Fairhead H, Setlow P. Binding of DNA to alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species prevents formation of cytosine dimers, cytosine-thymine dimers, and bipyrimidine photoadducts after UV irradiation.
J Bacteriol 1992;
174:2874-80. [PMID:
1569018 PMCID:
PMC205939 DOI:
10.1128/jb.174.9.2874-2880.1992]
[Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Small, acid-soluble proteins (SASP) of the alpha/beta-type from spores of Bacillus and Clostridium species bind to DNA; this binding prevents formation of cyclobutane-type thymine dimers upon UV irradiation, but promotes formation of the spore photoproduct, an adduct between adjacent thymine residues. alpha/beta-Type SASP also bound to poly(dG).poly(dC) and poly(dA-dG).poly(dC-dT). While UV irradiation of poly(dG).poly(dC) produced cyclobutane-type cytosine dimers as well as fluorescent bipyrimidine adducts, the yields of both types of photoproduct were greatly reduced upon irradiation of alpha/beta-type SASP-poly(dG).poly(dC) complexes. UV irradiation of poly(dA-dG).poly(dC-dT) produced a significant amount of a cyclobutane dimer between cytosine and thymine, as well as a 6-4 bipyrimidine adduct. Again, binding of alpha/beta-type SASP to poly(dA-dG).poly(dC-dT) greatly reduced formation of these two photoproducts, although formation of the cytosine-thymine analog of the spore photoproduct was not observed. These data provide further evidence for the dramatic change in DNA structure and photoreactivity which takes place on binding of alpha/beta-type SASP and suggest that binding of these proteins to DNA in vivo prevents formation of most deleterious photoproducts upon UV irradiation.
Collapse