51
|
Kainulainen V, Korhonen TK. Dancing to another tune-adhesive moonlighting proteins in bacteria. BIOLOGY 2014; 3:178-204. [PMID: 24833341 PMCID: PMC4009768 DOI: 10.3390/biology3010178] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 02/08/2023]
Abstract
Biological moonlighting refers to proteins which express more than one function. Moonlighting proteins occur in pathogenic and commensal as well as in Gram-positive and Gram-negative bacteria. The canonical functions of moonlighting proteins are in essential cellular processes, i.e., glycolysis, protein synthesis, chaperone activity, and nucleic acid stability, and their moonlighting functions include binding to host epithelial and phagocytic cells, subepithelia, cytoskeleton as well as to mucins and circulating proteins of the immune and hemostatic systems. Sequences of the moonlighting proteins do not contain known motifs for surface export or anchoring, and it has remained open whether bacterial moonlighting proteins are actively secreted to the cell wall or whether they are released from traumatized cells and then rebind onto the bacteria. In lactobacilli, ionic interactions with lipoteichoic acids and with cell division sites are important for surface localization of the proteins. Moonlighting proteins represent an abundant class of bacterial adhesins that are part of bacterial interactions with the environment and in responses to environmental changes. Multifunctionality in bacterial surface proteins appears common: the canonical adhesion proteins fimbriae express also nonadhesive functions, whereas the mobility organelles flagella as well as surface proteases express adhesive functions.
Collapse
Affiliation(s)
- Veera Kainulainen
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Timo K Korhonen
- General Microbiology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| |
Collapse
|
52
|
Marshall JM, Flechtner AD, La Perle KM, Gunn JS. Visualization of extracellular matrix components within sectioned Salmonella biofilms on the surface of human gallstones. PLoS One 2014; 9:e89243. [PMID: 24551241 PMCID: PMC3925243 DOI: 10.1371/journal.pone.0089243] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Chronic carriage of Salmonella Typhi is mediated primarily through the formation of bacterial biofilms on the surface of cholesterol gallstones. Biofilms, by definition, involve the formation of a bacterial community encased within a protective macromolecular matrix. Previous work has demonstrated the composition of the biofilm matrix to be complex and highly variable in response to altered environmental conditions. Although known to play an important role in bacterial persistence in a variety of contexts, the Salmonella biofilm matrix remains largely uncharacterized under physiological conditions. Initial attempts to study matrix components and architecture of the biofilm matrix on gallstone surfaces were hindered by the auto-fluorescence of cholesterol. In this work we describe a method for sectioning and direct visualization of extracellular matrix components of the Salmonella biofilm on the surface of human cholesterol gallstones and provide a description of the major matrix components observed therein. Confocal micrographs revealed robust biofilm formation, characterized by abundant but highly heterogeneous expression of polysaccharides such as LPS, Vi and O-antigen capsule. CsgA was not observed in the biofilm matrix and flagellar expression was tightly restricted to the biofilm-cholesterol interface. Images also revealed the presence of preexisting Enterobacteriaceae encased within the structure of the gallstone. These results demonstrate the use and feasibility of this method while highlighting the importance of studying the native architecture of the gallstone biofilm. A better understanding of the contribution of individual matrix components to the overall biofilm structure will facilitate the development of more effective and specific methods to disrupt these bacterial communities.
Collapse
Affiliation(s)
- Joanna M. Marshall
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Alan D. Flechtner
- Department of Veterinary Biosciences, Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio, United States of America
| | - Krista M. La Perle
- Department of Veterinary Biosciences, Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio, United States of America
| | - John S. Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
53
|
Kalai Chelvam K, Chai LC, Thong KL. Variations in motility and biofilm formation of Salmonella enterica serovar Typhi. Gut Pathog 2014; 6:2. [PMID: 24499680 PMCID: PMC3922113 DOI: 10.1186/1757-4749-6-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/28/2014] [Indexed: 01/02/2023] Open
Abstract
Background Salmonella enterica serovar Typhi (S. Typhi) exhibits unique characteristics as an intracellular human pathogen. It causes both acute and chronic infection with various disease manifestations in the human host only. The principal factors underlying the unique lifestyle of motility and biofilm forming ability of S. Typhi remain largely unknown. The main objective of this study was to explore and investigate the motility and biofilm forming behaviour among S. Typhi strains of diverse background. Results Swim and swarm motility tests were performed with 0.25% and 0.5% agar concentration, respectively; while biofilm formation was determined by growing the bacterial cultures for 48 hrs in 96-well microtitre plate. While all S. Typhi strains demonstrated swarming motility with smooth featureless morphology, 58 out of 60 strains demonstrated swimming motility with featureless or bull’s eye morphology. Interestingly, S. Typhi strains of blood-borne origin exhibited significantly higher swimming motility (P < 0.05) than stool-borne strains suggesting that swimming motility may play a role in the systemic invasion of S. Typhi in the human host. Also, stool-borne S. Typhi displayed a negative relationship between motility and biofilm forming behaviour, which was not observed in the blood-borne strains. Conclusion In summary, both swimming and swarming motility are conserved among S. Typhi strains but there was variation for biofilm forming ability. There was no difference observed in this phenotype for S. Typhi strains from diverse background. These findings serve as caveats for future studies to understand the lifestyle and transmission of this pathogen.
