NMG pathway has no known physiological role. Here, we use experimental evolution of two isolates lacking (or incapable of using) MaDH to uncover the physiological challenges that need to be overcome in order to use the NMG pathway for growth on methylamine as a carbon and energy source. Physiological characterization of the evolved isolates revealed regulatory rewiring to increase expression of the NMG pathway and novel mechanisms to mitigate cytoplasmic ammonia buildup. These adaptations led us to infer and validate environmental conditions under which the NMG pathway is advantageous compared to MaDH. The highly expressed MaDH enables rapid growth on high concentrations of methylamine as the primary carbon and energy substrate, whereas the energetically expensive NMG pathway plays a pivotal role during growth with methylamine as the sole nitrogen source, which we demonstrate is especially true under limiting concentrations (<1 mM). Tradeoffs between cellular localization and ammonium toxicity lead to selection for this apparent degeneracy as it is beneficial to facultative methylotrophs that have to switch between using methylamine as a carbon and energy source or just a nitrogen source.
Collapse
Affiliation(s)
- Dipti D Nayak
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Deepa Agashe
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ming-Chun Lee
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Marx
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA; Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
71
|
Marker Exchange Mutagenesis of mxaF, Encoding the Large Subunit of the Mxa Methanol Dehydrogenase, in Methylosinus trichosporium OB3b. Appl Environ Microbiol 2015; 82:1549-1555. [PMID: 26712545 DOI: 10.1128/aem.03615-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/17/2015] [Indexed: 02/05/2023] Open
Abstract
Methanotrophs have remarkable redundancy in multiple steps of the central pathway of methane oxidation to carbon dioxide. For example, it has been known for over 30 years that two forms of methane monooxygenase, responsible for oxidizing methane to methanol, exist in methanotrophs, i.e., soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), and that expression of these two forms is controlled by the availability of copper. Specifically, sMMO expression occurs in the absence of copper, while pMMO expression increases with increasing copper concentrations. More recently, it was discovered that multiple forms of methanol dehydrogenase (MeDH), Mxa MeDH and Xox MeDH, also exist in methanotrophs and that the expression of these alternative forms is regulated by the availability of cerium. That is, expression of Xox MeDH increases in the presence of cerium, while Mxa MeDH expression decreases in the presence of cerium. As it had been earlier concluded that pMMO and Mxa MeDH form a supercomplex in which electrons from Mxa MeDH are back donated to pMMO to drive the initial oxidation of methane, we speculated that Mxa MeDH could be rendered inactive through marker-exchange mutagenesis but growth on methane could still be possible if cerium was added to increase the expression of Xox MeDH under sMMO-expressing conditions. Here we report that mxaF, encoding the large subunit of Mxa MeDH, could indeed be knocked out in Methylosinus trichosporium OB3b, yet growth on methane was still possible, so long as cerium was added. Interestingly, growth of this mutant occurred in both the presence and the absence of copper, suggesting that Xox MeDH can replace Mxa MeDH regardless of the form of MMO expressed.
Collapse
|
72
|
Smalley NE, Taipale S, De Marco P, Doronina NV, Kyrpides N, Shapiro N, Woyke T, Kalyuzhnaya MG. Functional and genomic diversity of methylotrophic Rhodocyclaceae: description of Methyloversatilis discipulorum sp. nov. Int J Syst Evol Microbiol 2015; 65:2227-2233. [PMID: 26231539 DOI: 10.1099/ijs.0.000190] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Three strains of methylotrophic Rhodocyclaceae (FAM1(T), RZ18-153 and RZ94) isolated from Lake Washington sediment samples were characterized. Based on phylogenetic analysis of 16S rRNA gene sequences the strains should be assigned to the genus Methyloversatilis. Similarly to other members of the family, the strains show broad metabolic capabilities and are able to utilize a number of organic acids, alcohols and aromatic compounds in addition to methanol and methylamine. The main fatty acids were 16:1ω7c (49-59%) and 16:0 (32-29%). Genomes of all isolates were sequenced, assembled and annotated in collaboration with the DOE Joint Genome Institute (JGI). Genome comparison revealed that the strains FAM1T, RZ18-153 and RZ94 are closely related to each other and almost equally distant from two previously described species of the genus Methyloversatilis, Methyloversatilis universalis and Methyloversatilis thermotolerans. Like other methylotrophic species of the genus Methyloversatilis, all three strains possess one-subunit PQQ-dependent ethanol/methanol dehydrogenase (Mdh-2), the N-methylglutamate pathway and the serine cycle (isocitrate lyase/malate synthase, Icl/ms(+) variant). Like M. universalis, strains FAM1(T), RZ18-153 and RZ94 have a quinohemoprotein amine dehydrogenase, a tungsten-containing formaldehyde ferredoxin oxidoreductase, phenol hydroxylase, and the complete Calvin cycle. Similarly to M. thermotolerans, the three strains possess two-subunit methanol dehydrogenase (MxaFI), monoamine oxidase (MAO) and nitrogenase. Based on the phenotypic and genomic data, the strains FAM1(T), RZ18-153 and RZ94 represent a novel species of the genus Methyloversatilis, for which the name Methyloversatilis discipulorum sp. nov. is proposed. The type strain is FAM1(T) ( = JCM 30542(T) = VKM = B-2888(T)).
Collapse
Affiliation(s)
- Nicole E Smalley
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Sami Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, PL 35 (YA), 40014 Jyväskylä, Finland
| | - Paolo De Marco
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- CESPU, IINFACTS, Gandra PRD, Portugal
| | - Nina V Doronina
- Skryabin G.K. Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino 142290, Moscow Region, Russia
| | - Nikos Kyrpides
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Nicole Shapiro
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Tanja Woyke
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Marina G Kalyuzhnaya
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
- Biology Department, San Diego State University, San Diego, CA, 92182-4614, USA
| |
Collapse
|
73
|
Carroll SM, Chubiz LM, Agashe D, Marx CJ. Parallel and Divergent Evolutionary Solutions for the Optimization of an Engineered Central Metabolism in Methylobacterium extorquens AM1. Microorganisms 2015; 3:152-74. [PMID: 27682084 PMCID: PMC5023240 DOI: 10.3390/microorganisms3020152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 11/16/2022] Open
Abstract
Bioengineering holds great promise to provide fast and efficient biocatalysts for methanol-based biotechnology, but necessitates proven methods to optimize physiology in engineered strains. Here, we highlight experimental evolution as an effective means for optimizing an engineered Methylobacterium extorquens AM1. Replacement of the native formaldehyde oxidation pathway with a functional analog substantially decreased growth in an engineered Methylobacterium, but growth rapidly recovered after six hundred generations of evolution on methanol. We used whole-genome sequencing to identify the basis of adaptation in eight replicate evolved strains, and examined genomic changes in light of other growth and physiological data. We observed great variety in the numbers and types of mutations that occurred, including instances of parallel mutations at targets that may have been "rationalized" by the bioengineer, plus other "illogical" mutations that demonstrate the ability of evolution to expose unforeseen optimization solutions. Notably, we investigated mutations to RNA polymerase, which provided a massive growth benefit but are linked to highly aberrant transcriptional profiles. Overall, we highlight the power of experimental evolution to present genetic and physiological solutions for strain optimization, particularly in systems where the challenges of engineering are too many or too difficult to overcome via traditional engineering methods.
