51
|
Immune loss as a driver of coexistence during host-phage coevolution. ISME JOURNAL 2018; 12:585-597. [PMID: 29328063 PMCID: PMC5776473 DOI: 10.1038/ismej.2017.194] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/18/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022]
Abstract
Bacteria and their viral pathogens face constant pressure for augmented immune and
infective capabilities, respectively. Under this reciprocally imposed selective regime, we
expect to see a runaway evolutionary arms race, ultimately leading to the extinction of
one species. Despite this prediction, in many systems host and pathogen coexist with
minimal coevolution even when well-mixed. Previous work explained this puzzling phenomenon
by invoking fitness tradeoffs, which can diminish an arms race dynamic. Here we propose
that the regular loss of immunity by the bacterial host can also produce host-phage
coexistence. We pair a general model of immunity with an experimental and theoretical case
study of the CRISPR-Cas immune system to contrast the behavior of tradeoff and loss
mechanisms in well-mixed systems. We find that, while both mechanisms can produce stable
coexistence, only immune loss does so robustly within realistic parameter ranges.
Collapse
|
52
|
Martynov A, Severinov K, Ispolatov I. Optimal number of spacers in CRISPR arrays. PLoS Comput Biol 2017; 13:e1005891. [PMID: 29253874 PMCID: PMC5749868 DOI: 10.1371/journal.pcbi.1005891] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/02/2018] [Accepted: 11/24/2017] [Indexed: 11/19/2022] Open
Abstract
Prokaryotic organisms survive under constant pressure of viruses. CRISPR-Cas system provides its prokaryotic host with an adaptive immune defense against viruses that have been previously encountered. It consists of two components: Cas-proteins that cleave the foreign DNA and CRISPR array that suits as a virus recognition key. CRISPR array consists of a series of spacers, short pieces of DNA that originate from and match the corresponding parts of viral DNA called protospacers. Here we estimate the number of spacers in a CRISPR array of a prokaryotic cell which maximizes its protection against a viral attack. The optimality follows from a competition between two trends: too few distinct spacers make host vulnerable to an attack by a virus with mutated corresponding protospacers, while an excessive variety of spacers dilutes the number of the CRISPR complexes armed with the most recent and thus most useful spacers. We first evaluate the optimal number of spacers in a simple scenario of an infection by a single viral species and later consider a more general case of multiple viral species. We find that depending on such parameters as the concentration of CRISPR-Cas interference complexes and its preference to arm with more recently acquired spacers, the rate of viral mutation, and the number of viral species, the predicted optimal number of spacers lies within a range that agrees with experimentally-observed values. CRISPR-Cas systems provide adaptive immunity defense in bacteria and archaea against viruses. They function by accumulating in prokaryotic genome an array of spacers, or fragments of virus DNA from previous attacks. By matching spacers to corresponding parts of viral DNA called protospacers, a CRISPR-Cas system identifies and destroys intruder DNA. Here we theoretically estimate the number of spacers that maximizes prokaryotic host cell survival. This optimum emerges from a competition between two trends: More spacers allow a prokaryotic cell to hedge against mutations in viral protospacers. However, the older spacers loose efficiency as corresponding protospacers mutate. For a limited pool of CRISPR-Cas molecular machines, keeping too many spacers leaves fewer of such machines armed with more efficient young (most recently acquired) spacers. We have shown that a higher efficiency of CRISPR-Cas system allows a prokaryotic cell to utilize more spacers, increasing the optimal number of spacers. On contrary, a higher viral mutation rate makes older spacers useless and favors shorter arrays. A higher diversity in viral species reduces the efficiency of CRISPR-Cas but does not necessary lead to longer arrays. Our study provides a new viewpoint at a variety of the observed array spacer number and could be used as a base for evolutionary models of host-phage coexistence.