Collapse
Affiliation(s)
| | | | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
54
|
Vestby LK, Johannesen KCS, Witsø IL, Habimana O, Scheie AA, Urdahl AM, Benneche T, Langsrud S, Nesse LL. Synthetic brominated furanone F202 prevents biofilm formation by potentially human pathogenic Escherichia coli O103:H2 and Salmonella ser. Agona on abiotic surfaces. J Appl Microbiol 2014; 116:258-68. [PMID: 24118802 PMCID: PMC4255294 DOI: 10.1111/jam.12355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023]
Abstract
AIMS Investigate the use of a synthetic brominated furanone (F202) against the establishment of biofilm by Salmonella ser. Agona and E. coli O103:H2 under temperature conditions relevant for the food and feed industry as well as under temperature conditions optimum for growth. METHODS AND RESULTS Effect of F202 on biofilm formation by Salmonella ser. Agona and E. coli O103:H2 was evaluated using a microtiter plate assay and confocal microscopy. Effect of F202 on bacterial motility was investigated using swimming and swarming assays. Influence on flagellar synthesis by F202 was examined by flagellar staining. Results showed that F202 inhibited biofilm formation without being bactericidal. F202 was found to affect both swimming and swarming motility without, however, affecting the expression of flagella. CONCLUSIONS F202 showed its potential as a biofilm inhibitor of Salmonella ser. Agona and E. coli O103:H2 under temperature conditions relevant for the feed and food industry as well as temperatures optimum for growth. One potential mode of action of F202 was found to be by targeting flagellar function. SIGNIFICANCE AND IMPACT OF THE STUDY The present study gives valuable new knowledge to the potential use of furanones as a tool in biofilm management in the food and feed industry.
Collapse
Affiliation(s)
- L K Vestby
- Norwegian Veterinary Institute, Department of Laboratory Services, Section for Bacteriology- aquatic and terrestrial, Oslo, Norway
| | - K C S Johannesen
- Norwegian Veterinary Institute, Department of Laboratory Services, Section for Bacteriology- aquatic and terrestrial, Oslo, Norway
| | - I L Witsø
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | | | - A A Scheie
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | - A M Urdahl
- Norwegian Veterinary Institute, Department of Health Surveillance, Section for Veterinary Public Health, Oslo, Norway
| | - T Benneche
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - L L Nesse
- Norwegian Veterinary Institute, Department of Laboratory Services, Section for Bacteriology- aquatic and terrestrial, Oslo, Norway
| |
Collapse
|
55
|
CsgD regulatory network in a bacterial trait-altering biofilm formation. Emerg Microbes Infect 2014; 3:e1. [PMID: 26038492 PMCID: PMC3913822 DOI: 10.1038/emi.2014.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/20/2013] [Accepted: 11/25/2013] [Indexed: 11/23/2022]
Abstract
In response to the limited nutrients and stressful conditions of their habitats, many microorganisms including Salmonella form a biofilm by secreting a polymeric matrix to interweave individual cells and to build structural communities on an abiotic or living surface. The biofilm formation in Salmonella is tightly regulated by a regulatory network that involves multiple transcriptional regulators. As a master transcriptional regulator in biofilm formation, curli subunit gene D (csgD) functions by activating the biosynthesis of the extracellular polymeric matrix composed of exopolysaccharide cellulose, curli and biofilm-associated proteins (Baps), assisting bacterial cells in transitioning from the planktonic stage to the multicellular state. The expression of CsgD itself is affected by cell growth stage and environmental stimuli through the action of other transcriptional factors, bis-(3′–5′)-cyclic dimeric guanosine monophosphate (c-di-GMP), regulatory small RNAs (sRNAs) and other elements. The formation of biofilm confers new physiological characteristics on the bacteria within, especially resistance against unfavorable environmental conditions. Herein, we summarize the CsgD regulatory network of Salmonella biofilm formation and the new traits acquired by Salmonella when within biofilm.
