51
|
Ha C, Park SJ, Im SJ, Park SJ, Lee JH. Interspecies signaling through QscR, a quorum receptor of Pseudomonas aeruginosa. Mol Cells 2012; 33:53-9. [PMID: 22228182 PMCID: PMC3887745 DOI: 10.1007/s10059-012-2208-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 10/14/2022] Open
Abstract
The QS machinery of Pseudomonas aeruginosa, an opportunistic human pathogen, consists of three acyl-homoserine lactone (acyl-HSL) signaling systems, LasR-I, RhlR-I, and QscR. QscR, known as an orphan receptor and a repressor of other QS systems, operates its own regulon using N-3-oxododecanoyl HSL (3OC12), which is synthesized by LasI, as its signal. In this study, we addressed the role of QscR in interspecies communication. We found that QscR auto-activates its own transcription in the presence of 3OC12. In a single population of P. aeruginosa, where 3OC12 is the sole signal available for QscR, the QscR regulon is activated by 3OC12 produced by the LasI-R system. However, the broad signal specificity of QscR allowed it to respond to a non-P. aeruginosa signal, such as N-decanoyl HSL (C10) and N-3-hydroxydecanoyl HSL (3OHC10), which preferentially activated QscR to LasR. The signal extracts from Pseudomonas fluorescens and Burkholeria vietnamiensis also preferentially activated QscR. These non-P. aeruginosa signals activated QscR more strongly than 3OC12, the authentic P. aeruginosa signal. Since a variety of acyl-HSLs are produced in the multi-species habitat of nature, our study provides a clue for the particular situation that allows QscR to secede from the conventional QS cascade in mixed microbial community.
Collapse
Affiliation(s)
| | | | - Su-Jin Im
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735,
Korea
| | - Su-Jin Park
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735,
Korea
| | - Joon-Hee Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735,
Korea
| |
Collapse
|
52
|
Venturi V, Rampioni G, Pongor S, Leoni L. The virtue of temperance: built-in negative regulators of quorum sensing in Pseudomonas. Mol Microbiol 2011; 82:1060-70. [PMID: 22060261 DOI: 10.1111/j.1365-2958.2011.07890.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many bacteria are now believed to produce small signal molecules in order to communicate in a process called quorum sensing (QS), which mediates cooperative traits and a co-ordinated behaviour. Pseudomonads have been extensively studied for their QS response highlighting that it plays a major role in determining their lifestyle. The main QS signal molecules produced by Pseudomonas belong to the family of N-acyl-homoserine lactones (AHLs); these are synthesized by a LuxI-family synthase and sensed by a LuxR-family regulator. Most often in Pseudomonas, repressor genes intergenically located between luxI and luxR form an integral part of QS system. Recent studies have highlighted an important role of these repressors (called RsaL and RsaM) in containing the QS response within cost-effective levels; this is central for pseudomonads as they have very versatile genomes allowing them to live in constantly changing and highly dynamic environments. This review focuses on the role played by RsaL and RsaM repressors and discusses the important implications of this control of the QS response.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano, 99, 34012 Trieste, Italy.
| | | | | | | |
Collapse
|
53
|
Reis RS, Pereira AG, Neves BC, Freire DMG. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa--a review. BIORESOURCE TECHNOLOGY 2011; 102:6377-84. [PMID: 21498076 DOI: 10.1016/j.biortech.2011.03.074] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 05/09/2023]
Abstract
Pseudomonas aeruginosa produces abundant levels of rhamnolipid biosurfactants which exhibit remarkable chemical and physical characteristics, making these compounds attractive targets for biotechnology research. The complex gene regulation network involved in rhamnolipids' biosynthesis represents a challenge to industrial production, which has been the object of a growing number of studies. This article provides a comprehensive review of the known gene regulatory factors involved in rhamnolipid production within P. aeruginosa. The regulatory factors include quorum sensing systems proteins and environmental response, and global regulatory systems within basal bacterial physiology, acting either at transcriptional or post-transcriptional level. The multilayer gene regulation responds to a wide variety of environmental and physiologic signals, and is capable of combining different signals in unique and specific responses.