Collapse
Affiliation(s)
- Sean Michael Carroll
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Lon M Chubiz
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63103, USA.
| | - Deepa Agashe
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
- National Centre for Biological Sciences, Bangalore 560065, India.
| | - Christopher J Marx
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83843, USA.
| |
Collapse
|
74
|
Good NM, Lamb A, Beck DAC, Martinez-Gomez NC, Kalyuzhnaya MG. C₁-Pathways in Methyloversatilis universalis FAM5: Genome Wide Gene Expression and Mutagenesis Studies. Microorganisms 2015; 3:175-97. [PMID: 27682085 PMCID: PMC5023235 DOI: 10.3390/microorganisms3020175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/17/2015] [Accepted: 03/26/2015] [Indexed: 11/25/2022] Open
Abstract
Methyloversatilis universalis FAM5 utilizes single carbon compounds such as methanol or methylamine as a sole source of carbon and energy. Expression profiling reveals distinct sets of genes altered during growth on methylamine vs methanol. As expected, all genes for the N-methylglutamate pathway were induced during growth on methylamine. Among other functions responding to the aminated source of C1-carbon, are a heme-containing amine dehydrogenase (Qhp), a distant homologue of formaldehyde activating enzyme (Fae3), molybdenum-containing formate dehydrogenase, ferredoxin reductase, a set of homologues to urea/ammonium transporters and amino-acid permeases. Mutants lacking one of the functional subunits of the amine dehydrogenase (ΔqhpA) or Δfae3 showed no growth defect on C1-compounds. M. universalis FAM5 strains with a lesion in the H4-folate pathway were not able to use any C1-compound, methanol or methylamine. Genes essential for C1-assimilation (the serine cycle and glyoxylate shunt) and H4MTP-pathway for formaldehyde oxidation showed similar levels of expression on both C1-carbon sources. M. universalis FAM5 possesses three homologs of the formaldehyde activating enzyme, a key enzyme of the H4MTP-pathway. Strains lacking the canonical Fae (fae1) lost the ability to grow on both C1-compounds. However, upon incubation on methylamine the fae1-mutant produced revertants (Δfae1R), which regained the ability to grow on methylamine. Double and triple mutants (Δfae1RΔfae3, or Δfae1RΔfae2 or Δfae1RΔfae2Δfae3) constructed in the revertant strain background showed growth similar to the Δfae1R phenotype. The metabolic pathways for utilization of methanol and methylamine in Methyloversatilis universalis FAM5 are reconstructed based on these gene expression and phenotypic data.
Collapse
Affiliation(s)
- Nathan M. Good
- Department of Microbiology, University of Washington, Seattle, WA 98195-1700, USA; E-Mails: (N.M.G.); (A.L.)
| | - Andrew Lamb
- Department of Microbiology, University of Washington, Seattle, WA 98195-1700, USA; E-Mails: (N.M.G.); (A.L.)
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-7735, USA; E-Mails: (D.A.C.B.); (N.C.M.G.)
| | - David A. C. Beck
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-7735, USA; E-Mails: (D.A.C.B.); (N.C.M.G.)
- eScience Institute, University of Washington, Seattle, WA 98195-1570, USA
| | - N. Cecilia Martinez-Gomez
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-7735, USA; E-Mails: (D.A.C.B.); (N.C.M.G.)
| | - Marina G. Kalyuzhnaya
- Department of Microbiology, University of Washington, Seattle, WA 98195-1700, USA; E-Mails: (N.M.G.); (A.L.)
- Biology Department, San Diego State University, North Life Science Room 401, San Diego, CA 92182-4614, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-619-594-5626
| |
Collapse
|
75
|
Methenyl-Dephosphotetrahydromethanopterin Is a Regulatory Signal for Acclimation to Changes in Substrate Availability in Methylobacterium extorquens AM1. J Bacteriol 2015; 197:2020-6. [PMID: 25845846 DOI: 10.1128/jb.02595-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During an environmental perturbation, the survival of a cell and its response to the perturbation depend on both the robustness and functionality of the metabolic network. The regulatory mechanisms that allow the facultative methylotrophic bacterium Methylobacterium extorquens AM1 to effect the metabolic transition from succinate to methanol growth are not well understood. Methenyl-dephosphotetrahydromethanopterin (methenyl-dH4MPT), an early intermediate during methanol metabolism, transiently accumulated 7- to 11-fold after addition of methanol to a succinate-limited culture. This accumulation partially inhibited the activity of the methylene-H4MPT dehydrogenase, MtdA, restricting carbon flux to the assimilation cycles. A strain overexpressing the gene (mch) encoding the enzyme that consumes methenyl-dH4MPT did not accumulate methenyl-dH4MPT and had a growth rate that was 2.7-fold lower than that of the wild type. This growth defect demonstrates the physiological relevance of this enzymatic regulatory mechanism during the acclimation period. Changes in metabolites and enzymatic activities were analyzed in the strain overexpressing mch. Under these conditions, the activity of the enzyme coupling formaldehyde with dH4MPT (Fae) remained constant, with concomitant formaldehyde accumulation. Release of methenyl-dH4MPT regulation did not affect the induction of the serine cycle enzyme activities immediately after methanol addition, but after 1 h, the activity of these enzymes decreased, likely due to the toxicity of formaldehyde accumulation. Our results support the hypothesis that in a changing environment, the transient accumulation of methenyl-dH4MPT and inhibition of MtdA activity are strategies that permit flexibility and acclimation of the metabolic network while preventing the accumulation of the toxic compound formaldehyde. IMPORTANCE The identification and characterization of regulatory mechanisms for methylotrophy are in the early stages. We report a nontranscriptional regulatory mechanism that was found to operate as an immediate response for acclimation during changes in substrate availability. Methenyl-dH4MPT, an early intermediate during methanol oxidation, reversibly inhibits the methylene-H4MPT dehydrogenase, MtdA, when Methylobacterium extorquens is challenged to switch from succinate to methanol growth. Bypassing this regulatory mechanism causes formaldehyde to accumulate. Fae, the enzyme catalyzing the conversion of formaldehyde to methylene-dH4MPT, was also identified as another potential regulatory target using this strategy. The results herein further our understanding of the complex regulatory network in methylotrophy and will allow us to improve metabolic engineering strategies of methylotrophs for the production of value-added products.