Collapse
Affiliation(s)
- Alexander Martynov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
- * E-mail: (II); (AM)
| | - Konstantin Severinov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Iaroslav Ispolatov
- Department of Physics, University of Santiago de Chile, Santiago, Chile
- * E-mail: (II); (AM)
| |
Collapse
|
53
|
Abstract
One of the most prominent features of archaea is the extraordinary diversity of their DNA viruses. Many archaeal viruses differ substantially in morphology from bacterial and eukaryotic viruses and represent unique virus families. The distinct nature of archaeal viruses also extends to the gene composition and architectures of their genomes and the properties of the proteins that they encode. Environmental research has revealed prominent roles of archaeal viruses in influencing microbial communities in ocean ecosystems, and recent metagenomic studies have uncovered new groups of archaeal viruses that infect extremophiles and mesophiles in diverse habitats. In this Review, we summarize recent advances in our understanding of the genomic and morphological diversity of archaeal viruses and the molecular biology of their life cycles and virus-host interactions, including interactions with archaeal CRISPR-Cas systems. We also examine the potential origins and evolution of archaeal viruses and discuss their place in the global virosphere.
Collapse
|
54
|
Han P, Deem MW. Non-classical phase diagram for virus bacterial coevolution mediated by clustered regularly interspaced short palindromic repeats. J R Soc Interface 2017; 14:rsif.2016.0905. [PMID: 28202591 DOI: 10.1098/rsif.2016.0905] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/18/2017] [Indexed: 02/02/2023] Open
Abstract
CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. The condition for coexistence of prokaryots and viruses is an interesting problem in evolutionary biology. In this work, we show an intriguing phase diagram of the virus extinction probability, which is more complex than that of the classical predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape recognition by CRISPR. When bacteria have a small rate of deleting spacers, a new parameter region in which bacteria and viruses can coexist arises, and it leads to a more complex coexistence patten for bacteria and viruses. For example, when the virus mutation rate is low, the virus extinction probability changes non-montonically with the bacterial exposure rate. The virus and bacteria coevolution not only alters the virus extinction probability, but also changes the bacterial population structure. Additionally, we show that recombination is a successful strategy for viruses to escape from CRISPR recognition when viruses have multiple proto-spacers, providing support for a recombination-mediated escape mechanism suggested experimentally. Finally, we suggest that the re-entrant phase diagram, in which phages can progress through three phases of extinction and two phases of abundance at low spacer deletion rates as a function of exposure rate to bacteria, is an experimentally testable phenomenon.
Collapse
Affiliation(s)
- Pu Han
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Michael W Deem
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA .,Department of Bioengineering, Rice University, Houston, TX 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| |
Collapse
|
55
|
Abstract
Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) systems store the memory of past encounters with foreign DNA in unique spacers that are inserted between direct repeats in CRISPR arrays. For only a small fraction of the spacers, homologous sequences, called protospacers, are detectable in viral, plasmid, and microbial genomes. The rest of the spacers remain the CRISPR “dark matter.” We performed a comprehensive analysis of the spacers from all CRISPR-cas loci identified in bacterial and archaeal genomes, and we found that, depending on the CRISPR-Cas subtype and the prokaryotic phylum, protospacers were detectable for 1% to about 19% of the spacers (~7% global average). Among the detected protospacers, the majority, typically 80 to 90%, originated from viral genomes, including proviruses, and among the rest, the most common source was genes that are integrated into microbial chromosomes but are involved in plasmid conjugation or replication. Thus, almost all spacers with identifiable protospacers target mobile genetic elements (MGE). The GC content, as well as dinucleotide and tetranucleotide compositions, of microbial genomes, their spacer complements, and the cognate viral genomes showed a nearly perfect correlation and were almost identical. Given the near absence of self-targeting spacers, these findings are most compatible with the possibility that the spacers, including the dark matter, are derived almost completely from the species-specific microbial mobilomes. The principal function of CRISPR-Cas systems is thought to be protection of bacteria and archaea against viruses and other parasitic genetic elements. The CRISPR defense function is mediated by sequences from parasitic elements, known as spacers, that are inserted into CRISPR arrays and then transcribed and employed as guides to identify and inactivate the cognate parasitic genomes. However, only a small fraction of the CRISPR spacers match any sequences in the current databases, and of these, only a minority correspond to known parasitic elements. We show that nearly all spacers with matches originate from viral or plasmid genomes that are either free or have been integrated into the host genome. We further demonstrate that spacers with no matches have the same properties as those of identifiable origins, strongly suggesting that all spacers originate from mobile elements.
