51
|
Fukushima T, Uchida N, Ide M, Kodama T, Sekiguchi J. DL-endopeptidases function as both cell wall hydrolases and poly-γ-glutamic acid hydrolases. MICROBIOLOGY-SGM 2018; 164:277-286. [PMID: 29458655 DOI: 10.1099/mic.0.000609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biopolymers on the cell surface are very important for protecting microorganisms from environmental stresses, as well as storing nutrients and minerals. Synthesis of biopolymers is well studied, while studies on the modification and degradation processes of biopolymers are limited. One of these biopolymers, poly-γ-glutamic acid (γ-PGA), is produced by Bacillus species. Bacillus subtilis PgdS, possessing three NlpC/P60 domains, hydrolyses γ-PGA. Here, we have demonstrated that several dl-endopeptidases with an NlpC/P60 domain (LytE, LytF, CwlS, CwlO, and CwlT) in B. subtilis digest not only an amide bond of d-γ-glutamyl-diaminopimelic acid in peptidoglycans but also linkages of γ-PGA produced by B. subtilis. The hydrolase activity of dl-endopeptidases towards γ-PGA was inhibited by IseA, which also inhibits their hydrolase activity towards peptidoglycans, while the hydrolysis of PgdS towards γ-PGA was not inhibited. PgdS hydrolysed only the d-/l-Glu‒d-Glu linkages of d-Glu-rich γ-PGA (d-Glu:l-Glu=7 : 3) and l-Glu-rich γ-PGA (d-Glu:l-Glu=1 : 9), indicating that PgdS can hydrolyse only restricted substrates. On the other hand, the dl-endopeptidases in B. subtilis cleaved d-/l-Glu‒d-/l-Glu linkages of d-Glu-rich γ-PGA (d-Glu:l-Glu=7 : 3), indicating that these enzymes show different substrate specificities. Thus, the dl-endopeptidases digest γ-PGA more flexibly than PgdS, even though they are annotated as "dl-endopeptidase, digesting the d-γ-glutamyl-diaminopimelic acid linkage (d‒l amino acid bond)".
Collapse
Affiliation(s)
- Tatsuya Fukushima
- Division of Gene Research, Department of Life Sciences, Research Center for Human and Environmental Sciences, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.,Present address: Fornia Biosolutions, Inc., 3876 Bay Center Place, Hayward, CA 94545, USA
| | - Natsuki Uchida
- Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | - Masatoshi Ide
- Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | - Takeko Kodama
- Kao Corporation, Biological Science Research, 1334 Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Junichi Sekiguchi
- Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| |
Collapse
|
52
|
Rojas ER, Huang KC, Theriot JA. Homeostatic Cell Growth Is Accomplished Mechanically through Membrane Tension Inhibition of Cell-Wall Synthesis. Cell Syst 2017; 5:578-590.e6. [PMID: 29203279 PMCID: PMC5985661 DOI: 10.1016/j.cels.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022]
Abstract
Feedback mechanisms are required to coordinate balanced synthesis of subcellular components during cell growth. However, these coordination mechanisms are not apparent at steady state. Here, we elucidate the interdependence of cell growth, membrane tension, and cell-wall synthesis by observing their rapid re-coordination after osmotic shocks in Gram-positive bacteria. Single-cell experiments and mathematical modeling demonstrate that mechanical forces dually regulate cell growth: while turgor pressure produces mechanical stress within the cell wall that promotes its expansion through wall synthesis, membrane tension induces growth arrest by inhibiting wall synthesis. Tension inhibition occurs concurrently with membrane depolarization, and depolarization arrested growth independently of shock, indicating that electrical signals implement the negative feedback characteristic of homeostasis. Thus, competing influences of membrane tension and cell-wall mechanical stress on growth allow cells to rapidly correct for mismatches between membrane and wall synthesis rates, ensuring balanced growth.
Collapse
Affiliation(s)
- Enrique R Rojas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Julie A Theriot
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
53
|
Lai GC, Cho H, Bernhardt TG. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli. PLoS Genet 2017; 13:e1006934. [PMID: 28749938 PMCID: PMC5549755 DOI: 10.1371/journal.pgen.1006934] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/08/2017] [Accepted: 07/19/2017] [Indexed: 12/01/2022] Open
Abstract
Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG). Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs), preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq) as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi-enzyme complexes to expand the cell wall matrix. Penicillin and related beta-lactams are one of our oldest and most effective classes of antibiotics. These drugs target enzymes called penicillin-binding proteins (PBPs) that build the essential cell wall that surrounds bacterial cells. Beta-lactams have long been used as chemical and genetic probes to uncover the mechanisms required for proper bacterial cell wall biogenesis. In this report, we use a high-throughput genetic approach to comprehensively identify nearly all genetic loci that promote resistance to the beta-lactam mecillinam in the model organism Escherichia coli. Moreover, by performing our analysis in several different genetic backgrounds we were able to generate a rich resource that defines those alleles that promote resistance by inducing a stress response and those that are more likely to do so by directly modulating cell wall synthesis. Further characterization of one of the stress response-independent resistance loci helped us discover that enzymes that cleave crosslinks in the cell wall are capable of activating cell wall synthesis by a subset of PBPs. Our analysis of the activation mechanism challenges the prevailing view in the field that cell wall synthases and cell wall cleaving enzymes must work in multi-enzyme complexes to assemble the cell wall.