Collapse
|
76
|
Reimann J, Jetten MSM, Keltjens JT. Metal enzymes in "impossible" microorganisms catalyzing the anaerobic oxidation of ammonium and methane. Met Ions Life Sci 2015; 15:257-313. [PMID: 25707470 DOI: 10.1007/978-3-319-12415-5_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ammonium and methane are inert molecules and dedicated enzymes are required to break up the N-H and C-H bonds. Until recently, only aerobic microorganisms were known to grow by the oxidation of ammonium or methane. Apart from respiration, oxygen was specifically utilized to activate the inert substrates. The presumed obligatory need for oxygen may have resisted the search for microorganisms that are capable of the anaerobic oxidation of ammonium and of methane. However extremely slowly growing, these "impossible" organisms exist and they found other means to tackle ammonium and methane. Anaerobic ammonium-oxidizing (anammox) bacteria use the oxidative power of nitric oxide (NO) by forging this molecule to ammonium, thereby making hydrazine (N2H4). Nitrite-dependent anaerobic methane oxidizers (N-DAMO) again take advantage of NO, but now apparently disproportionating the compound into dinitrogen and dioxygen gas. This intracellularly produced dioxygen enables N-DAMO bacteria to adopt an aerobic mechanism for methane oxidation.Although our understanding is only emerging how hydrazine synthase and the NO dismutase act, it seems clear that reactions fully rely on metal-based catalyses known from other enzymes. Metal-dependent conversions not only hold for these key enzymes, but for most other reactions in the central catabolic pathways, again supported by well-studied enzymes from model organisms, but adapted to own specific needs. Remarkably, those accessory catabolic enzymes are not unique for anammox bacteria and N-DAMO. Close homologs are found in protein databases where those homologs derive from (partly) known, but in most cases unknown species that together comprise an only poorly comprehended microbial world.
Collapse
Affiliation(s)
- Joachim Reimann
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University of Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands,
| | | | | |
Collapse
|
77
|
Nayak DD, Marx CJ. Methylamine utilization via the N-methylglutamate pathway in Methylobacterium extorquens PA1 involves a novel flow of carbon through C1 assimilation and dissimilation pathways. J Bacteriol 2014; 196:4130-9. [PMID: 25225269 PMCID: PMC4248863 DOI: 10.1128/jb.02026-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/08/2014] [Indexed: 11/20/2022] Open
Abstract
Methylotrophs grow on reduced single-carbon compounds like methylamine as the sole source of carbon and energy. In Methylobacterium extorquens AM1, the best-studied aerobic methylotroph, a periplasmic methylamine dehydrogenase that catalyzes the primary oxidation of methylamine to formaldehyde has been examined in great detail. However, recent metagenomic data from natural ecosystems are revealing the abundance and importance of lesser-known routes, such as the N-methylglutamate pathway, for methylamine oxidation. In this study, we used M. extorquens PA1, a strain that is closely related to M. extorquens AM1 but is lacking methylamine dehydrogenase, to dissect the genetics and physiology of the ecologically relevant N-methylglutamate pathway for methylamine oxidation. Phenotypic analyses of mutants with null mutations in genes encoding enzymes of the N-methylglutamate pathway suggested that γ-glutamylmethylamide synthetase is essential for growth on methylamine as a carbon source but not as a nitrogen source. Furthermore, analysis of M. extorquens PA1 mutants with defects in methylotrophy-specific dissimilatory and assimilatory modules suggested that methylamine use via the N-methylglutamate pathway requires the tetrahydromethanopterin (H4MPT)-dependent formaldehyde oxidation pathway but not a complete tetrahydrofolate (H4F)-dependent formate assimilation pathway. Additionally, we present genetic evidence that formaldehyde-activating enzyme (FAE) homologs might be involved in methylotrophy. Null mutants of FAE and homologs revealed that FAE and FAE2 influence the growth rate and FAE3 influences the yield during the growth of M. extorquens PA1 on methylamine.
Collapse
Affiliation(s)
- Dipti D Nayak
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Christopher J Marx
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA Biological Sciences, University of Idaho, Moscow, Idaho, USA Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
78
|
Ochsner AM, Sonntag F, Buchhaupt M, Schrader J, Vorholt JA. Methylobacterium extorquens: methylotrophy and biotechnological applications. Appl Microbiol Biotechnol 2014; 99:517-34. [PMID: 25432674 DOI: 10.1007/s00253-014-6240-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 01/06/2023]
Abstract
Methylotrophy is the ability to use reduced one-carbon compounds, such as methanol, as a single source of carbon and energy. Methanol is, due to its availability and potential for production from renewable resources, a valuable feedstock for biotechnology. Nature offers a variety of methylotrophic microorganisms that differ in their metabolism and represent resources for engineering of value-added products from methanol. The most extensively studied methylotroph is the Alphaproteobacterium Methylobacterium extorquens. Over the past five decades, the metabolism of M. extorquens has been investigated physiologically, biochemically, and more recently, using complementary omics technologies such as transcriptomics, proteomics, metabolomics, and fluxomics. These approaches, together with a genome-scale metabolic model, facilitate system-wide studies and the development of rational strategies for the successful generation of desired products from methanol. This review summarizes the knowledge of methylotrophy in M. extorquens, as well as the available tools and biotechnological applications.
Collapse
Affiliation(s)
- Andrea M Ochsner
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
79
|
Nayak DD, Marx CJ. Genetic and phenotypic comparison of facultative methylotrophy between Methylobacterium extorquens strains PA1 and AM1. PLoS One 2014; 9:e107887. [PMID: 25232997 PMCID: PMC4169470 DOI: 10.1371/journal.pone.0107887] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/19/2014] [Indexed: 02/01/2023] Open
Abstract
Methylobacterium extorquens AM1, a strain serendipitously isolated half a century ago, has become the best-characterized model system for the study of aerobic methylotrophy (the ability to grow on reduced single-carbon compounds). However, with 5 replicons and 174 insertion sequence (IS) elements in the genome as well as a long history of domestication in the laboratory, genetic and genomic analysis of M. extorquens AM1 face several challenges. On the contrary, a recently isolated strain - M. extorquens PA1- is closely related to M. extorquens AM1 (100% 16S rRNA identity) and contains a streamlined genome with a single replicon and only 20 IS elements. With the exception of the methylamine dehydrogenase encoding gene cluster (mau), genes known to be involved in methylotrophy are well conserved between M. extorquens AM1 and M. extorquens PA1. In this paper we report four primary findings regarding methylotrophy in PA1. First, with a few notable exceptions, the repertoire of methylotrophy genes between PA1 and AM1 is extremely similar. Second, PA1 grows faster with higher yields compared to AM1 on C1 and multi-C substrates in minimal media, but AM1 grows faster in rich medium. Third, deletion mutants in PA1 throughout methylotrophy modules have the same C1 growth phenotypes observed in AM1. Finally, the precision of our growth assays revealed several unexpected growth phenotypes for various knockout mutants that serve as leads for future work in understanding their basis and generality across Methylobacterium strains.