Collapse
|
56
|
Abstract
Evolution of bacteria and archaea involves an incessant arms race against an enormous diversity of genetic parasites. Accordingly, a substantial fraction of the genes in most bacteria and archaea are dedicated to antiparasite defense. The functions of these defense systems follow several distinct strategies, including innate immunity; adaptive immunity; and dormancy induction, or programmed cell death. Recent comparative genomic studies taking advantage of the expanding database of microbial genomes and metagenomes, combined with direct experiments, resulted in the discovery of several previously unknown defense systems, including innate immunity centered on Argonaute proteins, bacteriophage exclusion, and new types of CRISPR-Cas systems of adaptive immunity. Some general principles of function and evolution of defense systems are starting to crystallize, in particular, extensive gain and loss of defense genes during the evolution of prokaryotes; formation of genomic defense islands; evolutionary connections between mobile genetic elements and defense, whereby genes of mobile elements are repeatedly recruited for defense functions; the partially selfish and addictive behavior of the defense systems; and coupling between immunity and dormancy induction/programmed cell death.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| |
Collapse
|
57
|
Bradde S, Vucelja M, Teşileanu T, Balasubramanian V. Dynamics of adaptive immunity against phage in bacterial populations. PLoS Comput Biol 2017; 13:e1005486. [PMID: 28414716 PMCID: PMC5411097 DOI: 10.1371/journal.pcbi.1005486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 05/01/2017] [Accepted: 03/29/2017] [Indexed: 01/21/2023] Open
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations exhibit damped oscillations, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a “winner-take-all” scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition probability. The CRISPR system in bacteria and archaea provides adaptive immunity by incorporating foreign DNA (spacers) into the genome, and later targeting DNA sequences that match these spacers. The way in which bacteria choose spacer sequences from a clonal phage population is not understood. Our model considers competing effects of ease of acquisition and effectiveness against infections in shaping the spacer distribution. The model suggests that a diverse spacer population results when the acquisition rate is high, or when spacers are similarly effective. At moderate acquisition rates, the spacer distribution becomes highly sensitive to spacer effectiveness. There is a rich landscape of behaviors including bacteria-phage coexistence and oscillations in the populations.
Collapse
Affiliation(s)
- Serena Bradde
- Initiative for the Theoretical Sciences, The Graduate Center, CUNY, New York, New York, United States of America
- David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marija Vucelja
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, United States of America
- Department of Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tiberiu Teşileanu
- Initiative for the Theoretical Sciences, The Graduate Center, CUNY, New York, New York, United States of America
- David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vijay Balasubramanian
- Initiative for the Theoretical Sciences, The Graduate Center, CUNY, New York, New York, United States of America
- David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
58
|
Bernheim A. [Why so rare if so essentiel: the determinants of the sparse distribution of CRISPR-Cas systems in bacterial genomes]. Biol Aujourdhui 2017; 211:255-264. [PMID: 29956652 DOI: 10.1051/jbio/2018005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 11/14/2022]
Abstract
CRISPR-Cas (Cluster of Regularly Interspaced Short Palindromic Repeats) systems confer bacteria and archaea an adaptative immunity against phages and other invading genetic elements playing an important role in bacterial evolution. However, despite the protection they generate and high rate of horizontal transfer, less than 50% of bacterial genomes harbor a CRISPR-Cas system. As a comparison, 90% of archaea encode a CRISPR-Cas system and a bacterial genome codes for two restriction modification systems on average. This review describes CRISPR-Cas systems distribution in bacterial genomes and then details the different hypotheses put forward to explain the relative scarcity of CRISPR-Cas systems. More specifically, phage escape mechanisms, ecological factors such as phage diversity and abundance and intrinsic costs, such as maintenance or autoimmunity, are discussed. Overall, a better understanding of the downsides of encoding CRISPR-Cas systems is essential to explain their evolutionary dynamics and their relative success in different environments and clades.