Collapse
|
56
|
Yue M, Schifferli DM. Allelic variation in Salmonella: an underappreciated driver of adaptation and virulence. Front Microbiol 2014; 4:419. [PMID: 24454310 PMCID: PMC3882659 DOI: 10.3389/fmicb.2013.00419] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica causes substantial morbidity and mortality in humans and animals. Infection and intestinal colonization by S. enterica require virulence factors that mediate bacterial binding and invasion of enterocytes and innate immune cells. Some S. enterica colonization factors and their alleles are host restricted, suggesting a potential role in regulation of host specificity. Recent data also suggest that colonization factors promote horizontal gene transfer of antimicrobial resistance genes by increasing the local density of Salmonella in colonized intestines. Although a profusion of genes are involved in Salmonella pathogenesis, the relative importance of their allelic variation has only been studied intensely in the type 1 fimbrial adhesin FimH. Although other Salmonella virulence factors demonstrate allelic variation, their association with specific metadata (e.g., host species, disease or carrier state, time and geographic place of isolation, antibiotic resistance profile, etc.) remains to be interrogated. To date, genome-wide association studies (GWAS) in bacteriology have been limited by the paucity of relevant metadata. In addition, due to the many variables amid metadata categories, a very large number of strains must be assessed to attain statistically significant results. However, targeted approaches in which genes of interest (e.g., virulence factors) are specifically sequenced alleviates the time-consuming and costly statistical GWAS analysis and increases statistical power, as larger numbers of strains can be screened for non-synonymous single nucleotide polymorphisms (SNPs) that are associated with available metadata. Congruence of specific allelic variants with specific metadata from strains that have a relevant clinical and epidemiological history will help to prioritize functional wet-lab and animal studies aimed at determining cause-effect relationships. Such an approach should be applicable to other pathogens that are being collected in well-curated repositories.
Collapse
Affiliation(s)
- Min Yue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Dieter M Schifferli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
57
|
The role of the bacterial flagellum in adhesion and virulence. BIOLOGY 2013; 2:1242-67. [PMID: 24833223 PMCID: PMC4009794 DOI: 10.3390/biology2041242] [Citation(s) in RCA: 350] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/11/2022]
Abstract
The bacterial flagellum is a complex apparatus assembled of more than 20 different proteins. The flagellar basal body traverses the cell wall, whereas the curved hook connects the basal body to the whip-like flagellar filament that protrudes several µm from the bacterial cell. The flagellum has traditionally been regarded only as a motility organelle, but more recently it has become evident that flagella have a number of other biological functions. The major subunit, flagellin or FliC, of the flagellum plays a well-documented role in innate immunity and as a dominant antigen of the adaptive immune response. Importantly, flagella have also been reported to function as adhesins. Whole flagella have been indicated as significant in bacterial adhesion to and invasion into host cells. In various pathogens, e.g., Escherichia coli, Pseudomonas aeruginosa and Clostridium difficile, flagellin and/or the distally located flagellar cap protein have been reported to function as adhesins. Recently, FliC of Shiga-toxigenic E. coli was shown to be involved in cellular invasion via lipid rafts. Here, we examine the latest or most important findings regarding flagellar adhesive and invasive properties, especially focusing on the flagellum as a potential virulence factor.
Collapse
|
58
|
Abstract
Bacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenic Escherichia coli (UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community. Bacteria can form biofilms in diverse niches, including abiotic surfaces, living cells, and at the air-liquid interface of liquid media. Encasing these cellular communities is a self-produced extracellular matrix (ECM) that can be composed of proteins, polysaccharides, and nucleic acids. The ECM protects biofilm bacteria from environmental insults and also makes the dissolution of biofilms very challenging. As a result, formation of biofilms within humans (during infection) or on industrial material (such as water pipes) has detrimental and costly effects. In order to combat bacterial biofilms, a better understanding of components required for biofilm formation and the ECM is required. This study defined the ECM composition and architecture of floating pellicle biofilms formed by Escherichia coli.