Collapse
Affiliation(s)
- Dipti D. Nayak
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Christopher J. Marx
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
80
|
Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 2014; 10:331-9. [PMID: 24743257 DOI: 10.1038/nchembio.1509] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/25/2014] [Indexed: 11/08/2022]
Abstract
If methane, the main component of natural gas, can be efficiently converted to liquid fuels, world reserves of methane could satisfy the demand for transportation fuels in addition to use in other sectors. However, the direct activation of strong C-H bonds in methane and conversion to desired products remains a difficult technological challenge. This perspective reveals an opportunity to rethink the logic of biological methane activation and conversion to liquid fuels. We formulate a vision for a new foundation for methane bioconversion and suggest paths to develop technologies for the production of liquid transportation fuels from methane at high carbon yield and high energy efficiency and with low CO2 emissions. These technologies could support natural gas bioconversion facilities with a low capital cost and at small scales, which in turn could monetize the use of natural gas resources that are frequently flared, vented or emitted.
Collapse
|
81
|
Keltjens JT, Pol A, Reimann J, Op den Camp HJM. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 2014; 98:6163-83. [PMID: 24816778 DOI: 10.1007/s00253-014-5766-8] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/06/2023]
Abstract
Methanol dehydrogenase (MDH) catalyzes the first step in methanol use by methylotrophic bacteria and the second step in methane conversion by methanotrophs. Gram-negative bacteria possess an MDH with pyrroloquinoline quinone (PQQ) as its catalytic center. This MDH belongs to the broad class of eight-bladed β propeller quinoproteins, which comprise a range of other alcohol and aldehyde dehydrogenases. A well-investigated MDH is the heterotetrameric MxaFI-MDH, which is composed of two large catalytic subunits (MxaF) and two small subunits (MxaI). MxaFI-MDHs bind calcium as a cofactor that assists PQQ in catalysis. Genomic analyses indicated the existence of another MDH distantly related to the MxaFI-MDHs. Recently, several of these so-called XoxF-MDHs have been isolated. XoxF-MDHs described thus far are homodimeric proteins lacking the small subunit and possess a rare-earth element (REE) instead of calcium. The presence of such REE may confer XoxF-MDHs a superior catalytic efficiency. Moreover, XoxF-MDHs are able to oxidize methanol to formate, rather than to formaldehyde as MxaFI-MDHs do. While structures of MxaFI- and XoxF-MDH are conserved, also regarding the binding of PQQ, the accommodation of a REE requires the presence of a specific aspartate residue near the catalytic site. XoxF-MDHs containing such REE-binding motif are abundantly present in genomes of methylotrophic and methanotrophic microorganisms and also in organisms that hitherto are not known for such lifestyle. Moreover, sequence analyses suggest that XoxF-MDHs represent only a small part of putative REE-containing quinoproteins, together covering an unexploited potential of metabolic functions.
Collapse
Affiliation(s)
- Jan T Keltjens
- Department of Microbiology, Institute of Wetland and Water Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
82
|
Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. strain SB2 grown on methane or ethanol. Appl Environ Microbiol 2014; 80:3044-52. [PMID: 24610846 DOI: 10.1128/aem.00218-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A minority of methanotrophs are able to utilize multicarbon compounds as growth substrates in addition to methane. The pathways utilized by these microorganisms for assimilation of multicarbon compounds, however, have not been explicitly examined. Here, we report the draft genome of the facultative methanotroph Methylocystis sp. strain SB2 and perform a detailed transcriptomic analysis of cultures grown with either methane or ethanol. Evidence for use of the canonical methane oxidation pathway and the serine cycle for carbon assimilation from methane was obtained, as well as for operation of the complete tricarboxylic acid (TCA) cycle and the ethylmalonyl-coenzyme A (EMC) pathway. Experiments with Methylocystis sp. strain SB2 grown on methane revealed that genes responsible for the first step of methane oxidation, the conversion of methane to methanol, were expressed at a significantly higher level than those for downstream oxidative transformations, suggesting that this step may be rate limiting for growth of this strain with methane. Further, transcriptomic analyses of Methylocystis sp. strain SB2 grown with ethanol compared to methane revealed that on ethanol (i) expression of the pathway of methane oxidation and the serine cycle was significantly reduced, (ii) expression of the TCA cycle dramatically increased, and (iii) expression of the EMC pathway was similar. Based on these data, it appears that Methylocystis sp. strain SB2 converts ethanol to acetyl-coenzyme A, which is then funneled into the TCA cycle for energy generation or incorporated into biomass via the EMC pathway. This suggests that some methanotrophs have greater metabolic flexibility than previously thought and that operation of multiple pathways in these microorganisms is highly controlled and integrated.
Collapse
|
83
|
Mapping the fitness landscape of gene expression uncovers the cause of antagonism and sign epistasis between adaptive mutations. PLoS Genet 2014; 10:e1004149. [PMID: 24586190 PMCID: PMC3937219 DOI: 10.1371/journal.pgen.1004149] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
How do adapting populations navigate the tensions between the costs of gene expression and the benefits of gene products to optimize the levels of many genes at once? Here we combined independently-arising beneficial mutations that altered enzyme levels in the central metabolism of Methylobacterium extorquens to uncover the fitness landscape defined by gene expression levels. We found strong antagonism and sign epistasis between these beneficial mutations. Mutations with the largest individual benefit interacted the most antagonistically with other mutations, a trend we also uncovered through analyses of datasets from other model systems. However, these beneficial mutations interacted multiplicatively (i.e., no epistasis) at the level of enzyme expression. By generating a model that predicts fitness from enzyme levels we could explain the observed sign epistasis as a result of overshooting the optimum defined by a balance between enzyme catalysis benefits and fitness costs. Knowledge of the phenotypic landscape also illuminated that, although the fitness peak was phenotypically far from the ancestral state, it was not genetically distant. Single beneficial mutations jumped straight toward the global optimum rather than being constrained to change the expression phenotypes in the correlated fashion expected by the genetic architecture. Given that adaptation in nature often results from optimizing gene expression, these conclusions can be widely applicable to other organisms and selective conditions. Poor interactions between individually beneficial alleles affecting gene expression may thus compromise the benefit of sex during adaptation and promote genetic differentiation. The pace and outcome of a series of adaptive steps in an evolving lineage depends upon how well different beneficial mutations stack on top of each other. We found that independent beneficial mutations that affected gene expression for a metabolic pathway did not work well together, and were often jointly deleterious. The most beneficial mutations interacted the most poorly with others, which was a trend we found common in other biological systems. Through generating a model that accounted for enzymatic benefits and expression costs, we uncovered that this antagonism was caused by a phenotype to fitness mapping that had an intermediate peak. This allowed us to predict the fitness effect of double mutants and to uncover that the single winning mutations tended to move straight to the peak in a single step. These findings demonstrate the importance of considering the phenotypic changes that cause nonlinear interactions between mutations upon fitness, and thus influence how populations evolve.