Collapse
Affiliation(s)
- Ghee Chuan Lai
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Hongbaek Cho
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Thomas G Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
54
|
van Teeseling MCF, de Pedro MA, Cava F. Determinants of Bacterial Morphology: From Fundamentals to Possibilities for Antimicrobial Targeting. Front Microbiol 2017; 8:1264. [PMID: 28740487 PMCID: PMC5502672 DOI: 10.3389/fmicb.2017.01264] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 12/11/2022] Open
Abstract
Bacterial morphology is extremely diverse. Specific shapes are the consequence of adaptive pressures optimizing bacterial fitness. Shape affects critical biological functions, including nutrient acquisition, motility, dispersion, stress resistance and interactions with other organisms. Although the characteristic shape of a bacterial species remains unchanged for vast numbers of generations, periodical variations occur throughout the cell (division) and life cycles, and these variations can be influenced by environmental conditions. Bacterial morphology is ultimately dictated by the net-like peptidoglycan (PG) sacculus. The species-specific shape of the PG sacculus at any time in the cell cycle is the product of multiple determinants. Some morphological determinants act as a cytoskeleton to guide biosynthetic complexes spatiotemporally, whereas others modify the PG sacculus after biosynthesis. Accumulating evidence supports critical roles of morphogenetic processes in bacteria-host interactions, including pathogenesis. Here, we review the molecular determinants underlying morphology, discuss the evidence linking bacterial morphology to niche adaptation and pathogenesis, and examine the potential of morphological determinants as antimicrobial targets.
Collapse
Affiliation(s)
- Muriel C F van Teeseling
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Miguel A de Pedro
- Centro de Biología Molecular "Severo Ochoa" - Consejo Superior de Investigaciones Científicas, Universidad Autónoma de MadridMadrid, Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| |
Collapse
|
55
|
Abstract
Bacillus subtilis is one of the best-studied organisms. Due to the broad knowledge and annotation and the well-developed genetic system, this bacterium is an excellent starting point for genome minimization with the aim of constructing a minimal cell. We have analyzed the genome of B. subtilis and selected all genes that are required to allow life in complex medium at 37°C. This selection is based on the known information on essential genes and functions as well as on gene and protein expression data and gene conservation. The list presented here includes 523 and 119 genes coding for proteins and RNAs, respectively. These proteins and RNAs are required for the basic functions of life in information processing (replication and chromosome maintenance, transcription, translation, protein folding, and secretion), metabolism, cell division, and the integrity of the minimal cell. The completeness of the selected metabolic pathways, reactions, and enzymes was verified by the development of a model of metabolism of the minimal cell. A comparison of the MiniBacillus genome to the recently reported designed minimal genome of Mycoplasma mycoides JCVI-syn3.0 indicates excellent agreement in the information-processing pathways, whereas each species has a metabolism that reflects specific evolution and adaptation. The blueprint of MiniBacillus presented here serves as the starting point for a successive reduction of the B. subtilis genome.
Collapse
|
56
|
Teichoic Acid Polymers Affect Expression and Localization of dl-Endopeptidase LytE Required for Lateral Cell Wall Hydrolysis in Bacillus subtilis. J Bacteriol 2016; 198:1585-1594. [PMID: 27002131 DOI: 10.1128/jb.00003-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/14/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED In Bacillus subtilis, the dl-endopeptidase LytE is responsible for lateral peptidoglycan hydrolysis during cell elongation. We found that σ(I)-dependent transcription of lytE is considerably enhanced in a strain with a mutation in ltaS, which encodes a major lipoteichoic acid (LTA) synthase. Similar enhancements were observed in mutants that affect the glycolipid anchor and wall teichoic acid (WTA) synthetic pathways. Immunofluorescence microscopy revealed that the LytE foci were considerably increased in these mutants. The localization patterns of LytE on the sidewalls appeared to be helix-like in LTA-defective or WTA-reduced cells and evenly distributed on WTA-depleted or -defective cell surfaces. These results strongly suggested that LTA and WTA affect both σ(I)-dependent expression and localization of LytE. Interestingly, increased LytE localization along the sidewall in the ltaS mutant largely occurred in an MreBH-independent manner. Moreover, we found that cell surface decorations with LTA and WTA are gradually reduced at increased culture temperatures and that LTA rather than WTA on the cell surface is reduced at high temperatures. In contrast, the amount of LytE on the cell surface gradually increased under heat stress conditions. Taken together, these results indicated that reductions in these anionic polymers at high temperatures might give rise to increases in SigI-dependent expression and cell surface localization of LytE at high temperatures. IMPORTANCE The bacterial cell wall is required for maintaining cell shape and bearing environmental stresses. The Gram-positive cell wall consists of mesh-like peptidoglycan and covalently linked wall teichoic acid and lipoteichoic acid polymers. It is important to determine if these anionic polymers are required for proliferation and environmental adaptation. Here, we demonstrated that these polymers affect the expression and localization of a peptidoglycan hydrolase LytE required for lateral cell wall elongation. Moreover, we found that cell surface decorations with teichoic acid polymers are substantially decreased at high temperatures and that the peptidoglycan hydrolase is consequently increased. These findings suggest that teichoic acid polymers control lateral peptidoglycan hydrolysis by LytE, and bacteria drastically change their cell wall content to adapt to their environment.