Collapse
|
59
|
Identification of Salmonella enterica serovar Typhimurium genes regulated during biofilm formation on cholesterol gallstone surfaces. Infect Immun 2013; 81:3770-80. [PMID: 23897604 DOI: 10.1128/iai.00647-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella spp. are able to form biofilms on abiotic and biotic surfaces. In vivo studies in our laboratory have shown that Salmonella can form biofilms on the surfaces of cholesterol gallstones in the gallbladders of mice and human carriers. Biofilm formation on gallstones has been demonstrated to be a mechanism of persistence. The purpose of this work was to identify and evaluate Salmonella sp. cholesterol-dependent biofilm factors. Differential gene expression analysis between biofilms on glass or cholesterol-coated surfaces and subsequent quantitative real-time PCR (qRT-PCR) revealed that type 1 fimbria structural genes and a gene encoding a putative outer membrane protein (ycfR) were specifically upregulated in Salmonella enterica serovar Typhimurium biofilms grown on cholesterol-coated surfaces. Spatiotemporal expression of ycfR and FimA verified their regulation during biofilm development on cholesterol-coated surfaces. Surprisingly, confocal and scanning electron microscopy demonstrated that a mutant of type 1 fimbria structural genes (ΔfimAICDHF) and a ycfR mutant showed increased biofilm formation on cholesterol-coated surfaces. In vivo experiments using Nramp1(+/+) mice harboring gallstones showed that only the ΔycfR mutant formed extensive biofilms on mouse gallstones at 7 and 21 days postinfection; ΔfimAICDHF was not observed on gallstone surfaces after the 7-day-postinfection time point. These data suggest that in Salmonella spp., wild-type type 1 fimbriae are important for attachment to and/or persistence on gallstones at later points of chronic infection, whereas YcfR may represent a specific potential natural inhibitor of initial biofilm formation on gallstones.
Collapse
|
60
|
Chen HD, Groisman EA. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. Annu Rev Microbiol 2013; 67:83-112. [PMID: 23799815 DOI: 10.1146/annurev-micro-092412-155751] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of gram-negative bacteria to resist killing by antimicrobial agents and to avoid detection by host immune systems often entails modification to the lipopolysaccharide (LPS) in their outer membrane. In this review, we examine the biology of the PmrA/PmrB two-component system, the major regulator of LPS modifications in the enteric pathogen Salmonella enterica. We examine the signals that activate the sensor PmrB and the targets controlled by the transcriptional regulator PmrA. We discuss the PmrA/PmrB-dependent chemical decorations of the LPS and their role in resistance to antibacterial agents. We analyze the feedback mechanisms that modulate the activity and thus output of the PmrA/PmrB system, dictating when, where, and to what extent bacteria modify their LPS. Finally, we explore the qualitative and quantitative differences in gene expression outputs resulting from the distinct PmrA/PmrB circuit architectures in closely related bacteria, which may account for their differential survival in various ecological niches.
Collapse
|
61
|
Gallbladder epithelium as a niche for chronic Salmonella carriage. Infect Immun 2013; 81:2920-30. [PMID: 23732169 DOI: 10.1128/iai.00258-13] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although typhoid fever has been intensively studied, chronic typhoid carriage still represents a problem for the transmission and persistence of the disease in areas of endemicity. This chronic state is highly associated with the presence of gallstones in the gallbladder of infected carriers upon which Salmonella can form robust biofilms. However, we hypothesize that in addition to gallstones, the gallbladder epithelium aids in the establishment/maintenance of chronic carriage. In this work, we present evidence of the role of the gallbladder epithelium in chronic carriage by a mechanism involving invasion, intracellular persistence, and biofilm formation. Salmonella was able to adhere to and invade polarized gallbladder epithelial cells apically in the absence and presence of bile in a Salmonella pathogenicity island 1 (SPI-1)-dependent manner. Intracellular replication of Salmonella was also evident at 12 and 24 h postinvasion. A flowthrough system revealed that Salmonella is able to adhere to and form extensive bacterial foci on gallbladder epithelial cells as early as 12 h postinoculation. In vivo experiments using a chronic mouse model of typhoid carriage showed invasion and damage of the gallbladder epithelium and lamina propria up to 2 months after Salmonella infection, with an abundant presence of macrophages, a relative absence of neutrophils, and extrusion of infected epithelial cells. Additionally, microcolonies of Salmonella cells were evident on the surface of the mouse gallbladder epithelia up to 21 days postinfection. These data reveal a second potential mechanism, intracellular persistence and/or bacterial aggregation in/on the gallbladder epithelium with luminal cell extrusion, for Salmonella maintenance in the gallbladder.