Collapse
Affiliation(s)
- Rodrigo S Reis
- University of Sydney, School of Molecular Biology, NSW 2006, Australia.
| | | | | | | |
Collapse
|
54
|
Activity of the Rhodopseudomonas palustris p-coumaroyl-homoserine lactone-responsive transcription factor RpaR. J Bacteriol 2011; 193:2598-607. [PMID: 21378182 DOI: 10.1128/jb.01479-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rhodopseudomonas palustris transcriptional regulator RpaR responds to the RpaI-synthesized quorum-sensing signal p-coumaroyl-homoserine lactone (pC-HSL). Other characterized RpaR homologs respond to fatty acyl-HSLs. We show here that RpaR functions as a transcriptional activator, which binds directly to the rpaI promoter. We developed an RNAseq method that does not require a ribosome depletion step to define a set of transcripts regulated by pC-HSL and RpaR. The transcripts include several noncoding RNAs. A footprint analysis showed that purified His-tagged RpaR (His(6)-RpaR) binds to an inverted repeat element centered 48.5 bp upstream of the rpaI transcript start site, which we mapped by S1 nuclease protection and primer extension analyses. Although pC-HSL-RpaR bound to rpaI promoter DNA, it did not bind to the promoter regions of a number of RpaR-regulated genes not in the rpaI operon. This indicates that RpaR control of these other genes is indirect. Because the RNAseq analysis allowed us to track transcript strand specificity, we discovered that there is pC-HSL-RpaR-activated antisense transcription of rpaR. These data raise the possibility that this antisense RNA or other RpaR-activated noncoding RNAs mediate the indirect activation of genes in the RpaR-controlled regulon.
Collapse
|
55
|
Karig DK, Siuti P, Dar RD, Retterer ST, Doktycz MJ, Simpson ML. Model for biological communication in a nanofabricated cell-mimic driven by stochastic resonance. NANO COMMUNICATION NETWORKS 2011; 2:39-49. [PMID: 21731597 PMCID: PMC3124924 DOI: 10.1016/j.nancom.2011.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cells offer natural examples of highly efficient networks of nanomachines. Accordingly, both intracellular and intercellular communication mechanisms in nature are looked to as a source of inspiration and instruction for engineered nanocommunication. Harnessing biological functionality in this manner requires an interdisciplinary approach that integrates systems biology, synthetic biology, and nanofabrication. Here, we present a model system that exemplifies the synergism between these realms of research. We propose a synthetic gene network for operation in a nanofabricated cell mimic array that propagates a biomolecular signal over long distances using the phenomenon of stochastic resonance. Our system consists of a bacterial quorum sensing signal molecule, a bistable genetic switch triggered by this signal, and an array of nanofabricated cell mimic wells that contain the genetic system. An optimal level of noise in the system helps to propagate a time-varying AHL signal over long distances through the array of mimics. This noise level is determined both by the system volume and by the parameters of the genetic network. Our proposed genetically driven stochastic resonance system serves as a testbed for exploring the potential harnessing of gene expression noise to aid in the transmission of a time-varying molecular signal.
Collapse
Affiliation(s)
- David K. Karig
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - Piro Siuti
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Graduate Program in Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Roy D. Dar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-2010, USA
| | - Scott. T. Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Mitchel J. Doktycz
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Michael L. Simpson
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee, USA 37996-2010, USA
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996-2010, USA
| |
Collapse
|
56
|
De Maeyer K, D'aes J, Hua GKH, Perneel M, Vanhaecke L, Noppe H, Höfte M. N-Acylhomoserine lactone quorum-sensing signalling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere. Microbiology (Reading) 2011; 157:459-472. [DOI: 10.1099/mic.0.043125-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forty fluorescent Pseudomonas strains isolated from white and red cocoyam roots were tested for their ability to synthesize N-acyl-l-homoserine lactones (acyl-HSLs). Remarkably, only isolates from the red cocoyam rhizosphere that were antagonistic against the cocoyam root rot pathogen Pythium myriotylum and synthesized phenazine antibiotics produced acyl-HSLs. This supports the assumption that acyl-HSL production is related to the antagonistic activity of the strains. After detection, the signal molecules were identified through TLC-overlay and liquid chromatography-multiple MS (LC-MS/MS) analysis. In our representative strain, Pseudomonas CMR12a, production of the signal molecules could be assigned to two quorum-sensing (QS) systems. The first one is the QS system for phenazine production, PhzI/PhzR, which seemed to be well conserved, since it was genetically organized in the same way as in the well-described phenazine-producing Pseudomonas strains Pseudomonas fluorescens 2-79, Pseudomonas chlororaphis PCL1391 and Pseudomonas aureofaciens 30-84. The newly characterized genes cmrI and cmrR make up the second QS system of CMR12a, under the control of the uncommon N-3-hydroxy-dodecanoyl-homoserine lactone (3-OH-C12-HSL) and with low similarity to other Pseudomonas QS systems. No clear function could yet be assigned to the CmrI/CmrR system, although it contributes to the biocontrol capability of CMR12a. Both the PhzI/PhzR and CmrI/CmrR systems are controlled by the GacS/GacA two-component regulatory system.