Collapse
Affiliation(s)
- Aude Bernheim
- Synthetic Biology Group, Institut Pasteur, 25-28 rue Dr. Roux, 75015 Paris, France - Microbial Evolutionary Genomics, Institut Pasteur, 25-28 rue Dr Roux, 75015 Paris, France - AgroParisTech, 75005 Paris, France
| |
Collapse
|
59
|
Morley D, Broniewski JM, Westra ER, Buckling A, van Houte S. Host diversity limits the evolution of parasite local adaptation. Mol Ecol 2016; 26:1756-1763. [DOI: 10.1111/mec.13917] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Daniel Morley
- Environment and Sustainability Institute; Centre for Ecology and Conservation; University of Exeter; Biosciences; Penryn Cornwall UK
| | - Jenny M. Broniewski
- Environment and Sustainability Institute; Centre for Ecology and Conservation; University of Exeter; Biosciences; Penryn Cornwall UK
| | - Edze R. Westra
- Environment and Sustainability Institute; Centre for Ecology and Conservation; University of Exeter; Biosciences; Penryn Cornwall UK
| | - Angus Buckling
- Environment and Sustainability Institute; Centre for Ecology and Conservation; University of Exeter; Biosciences; Penryn Cornwall UK
| | - Stineke van Houte
- Environment and Sustainability Institute; Centre for Ecology and Conservation; University of Exeter; Biosciences; Penryn Cornwall UK
| |
Collapse
|
60
|
Westra ER, Dowling AJ, Broniewski JM, van Houte S. Evolution and Ecology of CRISPR. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032428] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Edze R. Westra
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| | - Andrea J. Dowling
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| | - Jenny M. Broniewski
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| | - Stineke van Houte
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| |
Collapse
|
61
|
van Houte S, Buckling A, Westra ER. Evolutionary Ecology of Prokaryotic Immune Mechanisms. Microbiol Mol Biol Rev 2016; 80:745-63. [PMID: 27412881 PMCID: PMC4981670 DOI: 10.1128/mmbr.00011-16] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria have a range of distinct immune strategies that provide protection against bacteriophage (phage) infections. While much has been learned about the mechanism of action of these defense strategies, it is less clear why such diversity in defense strategies has evolved. In this review, we discuss the short- and long-term costs and benefits of the different resistance strategies and, hence, the ecological conditions that are likely to favor the different strategies alone and in combination. Finally, we discuss some of the broader consequences, beyond resistance to phage and other genetic elements, resulting from the operation of different immune strategies.
Collapse
Affiliation(s)
- Stineke van Houte
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Angus Buckling
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Edze R Westra
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
62
|
Abstract
Remarkable technological advances have revealed ever more properties and behaviours of individual microorganisms, but the novel data generated by these techniques have not yet been fully exploited. In this Opinion article, we explain how individual-based models (IBMs) can be constructed based on the findings of such techniques and how they help to explore competitive and cooperative microbial interactions. Furthermore, we describe how IBMs have provided insights into self-organized spatial patterns from biofilms to the oceans of the world, phage-CRISPR dynamics and other emergent phenomena. Finally, we discuss how combining individual-based observations with IBMs can advance our understanding at both the individual and population levels, leading to the new approach of microbial individual-based ecology (μIBE).
Collapse
|
63
|
The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 2016; 532:385-8. [PMID: 27074511 DOI: 10.1038/nature17436] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/19/2016] [Indexed: 12/22/2022]
Abstract
Prokaryotic CRISPR-Cas adaptive immune systems insert spacers derived from viruses and other parasitic DNA elements into CRISPR loci to provide sequence-specific immunity. This frequently results in high within-population spacer diversity, but it is unclear if and why this is important. Here we show that, as a result of this spacer diversity, viruses can no longer evolve to overcome CRISPR-Cas by point mutation, which results in rapid virus extinction. This effect arises from synergy between spacer diversity and the high specificity of infection, which greatly increases overall population resistance. We propose that the resulting short-lived nature of CRISPR-dependent bacteria-virus coevolution has provided strong selection for the evolution of sophisticated virus-encoded anti-CRISPR mechanisms.
Collapse
|
64
|
Burstein D, Sun CL, Brown CT, Sharon I, Anantharaman K, Probst AJ, Thomas BC, Banfield JF. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nat Commun 2016; 7:10613. [PMID: 26837824 PMCID: PMC4742961 DOI: 10.1038/ncomms10613] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/04/2016] [Indexed: 12/24/2022] Open
Abstract
Current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth's ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation-independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. We correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides. It is thought that CRISPR-Cas systems, which confer acquired immunity to phage and archaeal viruses, are widespread among bacteria and archaea. Here, Burstein et al. show that entire lineages of uncultivated microorganisms are essentially devoid of CRISPR-Cas systems.