Collapse
|
57
|
Shen YC, Hu YN, Shaw GC. Expressions of alkaline phosphatase genes during phosphate starvation are under positive influences of multiple cell wall hydrolase genes in Bacillus subtilis. J GEN APPL MICROBIOL 2016; 62:106-9. [DOI: 10.2323/jgam.62.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yueh-Chi Shen
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University
| | - Yi-Nei Hu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University
| | - Gwo-Chyuan Shaw
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University
| |
Collapse
|
58
|
Yunck R, Cho H, Bernhardt TG. Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria. Mol Microbiol 2015; 99:700-18. [PMID: 26507882 DOI: 10.1111/mmi.13258] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2015] [Indexed: 12/27/2022]
Abstract
Bacterial cells are fortified against osmotic lysis by a cell wall made of peptidoglycan (PG). Synthases called penicillin-binding proteins (PBPs), the targets of penicillin and related antibiotics, polymerize the glycan strands of PG and crosslink them into the cell wall meshwork via attached peptides. The average length of glycan chains inserted into the matrix by the PBPs is thought to play an important role in bacterial morphogenesis, but polymerization termination factors controlling this process have yet to be discovered. Here, we report the identification of Escherichia coli MltG (YceG) as a potential terminase for glycan polymerization that is broadly conserved in bacteria. A clone containing mltG was initially isolated in a screen for multicopy plasmids generating a lethal phenotype in cells defective for the PG synthase PBP1b. Biochemical studies revealed that MltG is an inner membrane enzyme with endolytic transglycosylase activity capable of cleaving at internal positions within a glycan polymer. Radiolabeling experiments further demonstrated MltG-dependent nascent PG processing in vivo, and bacterial two-hybrid analysis identified an MltG-PBP1b interaction. Mutants lacking MltG were also shown to have longer glycans in their PG relative to wild-type cells. Our combined results are thus consistent with a model in which MltG associates with PG synthetic complexes to cleave nascent polymers and terminate their elongation.
Collapse
Affiliation(s)
- Rachel Yunck
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hongbaek Cho
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas G Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
59
|
Regulated proteolysis of a cross-link-specific peptidoglycan hydrolase contributes to bacterial morphogenesis. Proc Natl Acad Sci U S A 2015; 112:10956-61. [PMID: 26283368 DOI: 10.1073/pnas.1507760112] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial growth and morphogenesis are intimately coupled to expansion of peptidoglycan (PG), an extensively cross-linked macromolecule that forms a protective mesh-like sacculus around the cytoplasmic membrane. Growth of the PG sacculus is a dynamic event requiring the concerted action of hydrolases that cleave the cross-links for insertion of new material and synthases that catalyze cross-link formation; however, the factors that regulate PG expansion during bacterial growth are poorly understood. Here, we show that the PG hydrolase MepS (formerly Spr), which is specific to cleavage of cross-links during PG expansion in Escherichia coli, is modulated by proteolysis. Using combined genetic, molecular, and biochemical approaches, we demonstrate that MepS is rapidly degraded by a proteolytic system comprising an outer membrane lipoprotein of unknown function, NlpI, and a periplasmic protease, Prc (or Tsp). In summary, our results indicate that the NlpI-Prc system contributes to growth and enlargement of the PG sacculus by modulating the cellular levels of the cross-link-cleaving hydrolase MepS. Overall, this study signifies the importance of PG cross-link cleavage and its regulation in bacterial cell wall biogenesis.