Collapse
|
84
|
Carroll SM, Lee MC, Marx CJ. SIGN EPISTASIS LIMITS EVOLUTIONARY TRADE-OFFS AT THE CONFLUENCE OF SINGLE- AND MULTI-CARBON METABOLISM INMETHYLOBACTERIUM EXTORQUENSAM1. Evolution 2013; 68:760-71. [DOI: 10.1111/evo.12301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/02/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Sean Michael Carroll
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge Massachusetts
| | - Ming-Chun Lee
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge Massachusetts
- Department of Biochemistry; University of Hong Kong; Pok Fu Lam Hong Kong
| | - Christopher J. Marx
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge Massachusetts
- Faculty of Arts and Sciences Center for Systems Biology; Harvard University; Cambridge Massachusetts
| |
Collapse
|
85
|
Habibi A, Vahabzadeh F, Zaiat M. Dynamic mathematical models for biodegradation of formaldehyde by Ralstonia eutropha in a batch bioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 129:548-554. [PMID: 24018119 DOI: 10.1016/j.jenvman.2013.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
Degradation of formaldehyde by Ralstonia eutropha was studied in a batch bioreactor operated in recycling mode (30 °C, initial pH of 6.5, aeration rate 0.5 vvm, and a recycling flow rate of 6 mL min(-1)). Growth kinetics equations were described using four substrate inhibition models, and the initial formaldehyde concentration ranged from 54.5 to 993.0 mg L(-1). In each case, model parameters were estimated interactively using nonlinear regression analysis and on the basis of the goodness of fit, the fitness of the model to the experimental data was obtained (i.e., the coefficient of determination and the percent of standard deviation). The estimated parameters according to the Luong equation were μmax = 0.101 h(-1), KS = 54.1 mg L(-1), Sm = 1329 mg L(-1), and n = 2.07. According to the maintenance energies explained by Pirt, cell maintenance was quantified with q = Aμ + B; where A and B are the associated and non-associated growth parts of substrate consumption, respectively. The importance of these terms was verified using the developed models, which would efficiently describe the dynamic nature of growth and formaldehyde biodegradation.
Collapse
Affiliation(s)
- Alireza Habibi
- Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran
| | | | | |
Collapse
|
86
|
Nitschke W, Russell MJ. Beating the acetyl coenzyme A-pathway to the origin of life. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120258. [PMID: 23754811 DOI: 10.1098/rstb.2012.0258] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Attempts to draft plausible scenarios for the origin of life have in the past mainly built upon palaeogeochemical boundary conditions while, as detailed in a companion article in this issue, frequently neglecting to comply with fundamental thermodynamic laws. Even if demands from both palaeogeochemistry and thermodynamics are respected, then a plethora of strongly differing models are still conceivable. Although we have no guarantee that life at its origin necessarily resembled biology in extant organisms, we consider that the only empirical way to deduce how life may have emerged is by taking the stance of assuming continuity of biology from its inception to the present day. Building upon this conviction, we have assessed extant types of energy and carbon metabolism for their appropriateness to conditions probably pertaining in those settings of the Hadean planet that fulfil the thermodynamic requirements for life to come into being. Wood-Ljungdahl (WL) pathways leading to acetyl CoA formation are excellent candidates for such primordial metabolism. Based on a review of our present understanding of the biochemistry and biophysics of acetogenic, methanogenic and methanotrophic pathways and on a phylogenetic analysis of involved enzymes, we propose that a variant of modern methanotrophy is more likely than traditional WL systems to date back to the origin of life. The proposed model furthermore better fits basic thermodynamic demands and palaeogeochemical conditions suggested by recent results from extant alkaline hydrothermal seeps.
Collapse
Affiliation(s)
- Wolfgang Nitschke
- Bioénergétique et Ingénierie des Protéines UMR7281, CNRS/AMU, FR3479 Marseille, France.
| | | |
Collapse
|
87
|
Carroll SM, Marx CJ. Evolution after introduction of a novel metabolic pathway consistently leads to restoration of wild-type physiology. PLoS Genet 2013; 9:e1003427. [PMID: 23593025 PMCID: PMC3616920 DOI: 10.1371/journal.pgen.1003427] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 02/11/2013] [Indexed: 01/22/2023] Open
Abstract
Organisms cope with physiological stressors through acclimatizing mechanisms in the short-term and adaptive mechanisms over evolutionary timescales. During adaptation to an environmental or genetic perturbation, beneficial mutations can generate numerous physiological changes: some will be novel with respect to prior physiological states, while others might either restore acclimatizing responses to a wild-type state, reinforce them further, or leave them unchanged. We examined the interplay of acclimatizing and adaptive responses at the level of global gene expression in Methylobacterium extorquens AM1 engineered with a novel central metabolism. Replacing central metabolism with a distinct, foreign pathway resulted in much slower growth than wild-type. After 600 generations of adaptation, however, eight replicate populations founded from this engineered ancestor had improved up to 2.5-fold. A comparison of global gene expression in wild-type, engineered, and all eight evolved strains revealed that the vast majority of changes during physiological adaptation effectively restored acclimatizing processes to wild-type expression states. On average, 93% of expression perturbations from the engineered strain were restored, with 70% of these occurring in perfect parallel across all eight replicate populations. Novel changes were common but typically restricted to one or a few lineages, and reinforcing changes were quite rare. Despite this, cases in which expression was novel or reinforced in parallel were enriched for loci harboring beneficial mutations. One case of parallel, reinforced changes was the pntAB transhydrogenase that uses NADH to reduce NADP+ to NADPH. We show that PntAB activity was highly correlated with the restoration of NAD(H) and NADP(H) pools perturbed in the engineered strain to wild-type levels, and with improved growth. These results suggest that much of the evolved response to genetic perturbation was a consequence rather than a cause of adaptation and that physiology avoided “reinventing the wheel” by restoring acclimatizing processes to the pre-stressed state. Acclimatizing and adaptive (evolutionary) processes allow organisms to thrive despite cellular and environmental perturbations. Our work examined whether adaptation restores stress responses towards wild-type (pre-stressed) versus novel physiological states during adaptation by studying a bacterium (Methylobacterium extorquens AM1) that was experimentally engineered and evolved with a novel central metabolism. The engineered strain was much slower and less fit than wild-type, but eight replicate populations evolved for six hundred generations showed substantial improvements. We found that changes in gene expression during adaptation consistently restored acclimatizing processes to the wild-type state, often in 8/8 evolved lines. Novel changes were common and largely restricted to one lineage; however, highly parallel novel changes revealed loci harboring beneficial mutations. Even rarer were reinforced changes, such as pntAB transhydrogenase, which increased beyond immediate acclimation during evolution to restore NAD(P)(H) metabolism and improve growth. Overall, a few novel or reinforcing changes drove the mass-restoration of physiology back to wild-type.
