Identification of two Legionella pneumophila effectors that manipulate host phospholipids biosynthesis.
PLoS Pathog 2012;
8:e1002988. [PMID:
23133385 PMCID:
PMC3486869 DOI:
10.1371/journal.ppat.1002988]
[Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/28/2012] [Indexed: 12/31/2022] Open
Abstract
The intracellular pathogen Legionella pneumophila translocates a large number of effector proteins into host cells via the Icm/Dot type-IVB secretion system. Some of these effectors were shown to cause lethal effect on yeast growth. Here we characterized one such effector (LecE) and identified yeast suppressors that reduced its lethal effect. The LecE lethal effect was found to be suppressed by the over expression of the yeast protein Dgk1 a diacylglycerol (DAG) kinase enzyme and by a deletion of the gene encoding for Pah1 a phosphatidic acid (PA) phosphatase that counteracts the activity of Dgk1. Genetic analysis using yeast deletion mutants, strains expressing relevant yeast genes and point mutations constructed in the Dgk1 and Pah1 conserved domains indicated that LecE functions similarly to the Nem1-Spo7 phosphatase complex that activates Pah1 in yeast. In addition, by using relevant yeast genetic backgrounds we examined several L. pneumophila effectors expected to be involved in phospholipids biosynthesis and identified an effector (LpdA) that contains a phospholipase-D (PLD) domain which caused lethal effect only in a dgk1 deletion mutant of yeast. Additionally, LpdA was found to enhance the lethal effect of LecE in yeast cells, a phenomenon which was found to be dependent on its PLD activity. Furthermore, to determine whether LecE and LpdA affect the levels or distribution of DAG and PA in-vivo in mammalian cells, we utilized fluorescent DAG and PA biosensors and validated the notion that LecE and LpdA affect the in-vivo levels and distribution of DAG and PA, respectively. Finally, we examined the intracellular localization of both LecE and LpdA in human macrophages during L. pneumophila infection and found that both effectors are localized to the bacterial phagosome. Our results suggest that L. pneumophila utilize at least two effectors to manipulate important steps in phospholipids biosynthesis.
Legionella pneumophila is an intracellular pathogen that causes a severe pneumonia known as Legionnaires' disease. Following infection, the bacteria use a Type-IVB secretion system to translocate multiple effector proteins into macrophages and generate the Legionella-containing vacuole (LCV). The formation of the LCV involves the recruitment of specific bacterial effectors and host cell factors to the LCV as well as changes in its lipids composition. By screening L. pneumophila effectors for yeast growth inhibition, we have identified an effector, named LecE, that strongly inhibits yeast growth. By using yeast genetic tools, we found that LecE activates the yeast lipin homolog – Pah1, an enzyme that catalyzes the conversion of diacylglycerol to phosphatidic acid, these two molecules function as bioactive lipid signaling molecules in eukaryotic cells. In addition, by using yeast deletion mutants in genes relevant to lipids biosynthesis, we have identified another effector, named LpdA, which function as a phospholipase-D enzyme. Both effectors were found to be localized to the LCV during infection. Our results reveal a possible mechanism by which an intravacuolar pathogen might change the lipid composition of the vacuole in which it resides, a process that might lead to the recruitment of specific bacterial and host cell factors to the vacoule.
Collapse