Collapse
|
60
|
Metelev M, Tietz JI, Melby JO, Blair PM, Zhu L, Livnat I, Severinov K, Mitchell DA. Structure, bioactivity, and resistance mechanism of streptomonomicin, an unusual lasso Peptide from an understudied halophilic actinomycete. ACTA ACUST UNITED AC 2015; 22:241-50. [PMID: 25601074 DOI: 10.1016/j.chembiol.2014.11.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/04/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Natural products are the most historically significant source of compounds for drug development. However, unacceptably high rates of compound rediscovery associated with large-scale screening of common microbial producers have resulted in the abandonment of many natural product drug discovery efforts, despite the increasing prevalence of clinically problematic antibiotic resistance. Screening of underexplored taxa represents one strategy to avoid rediscovery. Herein we report the discovery, isolation, and structural elucidation of streptomonomicin (STM), an antibiotic lasso peptide from Streptomonospora alba, and report the genome for its producing organism. STM-resistant clones of Bacillus anthracis harbor mutations to walR, the gene encoding a response regulator for the only known widely distributed and essential two-component signal transduction system in Firmicutes. To the best of our knowledge, Streptomonospora had been hitherto biosynthetically and genetically uncharacterized, with STM being the first reported compound from the genus. Our results demonstrate that understudied microbes remain fruitful reservoirs for the rapid discovery of novel, bioactive natural products.
Collapse
Affiliation(s)
- Mikhail Metelev
- Institute for Nanobiotechnologies, Saint Petersburg State Polytechnical University, Saint Petersburg 195251, Russia; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonathan I Tietz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joel O Melby
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Blair
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lingyang Zhu
- NMR Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Itamar Livnat
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Konstantin Severinov
- Institute for Nanobiotechnologies, Saint Petersburg State Polytechnical University, Saint Petersburg 195251, Russia; Department of Molecular Biology and Biochemistry, Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
61
|
Wang Y, Chen Z, Zhao R, Jin T, Zhang X, Chen X. Deleting multiple lytic genes enhances biomass yield and production of recombinant proteins by Bacillus subtilis. Microb Cell Fact 2014; 13:129. [PMID: 25176138 PMCID: PMC4243946 DOI: 10.1186/s12934-014-0129-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/23/2014] [Indexed: 02/01/2023] Open
Abstract
Background Bacillus subtilis is widely used in agriculture and industrial biotechnology; however, cell autolysis significantly decreases its yield in liquid cultures. Numerous factors mediate the lysis of B. subtilis, such as cannibalism factors, prophages, and peptidoglycan (PG) hydrolases. The aim of this work was to use molecular genetic techniques to develop a new strategy to prevent cell lysis and enhance biomass as well as the production of recombinant proteins. Results Five genes or genetic elements representing three different functional categories were studied as follows: lytC encoding PG hydrolases, the prophage genes xpf and yqxG-yqxH-cwlA (yGlA), and skfA and sdpC that encode cannibalism factors. Cell lysis was reduced and biomass was enhanced by deleting individually skfA, sdpC, xpf, and lytC. We constructed the multiple deletion mutant LM2531 (skfA sdpC lytC xpf) and found that after 4 h of culture, its biomass yield was significantly increased compared with that of prototypical B. subtilis 168 (wild-type) strain and that 15% and 92% of the cells were lysed in cultures of LM2531 and wild-type, respectively. Moreover, two expression vectors were constructed for producing recombinant proteins (β-galactosidase and nattokinase) under the control of the P43 promoter. Cultures of LM2531 and wild-type transformants produced 13741 U/ml and 7991 U/ml of intracellular β-galactosidase, respectively (1.72-fold increase). Further, the level of secreted nattokinase produced by strain LM2531 increased by 2.6-fold compared with wild-type (5226 IU/ml vs. 2028 IU/ml, respectively). Conclusions Our novel, systematic multigene deletion approach designed to inhibit cell lysis significantly increased the biomass yield and the production of recombinant proteins by B. subtilis. These findings show promise for guiding efforts to manipulate the genomes of other B. subtilis strains that are used for industrial purposes. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0129-9) contains supplementary material, which is available to authorized users.
Collapse
|
62
|
Hashimoto M, Fujikura K, Miyake Y, Higashitsuji Y, Kiriyama Y, Tanaka T, Yamamoto H, Sekiguchi J. A cell wall protein (YqgA) is genetically related to the cell wall-degrading dl-endopeptidases in Bacillus subtilis. Biosci Biotechnol Biochem 2014; 78:1428-34. [PMID: 25130749 DOI: 10.1080/09168451.2014.923294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis has a thick cell wall. The cell wall contains various proteins, both for secretion and for peptidoglycan (PG) maintenance. Penicillin-binding proteins for PG synthesis, PG hydrolases (autolysins), and regulator proteins for the autolysins are the known components of the PG maintenance system. YqgA was identified as an abundant protein attached to the cell wall of B. subtilis through a proteomics analysis. The YqgA protein was localized at cell division sites during the transition period between the exponential and the stationary phases. YqgA localization was affected by mutations in the dl-endopeptidases (DLEPases), which are the autolysins involved in cell morphogenesis. Furthermore, yqgA mutations on a background of defective DLEPases led to delays in cell growth and cell morphological changes. These results demonstrate that yqgA is genetically related to the genes encoding DLEPases involved in cell morphogenesis.