Collapse
|
62
|
Abstract
Although typhoid fever has been intensively studied, chronic typhoid carriage still represents a problem for the transmission and persistence of the disease in areas of endemicity. This chronic state is highly associated with the presence of gallstones in the gallbladder of infected carriers upon which Salmonella can form robust biofilms. However, we hypothesize that in addition to gallstones, the gallbladder epithelium aids in the establishment/maintenance of chronic carriage. In this work, we present evidence of the role of the gallbladder epithelium in chronic carriage by a mechanism involving invasion, intracellular persistence, and biofilm formation. Salmonella was able to adhere to and invade polarized gallbladder epithelial cells apically in the absence and presence of bile in a Salmonella pathogenicity island 1 (SPI-1)-dependent manner. Intracellular replication of Salmonella was also evident at 12 and 24 h postinvasion. A flowthrough system revealed that Salmonella is able to adhere to and form extensive bacterial foci on gallbladder epithelial cells as early as 12 h postinoculation. In vivo experiments using a chronic mouse model of typhoid carriage showed invasion and damage of the gallbladder epithelium and lamina propria up to 2 months after Salmonella infection, with an abundant presence of macrophages, a relative absence of neutrophils, and extrusion of infected epithelial cells. Additionally, microcolonies of Salmonella cells were evident on the surface of the mouse gallbladder epithelia up to 21 days postinfection. These data reveal a second potential mechanism, intracellular persistence and/or bacterial aggregation in/on the gallbladder epithelium with luminal cell extrusion, for Salmonella maintenance in the gallbladder.
Collapse
|
63
|
Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections. Pathogens 2013; 2:288-356. [PMID: 25437038 PMCID: PMC4235718 DOI: 10.3390/pathogens2020288] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022] Open
Abstract
The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them.
Collapse
Affiliation(s)
- David Lebeaux
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Ashwini Chauhan
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Olaya Rendueles
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
64
|
Van Puyvelde S, Steenackers HP, Vanderleyden J. Small RNAs regulating biofilm formation and outer membrane homeostasis. RNA Biol 2013; 10:185-91. [PMID: 23324602 DOI: 10.4161/rna.23341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nowadays, the identification of small non-coding RNAs takes a prominent role in deciphering complex bacterial phenotypes. Evidences are given that the post-transcriptional layer of regulation mediated by sRNAs plays an important role in the formation of bacterial biofilms. These sRNAs exert their activity on various targets, be it directly or indirectly linked to biofilm formation. First, and best described, are the sRNAs that act in core regulatory pathways of biofilm formation, such as those regulating motility and matrix production. Second, overlaps between the regulation of biofilm formation and the outer membrane (OM) are becoming obvious. Additionally, different studies indicate that defects in the OM itself affect biofilm formation through this shared cascade, thereby forming a feedback mechanism. Interestingly, it is known that the OM itself is extensively regulated by different sRNAs. Third, biofilms are also linked to global metabolic changes. There is also evidence that metabolic pathways and the process of biofilm formation share sRNAs.
Collapse
Affiliation(s)
- Sandra Van Puyvelde
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
65
|
Chen HD, Jewett MW, Groisman EA. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product. PLoS Genet 2012; 8:e1003060. [PMID: 23300460 PMCID: PMC3531487 DOI: 10.1371/journal.pgen.1003060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/16/2012] [Indexed: 12/22/2022] Open
Abstract
Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.
Collapse
Affiliation(s)
- H. Deborah Chen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mollie W. Jewett
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eduardo A. Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
66
|
Gopinath S, Carden S, Monack D. Shedding light on Salmonella carriers. Trends Microbiol 2012; 20:320-7. [DOI: 10.1016/j.tim.2012.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 01/10/2023]
|
67
|
Swearingen MC, Porwollik S, Desai PT, McClelland M, Ahmer BMM. Virulence of 32 Salmonella strains in mice. PLoS One 2012; 7:e36043. [PMID: 22558320 PMCID: PMC3338620 DOI: 10.1371/journal.pone.0036043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/28/2012] [Indexed: 01/04/2023] Open
Abstract
Virulence and persistence in the BALB/c mouse gut was tested for 32 strains of Salmonella enterica for which genome sequencing is complete or underway, including 17 serovars within subspecies I (enterica), and two representatives of each of the other five subspecies. Only serovar Paratyphi C strain BAA1715 and serovar Typhimurium strain 14028 were fully virulent in mice. Three divergent atypical Enteritidis strains were not virulent in BALB/c, but two efficiently persisted. Most of the other strains in all six subspecies persisted in the mouse intestinal tract for several weeks in multiple repeat experiments although the frequency and level of persistence varied considerably. Strains with heavily degraded genomes persisted very poorly, if at all. None of the strains tested provided immunity to Typhimurium infection. These data greatly expand on the known significant strain-to-strain variation in mouse virulence and highlight the need for comparative genomic and phenotypic studies.