Collapse
Affiliation(s)
- K. De Maeyer
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - J. D'aes
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - G. K. H. Hua
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - M. Perneel
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - L. Vanhaecke
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - H. Noppe
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - M. Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
57
|
Massai F, Imperi F, Quattrucci S, Zennaro E, Visca P, Leoni L. A multitask biosensor for micro-volumetric detection of N-3-oxo-dodecanoyl-homoserine lactone quorum sensing signal. Biosens Bioelectron 2011; 26:3444-9. [PMID: 21324665 DOI: 10.1016/j.bios.2011.01.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/04/2011] [Accepted: 01/18/2011] [Indexed: 11/19/2022]
Abstract
N-3-oxo-dodecanoyl-homoserine lactone (3OC(12)-HSL) is the main quorum sensing (QS) signal produced by the human pathogen Pseudomonas aeruginosa, a major cause of hard-to-treat nosocomial infections and years-lasting chronic biofilm infections in the lungs of cystic fibrosis (CF) patients. 3OC(12)-HSL-dependent QS is considered a promising target for novel anti-pseudomonads drugs. However, the screening systems employed to date for the identification of QS inhibitors (QSI) were aimed at the identification of inhibitors of 3OC(12)-HSL signaling rather than of the synthesis or the export of this molecule. Moreover, the low concentration of 3OC(12)-HSL in CF sputum has hampered large scale studies aimed at addressing the role of this molecule in the CF lung infection. Here we describe the construction and characterization of PA14-R3, a new whole-cell biosensor for the quantitative detection of 3OC(12)-HSL. PA14-R3 provides fast and direct quantification of 3OC(12)-HSL over a wide range of concentrations (from pM to μM), and proved to be an easy-to-handle, cost-effective and reliable biosensor for high-throughput screening of 3OC(12)-HSL levels in samples of different origin, including CF sputum. Moreover, the specific features of PA14-R3 made it possible to develop and validate a novel high-throughput screening system for QSI based on the co-cultivation of PA14-R3 with the PA14 wild-type strain. With respect to previous screening systems for QSI, this approach has the advantage of being cost-effective and allowing the identification of compounds targeting, besides 3OC(12)-HSL signaling, any cellular process critical for QS response, including 3OC(12)-HSL synthesis and secretion.
Collapse
Affiliation(s)
- Francesco Massai
- Department of Biology, University Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | | | | | | | | | | |
Collapse
|
58
|
Affiliation(s)
- Mair E A Churchill
- Department of Pharmacology and Program in Structural Biology and Biophysics, The University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
59
|
The sigma factor AlgU plays a key role in formation of robust biofilms by nonmucoid Pseudomonas aeruginosa. J Bacteriol 2010; 192:3001-10. [PMID: 20348252 DOI: 10.1128/jb.01633-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The extracytoplasmic function sigma factor AlgU of Pseudomonas aeruginosa is responsible for alginate overproduction, leading to mucoidy and chronic infections of cystic fibrosis patients. We investigated here the role of AlgU in the formation of nonmucoid biofilms. The algU mutant of P. aeruginosa PAO1 (PAOU) showed a dramatic impairment in biofilm formation under dynamic conditions. PAOU was defective both in cell attachment to glass and in development of robust, shear-resistant biofilms. This was explained by an impaired production of extracellular matrix, specifically of the exopolysaccharide Psl, as revealed by microscopy and enzyme-linked immunosorbent assay. Complementing the algU mutation with a plasmid-borne algU gene restored wild-type phenotypes. Compared with that in PAO1, expression of the psl operon was reduced in the PAOU strain, and the biofilm formation ability of this strain was partially restored by inducing the transcription of the psl operon. Furthermore, expression of the lectin-encoding lecA and lecB genes was reduced in the PAOU strain. In agreement with the requirement of LecB for type IV pilus biogenesis, PAOU displayed impaired twitching motility. Collectively, these genetic downregulation events explain the biofilm formation defect of the PAOU mutant. Promoter mapping indicated that AlgU is probably not directly responsible for transcription of the psl operon and the lec genes, but AlgU is involved in the expression of the ppyR gene, whose product was reported to positively control psl expression. Expressing the ppyR gene in PAOU partially restored the formation of robust biofilms.
Collapse
|
60
|
Quorum-sensing regulation of a copper toxicity system in Pseudomonas aeruginosa. J Bacteriol 2010; 192:2557-68. [PMID: 20233934 DOI: 10.1128/jb.01528-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LasR/LasI quorum-sensing system in Pseudomonas aeruginosa influences global gene expression and mediates pathogenesis. In this study, we show that the quorum-sensing system activates, via the transcriptional regulator PA4778, a copper resistance system composed of 11 genes. The quorum-sensing global regulator LasR was recently shown to directly activate transcription of PA4778, a cueR homolog and a MerR-type transcriptional regulator. Using molecular genetic methods and bioinformatics, we verify the interaction of LasR with the PA4778 promoter and further demonstrate the LasR binding site. We also identify a putative PA4778 binding motif and show that the protein directly binds to and activates five promoters controlling the expression of 11 genes--PA3519 to -15, PA3520, mexPQ-opmE, PA3574.1, and cueA, a virulence factor in a murine model. Using gene disruptions, we show that PA4778, along with 7 of 11 gene targets of PA4778, increases the sensitivity of P. aeruginosa to elevated copper concentrations. This work identifies a cellular function for PA4778 and four other previously unannotated genes (PA3515, PA3516, PA3517, and PA3518) and suggests a potential role for copper in the quorum response. We propose to name PA4778 cueR.