Collapse
Affiliation(s)
- David Burstein
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94720, USA
| | - Christine L Sun
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94720, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Christopher T Brown
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Itai Sharon
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94720, USA
| | - Karthik Anantharaman
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94720, USA
| | - Alexander J Probst
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94720, USA
| | - Brian C Thomas
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94720, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94720, USA.,Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA
| |
Collapse
|
65
|
Kumar MS, Plotkin JB, Hannenhalli S. Regulated CRISPR Modules Exploit a Dual Defense Strategy of Restriction and Abortive Infection in a Model of Prokaryote-Phage Coevolution. PLoS Comput Biol 2015; 11:e1004603. [PMID: 26544847 PMCID: PMC4636164 DOI: 10.1371/journal.pcbi.1004603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
CRISPRs offer adaptive immunity in prokaryotes by acquiring genomic fragments from infecting phage and subsequently exploiting them for phage restriction via an RNAi-like mechanism. Here, we develop and analyze a dynamical model of CRISPR-mediated prokaryote-phage coevolution that incorporates classical CRISPR kinetics along with the recently discovered infection-induced activation and autoimmunity side effects. Our analyses reveal two striking characteristics of the CRISPR defense strategy: that both restriction and abortive infections operate during coevolution with phages, driving phages to much lower densities than possible with restriction alone, and that CRISPR maintenance is determined by a key dimensionless combination of parameters, which upper bounds the activation level of CRISPRs in uninfected populations. We contrast these qualitative observations with experimental data on CRISPR kinetics, which offer insight into the spacer deletion mechanism and the observed low CRISPR prevalence in clinical isolates. More generally, we exploit numerical simulations to delineate four regimes of CRISPR dynamics in terms of its host, kinetic, and regulatory parameters. To counteract viral infections, bacteria and archaea have evolved a variety of defense systems. These can broadly be classified into either restriction or suicide mechanisms. The former enforces nicks in the invading DNA making it unusable for production of further infectious particles; the latter, by contrast, induces cell death whereby an infected cell activates specific host suicidal pathways that are otherwise strongly repressed, thus inhibiting further infection. Examples of the former class include restriction-modification (R-M) and the recently discovered CRISPR systems, while the latter class includes a variety of toxin/anti-toxin systems. CRISPRs, in contrast to R-Ms, adapt to target viral genomes by updating the database of target sites they recognize. The adverse side effect of such a mechanism, however, is that CRISPRs can target the host genome itself resulting in undesirable cell death (autoimmunity). The recent discovery of infection-induced activation of CRISPR systems suggests that these negative side effects may be limited to periods of infection. This led us to hypothesize that such regulatory control—similar to abortive infection mechanisms—can be advantageous by limiting viral spread through suicide of infected cells. To test this hypothesis, we mathematically model CRISPR induced prokaryote-phage coevolutionary dynamics in the presence of infection-regulated CRISPR activity. Our results indicate that, except in limited growth rates, regulated CRISPRs exploit both autoimmunity and target restriction and can therefore be considered a hybrid class that leverages both restriction and suicide mechanisms to limit phage infection.
Collapse
Affiliation(s)
- M. Senthil Kumar
- Graduate Program in Bioinformatics, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (MSK); (JBP); (SH)
| | - Joshua B. Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MSK); (JBP); (SH)
| | - Sridhar Hannenhalli
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (MSK); (JBP); (SH)
| |
Collapse
|
66
|
Abstract
Profiling the RNA production in hyperthermophilic archaea revealed an abundance of small RNA-guided processes near the upper temperature limit of life. Archaea utilize the base-pairing ability of RNA guide sequences to target ribosomal RNAs, transfer RNAs, messenger RNAs, and viral genomes. Cellular processes that are guided by small RNAs include the modification of RNA molecules, trans-splicing, gene regulation, and RNA and DNA degradation. Here, a brief overview of our knowledge on small guide RNA genes in archaeal genomes is provided and examples of their putative roles in genome evolution are described.