Collapse
Affiliation(s)
- Sean Michael Carroll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Christopher J. Marx
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
88
|
Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG. Global Molecular Analyses of Methane Metabolism in Methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic Study. Front Microbiol 2013; 4:40. [PMID: 23565111 PMCID: PMC3615186 DOI: 10.3389/fmicb.2013.00040] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/17/2013] [Indexed: 11/20/2022] Open
Abstract
Methane utilizing bacteria (methanotrophs) are important in both environmental and biotechnological applications, due to their ability to convert methane to multicarbon compounds. However, systems-level studies of methane metabolism have not been carried out in methanotrophs. In this work we have integrated genomic and transcriptomic information to provide an overview of central metabolic pathways for methane utilization in Methylosinus trichosporium OB3b, a model alphaproteobacterial methanotroph. Particulate methane monooxygenase, PQQ-dependent methanol dehydrogenase, the H4MPT-pathway, and NAD-dependent formate dehydrogenase are involved in methane oxidation to CO2. All genes essential for operation of the serine cycle, the ethylmalonyl-CoA (EMC) pathway, and the citric acid (TCA) cycle were expressed. PEP-pyruvate-oxaloacetate interconversions may have a function in regulation and balancing carbon between the serine cycle and the EMC pathway. A set of transaminases may contribute to carbon partitioning between the pathways. Metabolic pathways for acquisition and/or assimilation of nitrogen and iron are discussed.
Collapse
Affiliation(s)
- Janet B Matsen
- Department of Chemical Engineering, University of Washington Seattle, WA, USA
| | | | | | | | | |
Collapse
|
89
|
Yang S, Matsen JB, Konopka M, Green-Saxena A, Clubb J, Sadilek M, Orphan VJ, Beck D, Kalyuzhnaya MG. Global Molecular Analyses of Methane Metabolism in Methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-Labeling Study. Front Microbiol 2013; 4:70. [PMID: 23565113 PMCID: PMC3615224 DOI: 10.3389/fmicb.2013.00070] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 03/12/2013] [Indexed: 11/27/2022] Open
Abstract
In this work we use metabolomics and 13C-labeling data to refine central metabolic pathways for methane utilization in Methylosinus trichosporium OB3b, a model alphaproteobacterial methanotrophic bacterium. We demonstrate here that similar to non-methane utilizing methylotrophic alphaproteobacteria the core metabolism of the microbe is represented by several tightly connected metabolic cycles, such as the serine pathway, the ethylmalonyl-CoA (EMC) pathway, and the citric acid (TCA) cycle. Both in silico estimations and stable isotope labeling experiments combined with single cell (NanoSIMS) and bulk biomass analyses indicate that a significantly larger portion of the cell carbon (over 60%) is derived from CO2 in this methanotroph. Our13 C-labeling studies revealed an unusual topology of the assimilatory network in which phosph(enol) pyruvate/pyruvate interconversions are key metabolic switches. A set of additional pathways for carbon fixation are identified and discussed.
Collapse
Affiliation(s)
- Song Yang
- Department of Chemical Engineering, University of Washington Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Elucidation of the role of the methylene-tetrahydromethanopterin dehydrogenase MtdA in the tetrahydromethanopterin-dependent oxidation pathway in Methylobacterium extorquens AM1. J Bacteriol 2013; 195:2359-67. [PMID: 23504017 DOI: 10.1128/jb.00029-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methylotroph Methylobacterium extorquens AM1 oxidizes methanol and methylamine to formaldehyde and subsequently to formate, an intermediate that serves as the branch point between assimilation (formation of biomass) and dissimilation (oxidation to CO₂). The oxidation of formaldehyde to formate is dephosphotetrahydromethanopterin (dH₄MPT) dependent, while the assimilation of carbon into biomass is tetrahydrofolate (H₄F) dependent. This bacterium contains two different enzymes, MtdA and MtdB, both of which are dehydrogenases able to use methylene-dH₄MPT, an intermediate in the oxidation of formaldehyde to formate. Unique to MtdA is a second enzymatic activity with methylene-H₄F. Since methylene-H₄F is the entry point into the biomass pathways, MtdA plays a key role in assimilatory metabolism. However, its role in oxidative metabolism via the dH₄MPT-dependent pathway and its apparent inability to replace MtdB in vivo on methanol growth are not understood. Here, we have shown that an mtdB mutant is able to grow on methylamine, providing a system to study the role of MtdA. We demonstrate that the absence of MtdB results in the accumulation of methenyl-dH₄MPT. Methenyl-dH₄MPT is shown to be a competitive inhibitor of the reduction of methenyl-H₄F to methylene-H₄F catalyzed by MtdA, with an estimated Ki of 10 μM. Thus, methenyl-dH₄MPT accumulation inhibits H₄F-dependent assimilation. Overexpression of mch in the mtdB mutant strain, predicted to reduce methenyl-dH₄MPT accumulation, enhances growth on methylamine. Our model proposes that MtdA regulates carbon flux due to differences in its kinetic properties for methylene-dH₄MPT and for methenyl-H₄F during growth on single-carbon compounds.
Collapse
|
91
|
Habibi A, Vahabzadeh F. Formaldehyde degradation by Ralstonia eutropha in an immobilized cell bioreactor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1557-1572. [PMID: 23802165 DOI: 10.1080/10934529.2013.797304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The formaldehyde (FA) degradation ability of the loofa-immobilized Ralstonia eutropha cells in a packed bed reactor was modeled using a statistically based design of the experiment (DOE) considering application of response surface methodology (RSM). The simultaneous effects of four operative test factors on the cells performance in terms of FA degradation rate and extent of the chemical oxygen demand (COD) removal were monitored. The combination of factors at initial FA concentration of 629.7 mg L(-1)h(-1), recycling substrate flow rate of 4.4 mL min(-1), aeration rate of 1.05 vvm, and the system's temperature of 28.8°C resulted the optimal conditions for the FA biodegradation rate and COD removal efficiency. Loofa porous structure was found to be a protective environment for the cells in exposing to the toxic substances and the scanning electron microscopy (SEM) images revealed extensive cells penetration within this support. Oxygen transfer analysis in the form of evaluating K la value was also carried out and at the optimum conditions of the DOE was equaled to 9.96 h(-1)and oxygen uptake rate was 35.6 mg L(-1)h(-1).