Collapse
|
61
|
Carteau D, Soum-Soutéra E, Faÿ F, Dufau C, Cérantola S, Vallée-Réhel K. Monohalogenated maleimides as potential agents for the inhibition of Pseudomonas aeruginosa biofilm. BIOFOULING 2010; 26:379-385. [PMID: 20162472 DOI: 10.1080/08927011003653441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
New monohalogenated maleimide derivatives (with bromine, chlorine or iodine) were synthesized to test the effect of halogen atoms in inhibiting the formation of Pseudomonas aeruginosa biofilm. The evaluation of their biological activities clearly defines a structure-activity relationship. In this study, the bactericidal action of the three compounds was observed at the concentration range 0.3-5.0 mM on Luria-Bertani agar plates. The halogen atom of these molecules was critical in modulating the antibacterial activity, with a slightly higher effectiveness for chlorine. Confocal laser scanning microscopy was used to examine P. aeruginosa biofilms cultivated in flow cells. At concentration as low as 40 microM, the bromine and iodine compounds displayed a total inhibition towards the formation of bacterial biofilm. At this concentration, the bacterial attachment to glass surfaces was strongly affected by the presence of bromine and iodine whereas the chlorine derivative behaved as a bactericidal compound. A bioluminescent reporter strain was then used to detect the effect of the chemically synthesized maleimides on quorum sensing (QS) in P. aeruginosa. At the concentration range 10-100 microM, bioluminescence assays reveal that halogenated maleimides were able to interfere with the QS of the bacterium. Although the relationship between the weak inhibition of cell-to-cell communication (15-55% of the signal) and the high inhibition of biofilm formation has not been elucidated clearly, the results demonstrate that bromo- and iodo-N-substituted maleimides bromine and iodine may be used as new potent inhibitors that control bacterial biofilms.
Collapse
Affiliation(s)
- David Carteau
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, Lorient, France
| | | | | | | | | | | |
Collapse
|
62
|
Roux A, Payne SM, Gilmore MS. Microbial telesensing: probing the environment for friends, foes, and food. Cell Host Microbe 2009; 6:115-24. [PMID: 19683678 DOI: 10.1016/j.chom.2009.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 01/10/2023]
Abstract
Bacterial-sensing circuits may be triggered by molecules originating from the environment (e.g., nutrients and chemoattractants). Bacteria also actively probe the environment for information by releasing molecular probes to measure conditions beyond the cell surface: a process known as telesensing. Perceiving the environment beyond is achieved by sensing environmentally induced changes in those probes, as occurs when a siderophore chelates an iron atom or a quorum-sensing signal is inactivated by a specific enzyme or adsorbent. This information, captured by chemical and physical changes induced in specifically produced molecules transiting through the environment, enables bacteria to mount a contextually appropriate response.
Collapse
Affiliation(s)
- Agnès Roux
- Schepens Eye Research Institute, Boston, MA 02114, USA
| | | | | |
Collapse
|
63
|
Temperature-dependent expression of phzM and its regulatory genes lasI and ptsP in rhizosphere isolate Pseudomonas sp. strain M18. Appl Environ Microbiol 2009; 75:6568-80. [PMID: 19717631 DOI: 10.1128/aem.01148-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain M18, an effective biological control agent isolated from the melon rhizosphere, has a genetic background similar to that of the opportunistic human pathogen Pseudomonas aeruginosa PAO1. However, the predominant phenazine produced by strain M18 is phenazine-1-carboxylic acid (PCA) rather than pyocyanin (PYO); the quantitative ratio of PCA to PYO is 105 to 1 at 28 degrees C in strain M18, while the ratio is 1 to 2 at 37 degrees C in strain PAO1. We first provided evidence that the differential production of the two phenazines in strains M18 and PAO1 is related to the temperature-dependent and strain-specific expression patterns of phzM, a gene involved in the conversion of PCA to PYO. Transcriptional levels of phzM were measured by quantitative real-time PCR, and the activities of both transcriptional and translational phzM'-'lacZ fusions were determined in strains M18 and PAO1, respectively. Using lasI::Gm and ptsP::Gm inactivation M18 mutants, we further show that expression of the phzM gene is positively regulated by the quorum-sensing protein LasI and negatively regulated by the phosphoenolpyruvate phosphotransferase protein PtsP. Surprisingly, the lasI and ptsP regulatory genes were also expressed in a temperature-dependent and strain-specific manner. The differential production of the phenazines PCA and PYO by strains M18 and PAO1 may be a consequence of selective pressure imposed on P. aeruginosa PAO1 and its relative M18 in the two different niches over a long evolutionary process.