Collapse
Affiliation(s)
- Masayuki Hashimoto
- a Institute of Molecular Medicine , National Cheng Kung University Medical College , Tainan , Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Jorgenson MA, Chen Y, Yahashiri A, Popham DL, Weiss DS. The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Mol Microbiol 2014; 93:113-28. [PMID: 24806796 DOI: 10.1111/mmi.12643] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 11/28/2022]
Abstract
Rare lipoprotein A (RlpA) is a widely conserved outer membrane protein of unknown function that has previously only been studied in Escherichia coli, where it localizes to the septal ring and scattered foci along the lateral wall, but mutants have no phenotypic change. Here we show rlpA mutants of Pseudomonas aeruginosa form chains of short, fat cells when grown in low osmotic strength media. These morphological defects indicate RlpA is needed for efficient separation of daughter cells and maintenance of rod shape. Analysis of peptidoglycan sacculi from an rlpA deletion mutant revealed increased tetra and hexasaccharides that lack stem peptides (hereafter called 'naked glycans'). Incubation of these sacculi with purified RlpA resulted in release of naked glycans containing 1,6-anhydro N-acetylmuramic acid ends. RlpA did not degrade sacculi from wild-type cells unless the sacculi were subjected to a limited digestion with an amidase to remove some of the stem peptides. Thus, RlpA is a lytic transglycosylase with a strong preference for naked glycan strands. We propose that RlpA activity is regulated in vivo by substrate availability, and that amidases and RlpA work in tandem to degrade peptidoglycan in the division septum and lateral wall.
Collapse
Affiliation(s)
- Matthew A Jorgenson
- Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | | | |
Collapse
|
64
|
Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Appl Microbiol Biotechnol 2014; 98:6397-407. [PMID: 24769902 DOI: 10.1007/s00253-014-5729-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/23/2014] [Accepted: 03/26/2014] [Indexed: 02/04/2023]
Abstract
Poly-γ-glutamic acid (γ-PGA) is an important biopolymer with greatly potential in industrial and medical applications. In the present study, we constructed a metabolically engineered glutamate-independent Bacillus amyloliquefaciens LL3 strain with considerable γ-PGA production, which was carried out by single, double, and triple markerless deletions of three degradation genes pgdS, ggt, and cwlO. The highest γ-PGA production (7.12 g/L) was obtained from the pgdS and cwlO double-deletion strain NK-pc, which was 93 % higher than that of wild-type LL3 strain (3.69 g/L). The triple-gene-deletion strain NK-pgc showed a 28 % decrease in γ-PGA production, leading to a yield of 2.69 g/L. Furthermore, the cell morphologies of the mutant strains were also characterized. The cell length of cwlO deletion strains NK-c and NK-pc was shorter than that of the wild-type strain, while the ggt deletion strains NK-g, NK-pg, NK-gc, and NK-pgc showed longer cell lengths. This is the first report concerning the markerless deletion of γ-PGA degradation genes to improve γ-PGA production in a glutamate-independent strain and the first observation that γ-glutamyltranspeptidase (encoded by ggt) could be involved in the inhibition of cell elongation.
Collapse
|
65
|
Kaman WE, Hays JP, Endtz HP, Bikker FJ. Bacterial proteases: targets for diagnostics and therapy. Eur J Clin Microbiol Infect Dis 2014; 33:1081-7. [PMID: 24535571 DOI: 10.1007/s10096-014-2075-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/30/2014] [Indexed: 02/02/2023]
Abstract
Proteases are essential for the proliferation and growth of bacteria, and are also known to contribute to bacterial virulence. This makes them interesting candidates as diagnostic and therapeutic targets for infectious diseases. In this review, the authors discuss the most recent developments and potential applications for bacterial proteases in the diagnosis and treatment of bacterial infections. Current and future bacterial protease targets are described and their limitations outlined.
Collapse
Affiliation(s)
- W E Kaman
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands,
| | | | | | | |
Collapse
|
66
|
Huang WZ, Wang JJ, Chen HJ, Chen JT, Shaw GC. The heat-inducible essential response regulator WalR positively regulates transcription of sigI, mreBH and lytE in Bacillus subtilis under heat stress. Res Microbiol 2013; 164:998-1008. [DOI: 10.1016/j.resmic.2013.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/16/2013] [Indexed: 01/15/2023]
|
67
|
A highly unstable transcript makes CwlO D,L-endopeptidase expression responsive to growth conditions in Bacillus subtilis. J Bacteriol 2013; 196:237-47. [PMID: 24163346 DOI: 10.1128/jb.00986-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis cell wall is a dynamic structure, composed of peptidoglycan and teichoic acid, that is continually remodeled during growth. Remodeling is effected by the combined activities of penicillin binding proteins and autolysins that participate in the synthesis and turnover of peptidoglycan, respectively. It has been established that one or the other of the CwlO and LytE D,L-endopeptidase-type autolysins is essential for cell viability, a requirement that is fulfilled by coordinate control of their expression by WalRK and SigI RsgI. Here we report on the regulation of cwlO expression. The cwlO transcript is very unstable, with its degradation initiated by RNase Y cleavage within the 187-nucleotide leader sequence. An antisense cwlO transcript of heterogeneous length is expressed from a SigB promoter that has the potential to control cellular levels of cwlO RNA and protein under stress conditions. We discuss how a multiplicity of regulatory mechanisms makes CwlO expression and activity responsive to the prevailing growth conditions.