Collapse
Affiliation(s)
- Matthew C. Swearingen
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Steffen Porwollik
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - Prerak T. Desai
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - Michael McClelland
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Brian M. M. Ahmer
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
68
|
Jennings ME, Quick LN, Ubol N, Shrom S, Dollahon N, Wilson JW. Characterization of Salmonella type III secretion hyper-activity which results in biofilm-like cell aggregation. PLoS One 2012; 7:e33080. [PMID: 22412985 PMCID: PMC3297627 DOI: 10.1371/journal.pone.0033080] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/07/2012] [Indexed: 01/06/2023] Open
Abstract
We have previously reported the cloning of the Salmonella enterica serovar Typhimurium SPI-1 secretion system and the use of this clone to functionally complement a ΔSPI-1 strain for type III secretion activity. In the current study, we discovered that S. Typhimurium cultures containing cloned SPI-1 display an adherent biofilm and cell clumps in the media. This phenotype was associated with hyper-expression of SPI-1 type III secretion functions. The biofilm and cell clumps were associated with copious amounts of secreted SPI-1 protein substrates SipA, SipB, SipC, SopB, SopE, and SptP. We used a C-terminally FLAG-tagged SipA protein to further demonstrate SPI-1 substrate association with the cell aggregates using fluorescence microscopy and immunogold electron microscopy. Different S. Typhimurium backgrounds and both flagellated and nonflagellated strains displayed the biofilm phenotype. Mutations in genes essential for known bacterial biofilm pathways (bcsA, csgBA, bapA) did not affect the biofilms formed here indicating that this phenomenon is independent of established biofilm mechanisms. The SPI-1-mediated biofilm was able to massively recruit heterologous non-biofilm forming bacteria into the adherent cell community. The results indicate a bacterial aggregation phenotype mediated by elevated SPI-1 type III secretion activity with applications for engineered biofilm formation, protein purification strategies, and antigen display.
Collapse
Affiliation(s)
- Matthew E. Jennings
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Laura N. Quick
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Nicha Ubol
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Sally Shrom
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Norman Dollahon
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - James W. Wilson
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
69
|
Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SC. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.01.038] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
70
|
Vedantam G, Clark A, Chu M, McQuade R, Mallozzi M, Viswanathan VK. Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response. Gut Microbes 2012; 3:121-34. [PMID: 22555464 PMCID: PMC3370945 DOI: 10.4161/gmic.19399] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile infection is the leading cause of antibiotic- and healthcare-associated diarrhea, and its containment and treatment imposes a significant financial burden, estimated to be over $3 billion in the USA alone. Since the year 2000, CDI epidemics/outbreaks have occurred in North America, Europe and Asia. These outbreaks have been variously associated with, or attributed to, the emergence of Clostridium difficile strains with increased virulence, an increase in resistance to commonly used antimicrobials such as the fluoroquinolones, or host susceptibilities, including the use of gastric acid suppressants, to name a few. Efforts to elucidate C. difficile pathogenic mechanisms have been hampered by a lack of molecular tools, manipulatable animal models, and genetic intractability of clinical C. difficile isolates. However, in the past 5 y, painstaking efforts have resulted in the unraveling of multiple C. difficile virulence-associated pathways and mechanisms. We have recently reviewed the disease, its associated risk factors, transmission and interventions (Viswanathan, Gut Microbes 2010). This article summarizes genetics, non-toxin virulence factors, and host-cell biology associated with C. difficile pathogenesis as of 2011, and highlights those findings/factors that may be of interest as future intervention targets.
Collapse
Affiliation(s)
- Gayatri Vedantam
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA,Department of Immunobiology; University of Arizona; Tucson, AZ USA,BIO5 Research Institute; University of Arizona; Tucson, AZ USA,Southern Arizona VA Healthcare System; Tucson, AZ USA,Correspondence to: Gayatri Vedantam,
| | - Andrew Clark
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - Michele Chu
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - Rebecca McQuade
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - Michael Mallozzi
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - V. K. Viswanathan
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA,Department of Immunobiology; University of Arizona; Tucson, AZ USA,BIO5 Research Institute; University of Arizona; Tucson, AZ USA
| |
Collapse
|
71
|
Monteiro C, Papenfort K, Hentrich K, Ahmad I, Le Guyon S, Reimann R, Grantcharova N, Römling U. Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium. RNA Biol 2012; 9:489-502. [PMID: 22336758 DOI: 10.4161/rna.19682] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The RNA chaperone Hfq and its associated small RNAs (sRNAs) regulate a variety of phenotypes in bacteria. In this work, we show that Hfq is a master regulator of biofilm formation in Salmonella enterica serovar Typhimurium. Hfq and two Hfq-dependent sRNAs (ArcZ and SdsR) are required for rdar morphotype expression in S. typhimurium. Hfq controls rdar biofilm formation through the major biofilm regulator CsgD. While csgD mRNA steady-state levels are altered in a sdsR mutant, ArcZ seems to work mainly at the post-transcriptional level. Overexpression of ArcZ complemented rdar morphotype formation of an hfq mutant under plate-grown conditions. Although ArcZ activates rpoS expression, its effect on csgD expression is mainly independent of RpoS. ArcZ does not only regulate rdar morphotype expression, but also the transition between sessility and motility and the timing of type 1 fimbriae vs. curli fimbriae surface-attachment at ambient temperature. Consequently, ArcZ is a major regulator of rdar biofilm development.