Collapse
|
64
|
Gilbert KB, Kim TH, Gupta R, Greenberg EP, Schuster M. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol 2009; 73:1072-85. [PMID: 19682264 DOI: 10.1111/j.1365-2958.2009.06832.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In Pseudomonas aeruginosa quorum sensing (QS), the transcriptional regulator LasR controls the expression of more than 300 genes. Several of these genes are activated indirectly via a second, subordinate QS regulator, RhlR. Conserved sequence elements upstream of individual other genes have been shown to bind LasR in vitro. To comprehensively identify all regions that are bound by LasR in vivo, we employed chromatin immunoprecipitation in conjunction with microarray analysis. We identified 35 putative promoter regions that direct the expression of up to 74 genes. In vitro DNA binding studies allowed us to distinguish between cooperative and non-cooperative LasR binding sites, and allowed us to build consensus sequences according to the mode of binding. Five promoter regions were not previously recognized as QS-controlled. Two of the associated transcript units encode proteins involved in the cold-shock response and in Psl exopolysaccharide synthesis respectively. The LasR regulon includes seven genes encoding transcriptional regulators, while secreted factors and secretion machinery are the most over-represented functional categories overall. This supports the notion that the core function of LasR is to co-ordinate the production of extracellular factors, although many of its effects on global gene expression are likely mediated indirectly by regulatory genes under its control.
Collapse
Affiliation(s)
- Kerrigan B Gilbert
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
65
|
Chalupowicz L, Barash I, Panijel M, Sessa G, Manulis-Sasson S. Regulatory interactions between quorum-sensing, auxin, cytokinin, and the Hrp regulon in relation to gall formation and epiphytic fitness of Pantoea agglomerans pv. gypsophilae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:849-56. [PMID: 19522567 DOI: 10.1094/mpmi-22-7-0849] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gall formation by Pantoea agglomerans pv. gypsophilae is controlled by hrp/hrc genes, phytohormones, and the quorum-sensing (QS) regulatory system. The interactions between these three components were investigated. Disruption of the QS genes pagI and pagR and deletion of both substantially reduced the transcription levels of the hrp regulatory genes hrpXY, hrpS, and hrpL, as determined by quantitative reverse-transcriptase polymerase chain reaction. Expression of hrpL in planta was inhibited by addition of 20 microM or higher concentrations of the QS signal C(4)-HSL. The pagR and hrpL mutants caused an equivalent reduction of 1.3 orders in bacterial multiplication on bean leaves, suggesting possible mediation of the QS effect on epiphytic fitness of P. agglomerans pv. gypsophilae by the hrp regulatory system. indole-3-acetic acid (IAA) and cytokinin significantly affected the expression of the QS and hrp regulatory genes. Transcription of pagI, pagR, hrpL, and hrpS in planta was substantially reduced in iaaH mutant (disrupted in IAA biosynthesis via the indole-3-acetamide pathway) and etz mutant (disrupted in cytokinin biosynthesis). In contrast, the ipdC mutant (disrupted in IAA biosynthesis via the indole-3-pyruvate pathway) substantially increased expression of pagI, pagR, hrpL, and hrpS. Results presented suggest the involvement of IAA and cytokinins in regulation of the QS system and hrp regulatory genes.
Collapse
Affiliation(s)
- Laura Chalupowicz
- Department of Plant Pathology and Weed Research, ARO, the Volcani Center, Bet Dagan, Israel
| | | | | | | | | |
Collapse
|
66
|
Schmidt S, Blom JF, Pernthaler J, Berg G, Baldwin A, Mahenthiralingam E, Eberl L. Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of theBurkholderia cepaciacomplex. Environ Microbiol 2009; 11:1422-37. [DOI: 10.1111/j.1462-2920.2009.01870.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
67
|
Dekimpe V, Déziel E. Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. MICROBIOLOGY-SGM 2009; 155:712-723. [PMID: 19246742 DOI: 10.1099/mic.0.022764-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pseudomonas aeruginosa uses the two major quorum-sensing (QS) regulatory systems las and rhl to modulate the expression of many of its virulence factors. The las system is considered to stand at the top of the QS hierarchy. However, some virulence factors such as pyocyanin have been reported to still be produced in lasR mutants under certain conditions. Interestingly, such mutants arise spontaneously under various conditions, including in the airways of cystic fibrosis patients. Using transcriptional lacZ reporters, LC/MS quantification and phenotypic assays, we have investigated the regulation of QS-controlled factors by the las system. Our results show that activity of the rhl system is only delayed in a lasR mutant, thus allowing the expression of multiple virulence determinants such as pyocyanin, rhamnolipids and C(4)-homoserine lactone (HSL) during the late stationary phase. Moreover, at this stage, RhlR is able to overcome the absence of the las system by activating specific LasR-controlled functions, including production of 3-oxo-C(12)-HSL and Pseudomonas quinolone signal (PQS). P. aeruginosa is thus able to circumvent the deficiency of one of its QS systems by allowing the other to take over. This work demonstrates that the QS hierarchy is more complex than the model simply presenting the las system above the rhl system.