Collapse
|
68
|
Lee TK, Huang KC. The role of hydrolases in bacterial cell-wall growth. Curr Opin Microbiol 2013; 16:760-6. [PMID: 24035761 DOI: 10.1016/j.mib.2013.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 08/18/2013] [Indexed: 01/18/2023]
Abstract
Although hydrolysis is known to be as important as synthesis in the growth and development of the bacterial cell wall, the coupling between these processes is not well understood. Bond cleavage can generate deleterious pores, but may also be required for the incorporation of new material and for the expansion of the wall, highlighting the importance of mechanical forces in interpreting the consequences of hydrolysis in models of growth. Critically, minimal essential subsets of hydrolases have now been identified in several model organisms, enabling the reduction of genetic complexity. Recent studies in Bacillus subtilis have provided evidence for both the presence and absence of coupling between synthesis and hydrolysis during sporulation and elongation, respectively. In this review, we discuss strategies for dissecting the relationship between synthesis and hydrolysis using time-lapse imaging, biophysical measurements of cell-wall architecture, and computational modeling.
Collapse
Affiliation(s)
- Timothy K Lee
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
69
|
Krishnappa L, Dreisbach A, Otto A, Goosens VJ, Cranenburgh RM, Harwood CR, Becher D, van Dijl JM. Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis. J Proteome Res 2013; 12:4101-10. [PMID: 23937099 DOI: 10.1021/pr400433h] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gram-positive bacteria are known to export many proteins to the cell wall and growth medium, and accordingly, many studies have addressed the respective protein export mechanisms. In contrast, very little is known about the subsequent fate of these proteins. The present studies were therefore aimed at determining the fate of native exported proteins in the model organism Bacillus subtilis. Specifically, we employed a gel electrophoresis-based liquid chromatography-mass spectrometry approach to distinguish the roles of the membrane-associated quality control proteases HtrA and HtrB from those of eight other proteases that are present in the cell wall and/or growth medium of B. subtilis. Notably, HtrA and HtrB were previously shown to counteract potentially detrimental "protein export stresses" upon overproduction of membrane or secreted proteins. Our results show that many secreted proteins, lipoproteins, and membrane proteins of B. subtilis are potential substrates of extracytoplasmic proteases. Moreover, potentially important roles of HtrA and HtrB in the folding of native secreted proteins into a protease-resistant conformation, the liberation of lipoproteins from the membrane-cell wall interface, and the degradation of membrane proteins are uncovered. Altogether, our observations show that HtrA and HtrB are crucial for maintaining the integrity of the B. subtilis cell even under nonstress conditions.
Collapse
Affiliation(s)
- Laxmi Krishnappa
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Domínguez-Cuevas P, Porcelli I, Daniel RA, Errington J. Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis. Mol Microbiol 2013; 89:1084-98. [PMID: 23869552 PMCID: PMC3817527 DOI: 10.1111/mmi.12335] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 12/20/2022]
Abstract
Cell morphogenesis in most bacteria is governed by spatiotemporal growth regulation of the peptidoglycan cell wall layer. Much is known about peptidoglycan synthesis but regulation of its turnover by hydrolytic enzymes is much less well understood. Bacillus subtilis has a multitude of such enzymes. Two of the best characterized are CwlO and LytE: cells lacking both enzymes have a lethal block in cell elongation. Here we show that activity of CwlO is regulated by an ABC transporter, FtsEX, which is required for cell elongation, unlike cell division as in Escherichia coli. Actin-like MreB proteins are thought to play a key role in orchestrating cell wall morphogenesis. B. subtilis has three MreB isologues with partially differentiated functions. We now show that the three MreB isologues have differential roles in regulation of the CwlO and LytE systems and that autolysins control different aspects of cell morphogenesis. The results add major autolytic activities to the growing list of functions controlled by MreB isologues in bacteria and provide new insights into the different specialized functions of essential cell wall autolysins.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Centre for Bacterial Cell Biology, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | | | | | | |
Collapse
|
71
|
Meisner J, Montero Llopis P, Sham LT, Garner E, Bernhardt TG, Rudner DZ. FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall elongation in Bacillus subtilis. Mol Microbiol 2013; 89:1069-83. [PMID: 23855774 DOI: 10.1111/mmi.12330] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 11/28/2022]
Abstract
The peptidoglycan (PG) sacculus, a meshwork of polysaccharide strands cross-linked by short peptides, protects bacterial cells against osmotic lysis. To enlarge this covalently closed macromolecule, PG hydrolases must break peptide cross-links in the meshwork to allow insertion of new glycan strands between the existing ones. In the rod-shaped bacterium Bacillus subtilis, cell wall elongation requires two redundant endopeptidases, CwlO and LytE. However, it is not known how these potentially autolytic enzymes are regulated to prevent lethal breaches in the cell wall. Here, we show that the ATP-binding cassette transporter-like FtsEX complex is required for CwlO activity. In Escherichia coli, FtsEX is thought to harness ATP hydrolysis to activate unrelated PG hydrolases during cell division. Consistent with this regulatory scheme, B. subtilis FtsE mutants that are unable to bind or hydrolyse ATP cannot activate CwlO. Finally, we show that in cells depleted of both CwlO and LytE, the PG synthetic machinery continues moving circumferentially until cell lysis, suggesting that cross-link cleavage is not required for glycan strand polymerization. Overall, our data support a model in which the FtsEX complex is a remarkably flexible regulatory module capable of controlling a diverse set of PG hydrolases during growth and division in different organisms.