Collapse
MESH Headings
- Archaea/genetics
- Base Sequence
- Evolution, Molecular
- Gene Expression Regulation, Archaeal
- Genome, Archaeal/genetics
- Hot Temperature
- Models, Genetic
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
Collapse
Affiliation(s)
- Lennart Randau
- Prokaryotic Small RNA Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
67
|
Iranzo J, Lobkovsky AE, Wolf YI, Koonin EV. Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems. BMC Evol Biol 2015; 15:43. [PMID: 25881094 PMCID: PMC4372072 DOI: 10.1186/s12862-015-0324-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/24/2015] [Indexed: 01/09/2023] Open
Abstract
Background Parasite-host arms race is one of the key factors in the evolution of life. Most cellular life forms, in particular prokaryotes, possess diverse forms of defense against pathogens including innate immunity, adaptive immunity and programmed cell death (altruistic suicide). Coevolution of these different but interacting defense strategies yields complex evolutionary regimes. Results We develop and extensively analyze a computational model of coevolution of different defense strategies to show that suicide as a defense mechanism can evolve only in structured populations and when the attainable degree of immunity against pathogens is limited. The general principle of defense evolution seems to be that hosts do not evolve two costly defense mechanisms when one is sufficient. Thus, the evolutionary interplay of innate immunity, adaptive immunity and suicide, leads to an equilibrium state where the combination of all three defense strategies is limited to a distinct, small region of the parameter space. The three strategies can stably coexist only if none of them are highly effective. Coupled adaptive immunity-suicide systems, the existence of which is implied by the colocalization of genes for the two types of defense in prokaryotic genomes, can evolve either when immunity-associated suicide is more efficacious than other suicide systems or when adaptive immunity functionally depends on the associated suicide system. Conclusions Computational modeling reveals a broad range of outcomes of coevolution of anti-pathogen defense strategies depending on the relative efficacy of different mechanisms and population structure. Some of the predictions of the model appear compatible with recent experimental evolution results and call for additional experiments.
Collapse
Affiliation(s)
- Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Alexander E Lobkovsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
68
|
Koonin EV, Wolf YI. Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: models and observations on virus-host coevolution. MOLECULAR BIOSYSTEMS 2015; 11:20-7. [PMID: 25238531 PMCID: PMC5875448 DOI: 10.1039/c4mb00438h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CRISPR-Cas is an adaptive immunity system in prokaryotes that functions via a unique mechanism which involves incorporation of foreign DNA fragments into CRISPR arrays and subsequent utilization of transcripts of these inserts (known as spacers) as guide RNAs to cleave the cognate selfish element genome. Multiple attempts have been undertaken to explore the coevolution of viruses and microbial hosts carrying CRISPR-Cas using mathematical models that employ either systems of differential equations or an agent-based approach, or combinations thereof. Analysis of these models reveals highly complex co-evolutionary dynamics that ensues from the combination of the heritability of the CRISPR-mediated adaptive immunity with the existence of different degrees of immunity depending on the number of cognate spacers and the cost of carrying a CRISPR-Cas locus. Depending on the details of the models, a variety of testable, sometimes conflicting predictions have been made on the dependence of the degree of immunity and the benefit of maintaining CRISPR-Cas on the abundance and diversity of hosts and viruses. Some of these predictions have already been directly validated experimentally. In particular, both the reality of the virus-host arms race, with viruses escaping resistance and hosts reacquiring it through the capture of new spacers, and the fitness cost of CRISPR-Cas due to the curtailment of beneficial HGT have been reproduced in the laboratory. However, to test the predictions of the models more specifically, detailed studies of coevolving populations of microbes and viruses both in nature and in the laboratory are essential. Such analyses are expected to yield disagreements with the predictions of the current, oversimplified models and to trigger a new round of theoretical developments.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
69
|
Evolutionary causes and consequences of diversified CRISPR immune profiles in natural populations. Biochem Soc Trans 2014; 41:1431-6. [PMID: 24256233 DOI: 10.1042/bst20130243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Host-pathogen co-evolution is a significant force which shapes the ecology and evolution of all types of organisms, and such interactions are driven by resistance and immunity mechanisms of the host. Diversity of resistance and immunity can affect the co-evolutionary trajectory of both host and pathogen. The microbial CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is one host immunity mechanism which offers a tractable model for examining the dynamics of diversity in an immune system. In the present article, we review CRISPR variation observed in a variety of natural populations, examine the forces which can push CRISPRs towards high or low diversity, and investigate the consequences of various levels of diversity on microbial populations.