Collapse
Affiliation(s)
- Valérie Dekimpe
- INRS-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
68
|
Soberón-Chávez G, Aguirre-Ramírez M, Ordóñez L. IsPseudomonas aeruginosaOnly “Sensing Quorum”? Crit Rev Microbiol 2008; 31:171-82. [PMID: 16170907 DOI: 10.1080/10408410591005138] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The so-called quorum sensing (QS) response is a bacterial genetic reply to a chemical signal, called autoinducer, produced by the same cells. In this way bacteria modulate the transcription of genes important for their survival at high densities. In this paper we review the different elements involved in P. aeruginosa QS response, showing that it is a genetic regulatory network that not only responds to high bacterial densities, but to other environmental signals as well. We propose that QS in P. aeruginosa constitutes a novel genetic regulon that integrates and responds to nutritional factors and stress conditions in addition to bacterial density.
Collapse
Affiliation(s)
- Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D. F.
| | | | | |
Collapse
|
69
|
Chalupowicz L, Manulis-Sasson S, Itkin M, Sacher A, Sessa G, Barash I. Quorum-sensing system affects gall development incited by Pantoea agglomerans pv. gypsophilae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1094-1105. [PMID: 18616406 DOI: 10.1094/mpmi-21-8-1094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The quorum-sensing (QS) regulatory system of the gall-forming Pantoea agglomerans pv. gypsophilae was identified. Mass spectral analysis, together with signal-specific biosensors, demonstrated that P. agglomerans pv. gypsophilae produced N-butanoyl-l-homoserine lactone (C4-HSL) as a major and N-hexanoyl-l-homoserine lactone (C6-HSL) as a minor QS signal. Homologs of luxI and luxR regulatory genes, pagI and pagR, were characterized in strain P. agglomerans pv. gypsophilae Pag824-1 and shown to be convergently transcribed and separated by 14 bp. The deduced PagI (23.8 kDa) and PagR (26.9 kDa) show high similarity with SmaI (41% identity) and SmaR (43% identity), respectively, of Serratia sp. American Type Culture Collection 39006. PagR possesses characteristic autoinducer binding and a helix-turn-helix DNA-binding domain. Gall formation by P. agglomerans pv. gypsophilae depends on a plasmid-borne hrp/hrc gene cluster, type III effectors, and phytohormones. Disruption of pagI, pagR, or both genes simultaneously in Pag824-1 reduced gall size in gypsophila cuttings by 50 to 55% when plants were inoculated with 10(6) CFU/ml. Higher reductions in gall size (70 to 90%) were achieved by overexpression of pagI or addition of exogenous C4-HSL. Expression of the hrp/hrc regulatory gene hrpL and the type III effector pthG in the pagI mutant, as measured with quantitative reverse-transcriptase polymerase chain reaction, was reduced by 5.8 and 6.6, respectively, compared with the wild type, suggesting an effect of the QS system on the Hrp regulon.
Collapse
Affiliation(s)
- Laura Chalupowicz
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | |
Collapse
|
70
|
Rampioni G, Schuster M, Greenberg EP, Bertani I, Grasso M, Venturi V, Zennaro E, Leoni L. RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol Microbiol 2008; 66:1557-65. [PMID: 18045385 DOI: 10.1111/j.1365-2958.2007.06029.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The quorum sensing (QS) signalling system of Pseudomonas aeruginosa controls many important functions, including virulence. Although the production of the QS signal molecule N-3-oxo-dodecanoyl-homoserine lactone (3OC(12)-HSL) is positively autoregulated, its concentration reaches a steady level long before stationary phase. The RsaL protein represses transcription of the lasI signal synthase gene, and thus reduces QS signal production. We show that RsaL binds simultaneously with LasR to the rsaL-lasI bidirectional promoter thereby preventing the LasR-dependent activation of both genes. In an rsaL mutant, 3OC(12)-HSL production continues to increase throughout growth. Thus RsaL provides homeostasis by functioning in opposition to LasR and limiting 3OC(12)-HSL production to a physiological concentration. Furthermore, transcription profiling revealed that RsaL regulates 130 genes independent of its effect on QS signal molecule production, including genes involved in virulence. We show that RsaL can repress pyocyanin and hydrogen cyanide virulence genes in two ways: directly, by binding to their promoters, and indirectly, by decreasing levels of the signals for their QS signal-dependent transcription. These investigations highlight the importance of RsaL as a global regulator of P. aeruginosa physiology that provides a counterbalance to 3OC(12)-HSL-dependent gene activation via multiple mechanisms.