Collapse
Affiliation(s)
- Jeffrey Meisner
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | | | | | | | | | | |
Collapse
|
72
|
Dörr T, Cava F, Lam H, Davis BM, Waldor MK. Substrate specificity of an elongation-specific peptidoglycan endopeptidase and its implications for cell wall architecture and growth of Vibrio cholerae. Mol Microbiol 2013; 89:949-62. [PMID: 23834664 DOI: 10.1111/mmi.12323] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2013] [Indexed: 01/04/2023]
Abstract
The bacterial cell wall consists of peptidoglycan (PG), a sturdy mesh of glycan strands cross-linked by short peptides. This rigid structure constrains cell shape and size, yet is sufficiently dynamic to accommodate insertion of newly synthesized PG, which was long hypothesized, and recently demonstrated, to require cleavage of the covalent peptide cross-links that couple previously inserted material. Here, we identify several genes in Vibrio cholerae that collectively are required for growth - particularly elongation - of this pathogen. V. cholerae encodes three putative periplasmic proteins, here denoted ShyA, ShyB, and ShyC, that contain both PG binding and M23 family peptidase domains. While none is essential individually, the absence of both ShyA and ShyC results in synthetic lethality, while the absence of ShyA and ShyB causes a significant growth deficiency. ShyA is a D,d-endopeptidase able to cleave most peptide chain cross-links in V. cholerae's PG. PG from a ∆shyA mutant has decreased average chain length, suggesting that ShyA may promote removal of short PG strands. Unexpectedly, ShyA has little activity against muropeptides containing pentapeptides, which typically characterize newly synthesized material. ShyA's substrate-dependent activity may contribute to selection of cleavage sites in PG, whose implications for the process of side-wall growth are discussed.
Collapse
Affiliation(s)
- Tobias Dörr
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
73
|
Peters NT, Morlot C, Yang DC, Uehara T, Vernet T, Bernhardt TG. Structure-function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the Escherichia coli division site. Mol Microbiol 2013; 89:690-701. [PMID: 23796240 DOI: 10.1111/mmi.12304] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2013] [Indexed: 12/19/2022]
Abstract
Proteins with LytM (Peptidase_M23) domains are broadly distributed in bacteria and have been implicated in a variety of important processes, including cell division and cell-shape determination. Most LytM-like proteins that have been structurally and/or biochemically characterized are metallo-endopeptidases that cleave cross-links in the peptidoglycan (PG) cell wall matrix. Notable exceptions are the Escherichia coli cell division proteins EnvC and NlpD. These LytM factors are not hydrolases themselves, but instead serve as activators that stimulate PG cleavage by target enzymes called amidases to promote cell separation. Here we report the structure of the LytM domain from EnvC, the first structure of a LytM factor implicated in the regulation of PG hydrolysis. As expected, the fold is highly similar to that of other LytM proteins. However, consistent with its role as a regulator, the active-site region is degenerate and lacks a catalytic metal ion. Importantly, genetic analysis indicates that residues in and around this degenerate active site are critical for amidase activation in vivo and in vitro. Thus, in the regulatory LytM factors, the apparent substrate binding pocket conserved in active metallo-endopeptidases has been adapted to control PG hydrolysis by another set of enzymes.