Collapse
|
70
|
Bacterial sensing of bacteriophages in communities: the search for the Rosetta stone. Curr Opin Microbiol 2014; 20:125-30. [DOI: 10.1016/j.mib.2014.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/21/2023]
|
71
|
Childs LM, England WE, Young MJ, Weitz JS, Whitaker RJ. CRISPR-induced distributed immunity in microbial populations. PLoS One 2014; 9:e101710. [PMID: 25000306 PMCID: PMC4084950 DOI: 10.1371/journal.pone.0101710] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/11/2014] [Indexed: 01/08/2023] Open
Abstract
In bacteria and archaea, viruses are the primary infectious agents, acting as virulent, often deadly pathogens. A form of adaptive immune defense known as CRISPR-Cas enables microbial cells to acquire immunity to viral pathogens by recognizing specific sequences encoded in viral genomes. The unique biology of this system results in evolutionary dynamics of host and viral diversity that cannot be fully explained by the traditional models used to describe microbe-virus coevolutionary dynamics. Here, we show how the CRISPR-mediated adaptive immune response of hosts to invading viruses facilitates the emergence of an evolutionary mode we call distributed immunity - the coexistence of multiple, equally-fit immune alleles among individuals in a microbial population. We use an eco-evolutionary modeling framework to quantify distributed immunity and demonstrate how it emerges and fluctuates in multi-strain communities of hosts and viruses as a consequence of CRISPR-induced coevolution under conditions of low viral mutation and high relative numbers of viral protospacers. We demonstrate that distributed immunity promotes sustained diversity and stability in host communities and decreased viral population density that can lead to viral extinction. We analyze sequence diversity of experimentally coevolving populations of Streptococcus thermophilus and their viruses where CRISPR-Cas is active, and find the rapid emergence of distributed immunity in the host population, demonstrating the importance of this emergent phenomenon in evolving microbial communities.
Collapse
Affiliation(s)
- Lauren M. Childs
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Whitney E. England
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mark J. Young
- Thermal Biology Institute and Department of Plant Sciences and Plant Pathology, Montana State University, Montana, United States of America
| | - Joshua S. Weitz
- School of Biology and School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail: (JSW); (RJW)
| | - Rachel J. Whitaker
- Department of Microbiology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (JSW); (RJW)
| |
Collapse
|
72
|
Berezovskaya FS, Wolf YI, Koonin EV, Karev GP. Pseudo-chaotic oscillations in CRISPR-virus coevolution predicted by bifurcation analysis. Biol Direct 2014; 9:13. [PMID: 24986220 PMCID: PMC4096434 DOI: 10.1186/1745-6150-9-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/26/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The CRISPR-Cas systems of adaptive antivirus immunity are present in most archaea and many bacteria, and provide resistance to specific viruses or plasmids by inserting fragments of foreign DNA into the host genome and then utilizing transcripts of these spacers to inactivate the cognate foreign genome. The recent development of powerful genome engineering tools on the basis of CRISPR-Cas has sharply increased the interest in the diversity and evolution of these systems. Comparative genomic data indicate that during evolution of prokaryotes CRISPR-Cas loci are lost and acquired via horizontal gene transfer at high rates. Mathematical modeling and initial experimental studies of CRISPR-carrying microbes and viruses reveal complex coevolutionary dynamics. RESULTS We performed a bifurcation analysis of models of coevolution of viruses and microbial host that possess CRISPR-Cas hereditary adaptive immunity systems. The analyzed Malthusian and logistic models display complex, and in particular, quasi-chaotic oscillation regimes that have not been previously observed experimentally or in agent-based models of the CRISPR-mediated immunity. The key factors for the appearance of the quasi-chaotic oscillations are the non-linear dependence of the host immunity on the virus load and the partitioning of the hosts into the immune and susceptible populations, so that the system consists of three components. CONCLUSIONS Bifurcation analysis of CRISPR-host coevolution model predicts complex regimes including quasi-chaotic oscillations. The quasi-chaotic regimes of virus-host coevolution are likely to be biologically relevant given the evolutionary instability of the CRISPR-Cas loci revealed by comparative genomics. The results of this analysis might have implications beyond the CRISPR-Cas systems, i.e. could describe the behavior of any adaptive immunity system with a heritable component, be it genetic or epigenetic. These predictions are experimentally testable. REVIEWERS' REPORTS This manuscript was reviewed by Sandor Pongor, Sergei Maslov and Marek Kimmel. For the complete reports, go to the Reviewers' Reports section.
Collapse
Affiliation(s)
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Georgy P Karev
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|