Collapse
|
71
|
|
72
|
Girard G, Bloemberg GV. Central role of quorum sensing in regulating the production of pathogenicity factors in Pseudomonas aeruginosa. Future Microbiol 2008; 3:97-106. [DOI: 10.2217/17460913.3.1.97] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen, causing various infections that are often very persistent. P. aeruginosa infections are the major cause of death in cystic fibrosis patients. Infections are difficult to treat since P. aeruginosa is resistant to most antibiotics and its antibiotic susceptibility is decreased when it is present in biofilms. P. aeruginosa produces many exoproducts (including toxins and hydrolytic enzymes) that are involved in virulence. Recent research has elucidated many mechanisms and pathways that regulate the production of these virulence factors. The regulation is extremely complex and many components are influenced by environmental conditions. Quorum sensing is a key regulatory system, which itself is affected by many other regulators. Targeting the regulation of pathogenicity factors provides a novel strategy for combating P. aeruginosa infections. Degradation of acyl homoserine lactones, the signaling molecules of the quorum-sensing system, is a promising therapeutic treatment option.
Collapse
Affiliation(s)
- Genevieve Girard
- Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333AL Leiden, The Netherlands
| | - Guido V Bloemberg
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30/32, CH-8006 Zurich, Switzerland and, Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333AL Leiden, The Netherlands
| |
Collapse
|
73
|
Schuster M, Greenberg EP. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics 2007; 8:287. [PMID: 17714587 PMCID: PMC2018727 DOI: 10.1186/1471-2164-8-287] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 08/22/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Quorum-sensing regulation of gene expression in Pseudomonas aeruginosa is complex. Two interconnected acyl-homoserine lactone (acyl-HSL) signal-receptor pairs, 3-oxo-dodecanoyl-HSL-LasR and butanoyl-HSL-RhlR, regulate more than 300 genes. The induction of most of the genes is delayed during growth of P. aeruginosa in complex medium, cannot be advanced by addition of exogenous signal, and requires additional regulatory components. Many of these late genes can be induced by addition of signals early by using specific media conditions. While several factors super-regulate the quorum receptors, others may co-regulate target promoters or may affect expression posttranscriptionally. RESULTS To better understand the contributions of super-regulation and co-regulation to quorum-sensing gene expression, and to better understand the general structure of the quorum sensing network, we ectopically expressed the two receptors (in the presence of their cognate signals) and another component that affects quorum sensing, the stationary phase sigma factor RpoS, early in growth. We determined the effect on target gene expression by microarray and real-time PCR analysis. Our results show that many target genes (e.g. lasB and hcnABC) are directly responsive to receptor protein levels. Most genes (e.g. lasA, lecA, and phnAB), however, are not significantly affected, although at least some of these genes are directly regulated by quorum sensing. The majority of promoters advanced by RhlR appeared to be regulated directly, which allowed us to build a RhlR consensus sequence. CONCLUSION The direct responsiveness of many quorum sensing target genes to receptor protein levels early in growth confirms the role of super-regulation in quorum sensing gene expression. The observation that the induction of most target genes is not affected by signal or receptor protein levels indicates that either target promoters are co-regulated by other transcription factors, or that expression is controlled posttranscriptionally. This architecture permits the integration of multiple signaling pathways resulting in quorum responses that require a "quorum" but are otherwise highly adaptable and receptive to environmental conditions.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Microbiology, University of Washington, Box 357242, 1959 NE Pacific St., Seattle, WA 98195, USA
- Current address: Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR 97331, USA
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Box 357242, 1959 NE Pacific St., Seattle, WA 98195, USA
| |
Collapse
|
74
|
White CE, Winans SC. The quorum-sensing transcription factor TraR decodes its DNA binding site by direct contacts with DNA bases and by detection of DNA flexibility. Mol Microbiol 2007; 64:245-56. [PMID: 17376086 DOI: 10.1111/j.1365-2958.2007.05647.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
TraR of Agrobacterium tumefaciens is a member of the LuxR family of transcriptional regulators, and binds to specific DNA sequences (tra boxes) at target promoters of the tumour-inducing (Ti) plasmid. Each tra box has a pronounced dyad symmetry, and each subunit of a TraR dimer binds to one half of a tra box via a helix-turn-helix (HTH) DNA binding motif. Structural analysis has suggested that TraR makes extensive sequence-specific contacts with tra box DNA. In this study, we tested these predictions using synthetic self-complementary oligonucleotides containing variant tra box sequences. Some predictions made from structural analysis were confirmed, while others were shown to be incorrect. Unexpectedly, these experiments also showed that six nucleotides at the centre of the tra box that make no direct contact with TraR are nevertheless critical for high-affinity binding and probably act by facilitating a previously described DNA bend. Variant tra boxes were also tested for transcription activity in vivo. Most transcription assays reflected in vitro binding assays. However, alterations of the outermost nucleotides had little effect on TraR binding but blocked transcription, probably by altering an overlapping -35 promoter motif.