Collapse
Affiliation(s)
- Nick T Peters
- Department of Microbiology and Immunobiology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
74
|
Salzberg LI, Powell L, Hokamp K, Botella E, Noone D, Devine KM. The WalRK (YycFG) and σ(I) RsgI regulators cooperate to control CwlO and LytE expression in exponentially growing and stressed Bacillus subtilis cells. Mol Microbiol 2012. [PMID: 23199363 DOI: 10.1111/mmi.12092] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WalRK (YycFG) two-component system co-ordinates cell wall metabolism with growth by regulating expression of autolysins and proteins that modulate autolysin activity. Here we extend its role in cell wall metabolism by showing that WalR binds to 22 chromosomal loci in vivo. Among the newly identified genes of the WalRK bindome are those that encode the wall-associated protein WapA, the penicillin binding proteins PbpH and Pbp5, the minor teichoic acid synthetic enzymes GgaAB and the regulators σ(I) RsgI. The putative WalR binding sequence at many newly identified binding loci deviates from the previously defined consensus. Moreover, expression of many newly identified operons is controlled by multiple regulators. An unusual feature is that WalR binds to an extended DNA region spanning multiple open reading frames at some loci. WalRK directly activates expression of the sigIrsgI operon from a newly identified σ(A) promoter and represses expression from the previously identified σ(I) promoter. We propose that this regulatory link between WalRK and σ(I) RsgI expression ensures that the endopeptidase requirement (CwlO or LytE) for cell viability is fulfilled during growth and under stress conditions. Thus the WalRK and σ(I) RsgI regulatory systems cooperate to control cell wall metabolism in growing and stressed cells.
Collapse
Affiliation(s)
- Letal I Salzberg
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2. Ireland
| | | | | | | | | | | |
Collapse
|
75
|
Arai R, Fukui S, Kobayashi N, Sekiguchi J. Solution structure of IseA, an inhibitor protein of DL-endopeptidases from Bacillus subtilis, reveals a novel fold with a characteristic inhibitory loop. J Biol Chem 2012; 287:44736-48. [PMID: 23091053 DOI: 10.1074/jbc.m112.414763] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Bacillus subtilis, LytE, LytF, CwlS, and CwlO are vegetative autolysins, DL-endopeptidases in the NlpC/P60 family, and play essential roles in cell growth and separation. IseA (YoeB) is a proteinaceous inhibitor against the DL-endopeptidases, peptidoglycan hydrolases. Overexpression of IseA caused significantly long chained cell morphology, because IseA inhibits the cell separation DL-endopeptidases post-translationally. Here, we report the first three-dimensional structure of IseA, determined by NMR spectroscopy. The structure includes a single domain consisting of three α-helices, one 3(10)-helix, and eight β-strands, which is a novel fold like a "hacksaw." Noteworthy is a dynamic loop between β4 and the 3(10)-helix, which resembles a "blade." The electrostatic potential distribution shows that most of the surface is positively charged, but the region around the loop is negatively charged. In contrast, the LytF active-site cleft is expected to be positively charged. NMR chemical shift perturbation of IseA interacting with LytF indicated that potential interaction sites are located around the loop. Furthermore, the IseA mutants D100K/D102K and G99P/G101P at the loop showed dramatic loss of inhibition activity against LytF, compared with wild-type IseA, indicating that the β4-3(10) loop plays an important role in inhibition. Moreover, we built a complex structure model of IseA-LytF by docking simulation, suggesting that the β4-3(10) loop of IseA gets stuck deep in the cleft of LytF, and the active site is occluded. These results suggest a novel inhibition mechanism of the hacksaw-like structure, which is different from known inhibitor proteins, through interactions around the characteristic loop regions with the active-site cleft of enzymes.
Collapse
Affiliation(s)
- Ryoichi Arai
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan.
| | | | | | | |
Collapse
|
76
|
Vollmer W. Bacterial growth does require peptidoglycan hydrolases. Mol Microbiol 2012; 86:1031-5. [PMID: 23066944 DOI: 10.1111/mmi.12059] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2012] [Indexed: 01/11/2023]
Abstract
Most bacteria surround their cytoplasmic membrane with a net-like, elastic heteropolymer, the peptidoglycan sacculus, to protect themselves from bursting due to the turgor and to maintain cell shape. It has been assumed that growing bacteria require peptidoglycan hydrolases to open meshes in the peptidoglycan net allowing the insertion of the newly synthesized material for surface expansion. However, peptidoglycan hydrolases essential for bacterial growth have long remained elusive. In this issue of Molecular Microbiology Singh et al. (2012) report the identification in Escherichia coli of three new DD-endopeptidases (Spr, YdhO and YebA) which are collectively required for peptidoglycan growth. Cells depleted of the three enzymes fail to incorporate new peptidoglycan, indicating that the cleavage of cross-links by the new endopeptidases is needed for surface growth of the sacculus. These results are corroborated by recent data showing that Bacillus subtilis cells require the DL-endopeptidase activity of CwlO or LytE for growth.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK.
| |
Collapse
|