Collapse
Affiliation(s)
- Claudia Monteiro
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
The secondary messenger cyclic di-GMP coordinately regulates the transition between motility/sessility/virulence in bacterial populations and upon adaptation to novel habitats. Thereby, multiple independent regulatory circuits regulate a diversity of targets. This specific output response is surprising considering the diverse physiological processes regulated by this signalling molecule, which range from transcription to proteolysis and clearly demonstrates the presence of sophisticated developmental programmes in these so-called simple organisms.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
73
|
Álvarez-Ordóñez A, Begley M, Prieto M, Messens W, López M, Bernardo A, Hill C. Salmonella spp. survival strategies within the host gastrointestinal tract. MICROBIOLOGY-SGM 2011; 157:3268-3281. [PMID: 22016569 DOI: 10.1099/mic.0.050351-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human salmonellosis infections are usually acquired via the food chain as a result of the ability of Salmonella serovars to colonize and persist within the gastrointestinal tract of their hosts. In addition, after food ingestion and in order to cause foodborne disease in humans, Salmonella must be able to resist several deleterious stress conditions which are part of the host defence against infections. This review gives an overview of the main defensive mechanisms involved in the Salmonella response to the extreme acid conditions of the stomach, and the elevated concentrations of bile salts, osmolytes and commensal bacterial metabolites, and the low oxygen tension conditions of the mammalian and avian gastrointestinal tracts.
Collapse
Affiliation(s)
- Avelino Álvarez-Ordóñez
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Máire Begley
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Winy Messens
- Biological Hazards (BIOHAZ) Unit, European Food Safety Authority (EFSA), Largo N. Palli 5/A, I-43121 Parma, Italy
| | - Mercedes López
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Ana Bernardo
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
74
|
Hatta M, Pastoor R, Scheelbeek PFD, Sultan AR, Dwiyanti R, Labeda I, Smits HL. Multi-locus variable-number tandem repeat profiling of Salmonella enterica serovar Typhi isolates from blood cultures and gallbladder specimens from Makassar, South-Sulawesi, Indonesia. PLoS One 2011; 6:e24983. [PMID: 21949819 PMCID: PMC3174255 DOI: 10.1371/journal.pone.0024983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/24/2011] [Indexed: 01/26/2023] Open
Abstract
Multi-locus variable-number tandem repeat analysis differentiated 297 Salmonella enterica serovar Typhi blood culture isolates from Makassar in 76 genotypes and a single unique S. Typhi genotype was isolated from the cholecystectomy specimens of four patients with cholelithiasis. The high diversity in S. Typhi genotypes circulating in Makassar indicates that the number of carriers could be very large, which may complicate disease prevention and control.