Collapse
Affiliation(s)
- Alireza Habibi
- Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran
| | | |
Collapse
|
92
|
Habibi A, Vahabzadeh F. Degradation of formaldehyde at high concentrations by phenol-adapted Ralstonia eutropha closely related to pink-pigmented facultative methylotrophs. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:279-292. [PMID: 23245303 DOI: 10.1080/10934529.2013.726829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The ability of the phenol-adapted Ralstonia eutropha to utilize formaldehyde (FD) as the sole source of carbon and energy was studied. Adaptation to FD was accomplished by substituting FD for glucose in a stepwise manner. The bacterium in the liquid test culture could tolerate concentrations of FD up to 900 mg L(-1). Degradation of FD was complete in 528 h at 30°C with shaking at 150 rpm (r = 1.67 mg L(-1) h(-1)), q = 0.035 g(FD) g(cell) (-1) h(-1). Substrate inhibition kinetics (Haldane and Luong equations) are used to describe the experimental data. At non-inhibitory concentrations of FD, the Monod equation was used. According to the Luong model, the values of the maximum specific growth rate (μ(max)), half-saturation coefficient (k(S)), the maximum allowable formaldehyde concentration (S(m)), and the shape factor (n) were 0.117 h(-1), 47.6 mg L(-1), 900 mg L(-1), and 2.2, respectively. The growth response of the test bacterium to consecutive FD feedings was examined, and the FD-adapted R. eutropha cells were able to degrade 1000 mg L(-1) FD in 150 h through 4 cycles of FD feeds. During FD degradation, formic acid metabolite was formed. Assimilation of FD, methanol, formic acid, and oxalate by the test bacterium was accompanied by the formation of a pink pigment. The carotenoid nature of the cellular pigment has been confirmed and the test bacterium appeared to be closely related to pink-pigmented facultative methylotrophs (PPFM). The extent of harm to soil exposed to biotreated wastewaters containing FD may be moderated due to the association between methylotrophic/oxalotrophic bacteria and plants.
Collapse
Affiliation(s)
- Alireza Habibi
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
93
|
Bar-Even A, Noor E, Flamholz A, Milo R. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1039-47. [PMID: 23123556 DOI: 10.1016/j.bbabio.2012.10.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/05/2012] [Accepted: 10/25/2012] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a promising approach that enables the biological production of commodities, like fuels and fine chemicals, using renewably produced electricity. Several techniques have been proposed to mediate the transfer of electrons from the cathode to living cells. Of these, the electroproduction of formate as a mediator seems especially promising: formate is readily soluble, of low toxicity and can be produced at relatively high efficiency and at reasonable current density. While organisms that are capable of formatotrophic growth, i.e. growth on formate, exist naturally, they are generally less suitable for bulk cultivation and industrial needs. Hence, it may be helpful to engineer a model organism of industrial relevance, such as E. coli, for growth on formate. There are numerous metabolic pathways that can potentially support formatotrophic growth. Here we analyze these diverse pathways according to various criteria including biomass yield, thermodynamic favorability, chemical motive force, kinetics and the practical challenges posed by their expression. We find that the reductive glycine pathway, composed of the tetrahydrofolate system, the glycine cleavage system, serine hydroxymethyltransferase and serine deaminase, is a promising candidate to support electrosynthesis in E. coli. The approach presented here exemplifies how combining different computational approaches into a systematic analysis methodology provides assistance in redesigning metabolism. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Arren Bar-Even
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
94
|
Lu H, Kalyuzhnaya M, Chandran K. Comparative proteomic analysis reveals insights into anoxic growth ofMethyloversatilis universalis FAM5 on methanol and ethanol. Environ Microbiol 2012; 14:2935-45. [DOI: 10.1111/j.1462-2920.2012.02857.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/23/2012] [Accepted: 07/23/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Huijie Lu
- Department of Earth and Environmental Engineering; Columbia University; New York; NY; 10027; USA
| | - Marina Kalyuzhnaya
- Department of Microbiology; University of Washington; Seattle; WA; 98105; USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering; Columbia University; New York; NY; 10027; USA
| |
Collapse
|
95
|
Marx CJ. Recovering from a bad start: rapid adaptation and tradeoffs to growth below a threshold density. BMC Evol Biol 2012; 12:109. [PMID: 22762241 PMCID: PMC3495640 DOI: 10.1186/1471-2148-12-109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial growth in well-mixed culture is often assumed to be an autonomous process only depending upon the external conditions under control of the investigator. However, increasingly there is awareness that interactions between cells in culture can lead to surprising phenomena such as density-dependence in the initiation of growth. RESULTS Here I report the unexpected discovery of a density threshold for growth of a strain of Methylobacterium extorquens AM1 used to inoculate eight replicate populations that were evolved in methanol. Six of these populations failed to grow to the expected full density during the first couple transfers. Remarkably, the final cell number of six populations crashed to levels 60- to 400-fold smaller than their cohorts. Five of these populations recovered to full density soon after, but one population remained an order of magnitude smaller for over one hundred generations. These variable dynamics appeared to be due to a density threshold for growth that was specific to both this particular ancestral strain and to growth on methanol. When tested at full density, this population had become less fit than its ancestor. Simply increasing the initial dilution 16-fold reversed this result, revealing that this population had more than a 3-fold advantage when tested at this lower density. As this population evolved and ultimately recovered to the same final density range as the other populations this low-density advantage waned. CONCLUSIONS These results demonstrate surprisingly strong tradeoffs during adaptation to growth at low absolute densities that manifest over just a 16-fold change in density. Capturing laboratory examples of transitions to and from growth at low density may help us understand the physiological and evolutionary forces that have led to the unusual properties of natural bacteria that have specialized to low-density environments such as the open ocean.
Collapse
Affiliation(s)
- Christopher J Marx
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
96
|
Peyraud R, Schneider K, Kiefer P, Massou S, Vorholt JA, Portais JC. Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1. BMC SYSTEMS BIOLOGY 2011; 5:189. [PMID: 22074569 PMCID: PMC3227643 DOI: 10.1186/1752-0509-5-189] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 11/10/2011] [Indexed: 01/21/2023]
Abstract
Background Methylotrophic microorganisms are playing a key role in biogeochemical processes - especially the global carbon cycle - and have gained interest for biotechnological purposes. Significant progress was made in the recent years in the biochemistry, genetics, genomics, and physiology of methylotrophic bacteria, showing that methylotrophy is much more widespread and versatile than initially assumed. Despite such progress, system-level description of the methylotrophic metabolism is currently lacking, and much remains to understand regarding the network-scale organization and properties of methylotrophy, and how the methylotrophic capacity emerges from this organization, especially in facultative organisms. Results In this work, we report on the integrated, system-level investigation of the metabolic network of the facultative methylotroph Methylobacterium extorquens AM1, a valuable model of methylotrophic bacteria. The genome-scale metabolic network of the bacterium was reconstructed and contains 1139 reactions and 977 metabolites. The sub-network operating upon methylotrophic growth was identified from both in silico and experimental investigations, and 13C-fluxomics was applied to measure the distribution of metabolic fluxes under such conditions. The core metabolism has a highly unusual topology, in which the unique enzymes that catalyse the key steps of C1 assimilation are tightly connected by several, large metabolic cycles (serine cycle, ethylmalonyl-CoA pathway, TCA cycle, anaplerotic processes). The entire set of reactions must operate as a unique process to achieve C1 assimilation, but was shown to be structurally fragile based on network analysis. This observation suggests that in nature a strong pressure of selection must exist to maintain the methylotrophic capability. Nevertheless, substantial substrate cycling could be measured within C2/C3/C4 inter-conversions, indicating that the metabolic network is highly versatile around a flexible backbone of central reactions that allows rapid switching to multi-carbon sources. Conclusions This work emphasizes that the metabolism of M. extorquens AM1 is adapted to its lifestyle not only in terms of enzymatic equipment, but also in terms of network-level structure and regulation. It suggests that the metabolism of the bacterium has evolved both structurally and functionally to an efficient but transitory utilization of methanol. Besides, this work provides a basis for metabolic engineering to convert methanol into value-added products.