Collapse
Affiliation(s)
- Mochammad Hatta
- Department of Medical Microbiology, Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, South-Sulawesi, Indonesia
| | - Rob Pastoor
- KIT Biomedical Research, Royal Tropical Institute/Koninklijk Instituut voor de Tropen (KIT), Amsterdam, The Netherlands
| | - Pauline F. D. Scheelbeek
- KIT Biomedical Research, Royal Tropical Institute/Koninklijk Instituut voor de Tropen (KIT), Amsterdam, The Netherlands
| | - Andi R. Sultan
- Department of Medical Microbiology, Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, South-Sulawesi, Indonesia
| | - Ressy Dwiyanti
- Department of Medical Microbiology, Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, South-Sulawesi, Indonesia
| | - Ibrahim Labeda
- Department of Digestive Surgery, Faculty of Medicine, Hasanuddin University, Makassar, South-Sulawesi, Indonesia
| | - Henk L. Smits
- KIT Biomedical Research, Royal Tropical Institute/Koninklijk Instituut voor de Tropen (KIT), Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
75
|
Dong J, Signo KSL, Vanderlinde EM, Yost CK, Dahms TES. Atomic force microscopy of a ctpA mutant in Rhizobium leguminosarum reveals surface defects linking CtpA function to biofilm formation. MICROBIOLOGY-SGM 2011; 157:3049-3058. [PMID: 21852352 DOI: 10.1099/mic.0.051045-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atomic force microscopy was used to investigate the surface ultrastructure, adhesive properties and biofilm formation of Rhizobium leguminosarum and a ctpA mutant strain. The surface ultrastructure of wild-type R. leguminosarum consists of tightly packed surface subunits, whereas the ctpA mutant has much larger subunits with loose lateral packing. The ctpA mutant strain is not capable of developing fully mature biofilms, consistent with its altered surface ultrastructure, greater roughness and stronger adhesion to hydrophilic surfaces. For both strains, surface roughness and adhesive forces increased as a function of calcium ion concentration, and for each, biofilms were thicker at higher calcium concentrations.
Collapse
Affiliation(s)
- Jun Dong
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Karla S L Signo
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| | | | | | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
76
|
Characterization of the Salmonella enterica serovar Typhimurium ydcI gene, which encodes a conserved DNA binding protein required for full acid stress resistance. J Bacteriol 2011; 193:2208-17. [PMID: 21398541 DOI: 10.1128/jb.01335-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Salmonella enterica serovar Typhimurium possesses a stimulon of genes that are differentially regulated in response to conditions of low fluid shear force that increase bacterial virulence and alter other phenotypes. In this study, we show that a previously uncharacterized member of this stimulon, ydcI or STM1625, encodes a highly conserved DNA binding protein with related homologs present in a range of gram-negative bacterial genera. Gene expression analysis shows that ydcI is expressed in different bacterial genera and is involved in its autoregulation in S. Typhimurium. We demonstrate that purified YdcI protein specifically binds a DNA probe consisting of its own promoter sequence. We constructed an S. Typhimurium ΔydcI mutant strain and show that this strain is more sensitive to both organic and inorganic acid stress than is an isogenic WT strain, and this defect is complemented in trans. Moreover, our data indicate that ydcI is part of the rpoS regulon related to stress resistance. The S. Typhimurium ΔydcI mutant was able to invade cultured cells to the same degree as the WT strain, but a strain in which ydcI expression is induced invaded cells at a level 2.8 times higher than that of the WT. In addition, induction of ydcI expression in S. Typhimurium resulted in the formation of a biofilm in stationary-phase cultures. These data indicate the ydcI gene encodes a conserved DNA binding protein involved with aspects of prokaryotic biology related to stress resistance and possibly virulence.
Collapse
|
77
|
Adhesive mechanisms of Salmonella enterica. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:17-34. [PMID: 21557055 DOI: 10.1007/978-94-007-0940-9_2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Salmonella enterica is an invasive, facultative intracellular pathogen of animal and man with the ability to colonize various niches in diverse host organisms. The pathogenesis of infections by S. enterica requires adhesion to various host cell surfaces, and a large number of adhesive structures can be found. Depending on the serotype of S. enterica, gene clusters for more than 10 different fimbrial adhesins were identified, with type I fimbriae such as Fim, Lpf (long polar fimbriae), Tafi (thin aggregative fimbriae) or the type IV pili of serotype Typhi. In addition, autotransporter adhesins such as ShdA, MisL and SadA and the type I secreted large repetitive adhesins SiiE and BapA have been identified. Although the functions of many of the various adhesins are not well understood, recent studies show the specific structural and functional properties of Salmonella adhesins and how they act in concert with other virulence determinants. In this chapter, we describe the molecular characteristics of Salmonella adhesins and link these features to their multiple functions in infection biology.
Collapse
|
78
|
Chronic and acute infection of the gall bladder by Salmonella Typhi: understanding the carrier state. Nat Rev Microbiol 2010; 9:9-14. [PMID: 21113180 DOI: 10.1038/nrmicro2490] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite major treatment and prevention efforts, millions of new typhoid infections occur worldwide each year. For a subset of infected individuals, Salmonella enterica subsp. enterica serovar Typhi colonizes the gall bladder and remains there long after symptoms subside, serving as a reservoir for the further spread of the disease. In this Progress article, we explore recent advances in our understanding of the mechanisms by which Salmonella spp.--predominantly S. Typhi--colonize and persist in the human gall bladder.
Collapse
|