Collapse
Affiliation(s)
- Rémi Peyraud
- Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
97
|
Halsey KH, Carter AE, Giovannoni SJ. Synergistic metabolism of a broad range of C1 compounds in the marine methylotrophic bacterium HTCC2181. Environ Microbiol 2011; 14:630-40. [PMID: 21981742 DOI: 10.1111/j.1462-2920.2011.02605.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 1.3 Mbp genome of HTCC2181, a member of the abundant OM43 clade of coastal bacterioplankton, suggested it is an obligate methylotroph. Preliminary experiments demonstrated that methanol and formaldehyde, but not other common C1 compounds such as methylamine, could support growth. Methanol concentrations in seawater are reportedly < 100 nM, suggesting either that the flux of methanol through plankton pools is very rapid, or that methanol may not be the primary growth substrate for HTCC2181. Therefore, we investigated the apparent extreme substrate range restriction of HTCC2181 in greater detail. Growth rate and maximum cell density of HTCC2181 increased with methanol concentration, yielding a K(s) value of 19 µM. In contrast, no growth was observed in the presence of the methylated (C1) compounds, methyl chloride, trimethylamine-oxide (TMAO) or dimethylsulfoniopropionate (DMSP) when they were the sole substrates. However, growth rate, maximum cell density and cellular ATP content were significantly enhanced when any of these methylated compounds were provided in the presence of a limiting concentration of methanol. These observations fit a model in which the metabolic intermediate formaldehyde is required for net carbon assimilation, allowing C1 substrates that do not produce a formaldehyde intermediate to be oxidized for energy, but not assimilated into biomass. Rates of methanol and TMAO oxidation and assimilation were measured with (14)C-radiolabelled compounds in cultures of HTCC2181 and seawater microbial communities collected off the Oregon coast. The results indicated that in nature as well as in culture, C1 substrates are partitioned between those that are mainly oxidized to produce energy and those that are assimilated. These findings indicate that the combined fluxes of C1 compounds in coastal systems are sufficient to support significant populations of obligate methyltrophs by a metabolic strategy that involves the synergistic metabolism of multiple C1 compounds.
Collapse
Affiliation(s)
- Kimberly H Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
98
|
|
99
|
Skovran E, Crowther GJ, Guo X, Yang S, Lidstrom ME. A systems biology approach uncovers cellular strategies used by Methylobacterium extorquens AM1 during the switch from multi- to single-carbon growth. PLoS One 2010; 5:e14091. [PMID: 21124828 PMCID: PMC2991311 DOI: 10.1371/journal.pone.0014091] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/18/2010] [Indexed: 11/25/2022] Open
Abstract
Background When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? Methylobacterium extorquens is a bacterium capable of growth on both multi- and single-carbon compounds. These different modes of growth utilize dramatically different central metabolic pathways with limited pathway overlap. Methodology/Principal Findings This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate growth (predicted to be energy-limited) to methanol growth (predicted to be reducing-power-limited), analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylene tetrahydrofolate dehydrogenase as one control point. This “downstream priming” mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints. Conclusions/Significance This multi-level approach has resulted in new insights into the metabolic strategies carried out to effect this shift between two dramatically different modes of growth and identified a number of potential flux control and regulatory check points as a further step toward understanding metabolic adaptation and the cellular strategies employed to maintain metabolic setpoints.
Collapse
Affiliation(s)
- Elizabeth Skovran
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
100
|
Yang S, Sadilek M, Lidstrom ME. Streamlined pentafluorophenylpropyl column liquid chromatography-tandem quadrupole mass spectrometry and global (13)C-labeled internal standards improve performance for quantitative metabolomics in bacteria. J Chromatogr A 2010; 1217:7401-10. [PMID: 20950815 PMCID: PMC3007600 DOI: 10.1016/j.chroma.2010.09.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 01/21/2023]
Abstract
Streamlined quantitative metabolomics in central metabolism of bacteria would be greatly facilitated by a high-efficiency liquid chromatography (LC) method in conjunction with accurate quantitation. To achieve this goal, a methodology for LC-tandem quadrupole mass spectrometry (LC-MS/MS) involving a pentafluorophenylpropyl (PFPP) column and culture-derived global (13)C-labeled internal standards (I.Ss.) has been developed and compared to hydrophilic interaction liquid chromatography (HILIC)-MS/MS and published combined two-dimensional gas chromatography and LC methods. All 50 tested metabolite standards from 5 classes (amino acids, carboxylic acids, nucleotides, acyl-CoAs and sugar phosphates) displayed good chromatographic separation and sensitivity on the PFPP column. In addition, many important critical pairs such as isomers/isobars (e.g. isoleucine/leucine, methylsuccinic acid/ethylmalonic acid and malonyl-CoA/3-hydroxybutyryl-CoA) and metabolites of similar structure (e.g. malate/fumarate) were resolved better on the PFPP than on the HILIC column. Compared to only one (13)C-labeled I.S., the addition of global (13)C-labeled I.Ss. improved quantitative linearity and accuracy. PFPP-MS/MS with global (13)C-labeled I.Ss. allowed the absolute quantitation of 42 metabolite pool sizes in Methylobacterium extorquens AM1. A comparison of metabolite level changes published previously for ethylamine (C2) versus succinate (C4) cultures of M. extorquens AM1 indicated a good consistency with the data obtained by PFPP-MS/MS, suggesting this single approach has the capability of providing comprehensive metabolite profiling similar to the combination of methods. The more accurate quantification obtained by this method forms a fundamental basis for flux measurements and can be used for metabolism modeling in bacteria in future studies.
Collapse
Affiliation(s)
- Song Yang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-2180, USA
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA 98195-2180, USA
| | - Mary E. Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-2180, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195-2180, USA
| |
Collapse
|