Collapse
Affiliation(s)
- Catharine E White
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
75
|
Sakuragi Y, Kolter R. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 2007; 189:5383-6. [PMID: 17496081 PMCID: PMC1951888 DOI: 10.1128/jb.00137-07] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing (QS) has been previously shown to play an important role in the development of Pseudomonas aeruginosa biofilms (D. G. Davies et al., Science 280:295-298, 1998). Although QS regulation of swarming and DNA release has been shown to play important roles in biofilm development, regulation of genes directly involved in biosynthesis of biofilm matrix has not been described. Here, transcription of the pel operon, essential for the production of a glucose-rich matrix exopolysaccharide, is shown to be greatly reduced in lasI and rhlI mutants. Chemical complementation of the lasI mutant with 3-oxo-dodecanoyl homoserine lactone restores pel transcription to the wild-type level and biofilm formation ability. These findings thus connect QS signaling and transcription of genes responsible for biofilm matrix biosynthesis.
Collapse
Affiliation(s)
- Yumiko Sakuragi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
76
|
Li LL, Malone JE, Iglewski BH. Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsR. J Bacteriol 2007; 189:4367-74. [PMID: 17449616 PMCID: PMC1913358 DOI: 10.1128/jb.00007-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria communicate with each other to regulate cell density-dependent gene expression via a quorum-sensing (QS) cascade. In Pseudomonas aeruginosa, two known QS systems, las and rhl, control the expression of many factors that relate to virulence, pathogenicity, and biofilm development. Microarray studies of the las and rhl regulons led to our hypothesis that a complicated hierarchy in the QS regulon is composed of multiple transcriptional regulators. Here, we examined a QS-regulated gene, vqsR, which encodes a probable transcriptional regulator with a putative 20-bp operator sequence (las box) upstream. The transcriptional start site for vqsR was determined. The vqsR promoter was identified by examining a series of vqsR promoter-lacZ fusions. In addition, an Escherichia coli system where either LasR or RhlR protein was expressed from a plasmid indicated that the las system was the dominant regulator for vqsR. Electrophoretic mobility shift assays (EMSA) demonstrate that purified LasR protein binds directly to the vqsR promoter in the presence of 3O-C12-HSL. Point mutational analysis of the vqsR las box suggests that positions 3 and 18 in the las box are important for vqsR transcription, as assayed with a series of vqsRp-lacZ fusions. EMSA also shows that positions 3 and 18 are important for binding between the vqsR promoter and LasR. Our results demonstrate that the las system directly regulates vqsR, and certain nucleotides in the las box are crucial for LasR binding and activation of the vqsR promoter.
Collapse
Affiliation(s)
- Luen-Luen Li
- Department of Microbiology and Immunology, Box 672, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
77
|
Wagner VE, Li LL, Isabella VM, Iglewski BH. Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa. Anal Bioanal Chem 2006; 387:469-79. [PMID: 17139483 DOI: 10.1007/s00216-006-0964-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/25/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022]
Abstract
Quorum-sensing in Pseudomonas aeruginosa is known to regulate several aspects of pathogenesis, including virulence factor production, biofilm development, and antimicrobial resistance. Recent high-throughput analysis has revealed the existence of several layers of regulation within the QS-circuit. To address this complexity, mutations in genes encoding known or putative transcriptional regulators that were also identified as being regulated by the las and/or rhl QS systems were screened for their contribution in mediating several phenotypes, for example motility, secreted virulence products, and pathogenic capacity in a lettuce leaf model. These studies have further elucidated the potential contribution to virulence of these genes within the QS regulon.
Collapse
Affiliation(s)
- Victoria E Wagner
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
78
|
Müh U, Schuster M, Heim R, Singh A, Olson ER, Greenberg EP. Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother 2006; 50:3674-9. [PMID: 16966394 PMCID: PMC1635174 DOI: 10.1128/aac.00665-06] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa has two complete acyl-homoserine lactone (acyl-HSL) signaling systems, LasR-LasI and RhlR-RhlI. LasI catalyzes the synthesis of N-3-oxododecanoyl homoserine lactone (3OC12-HSL), and LasR is a transcription factor that requires 3OC12-HSL as a ligand. RhlI catalyzes the synthesis of N-butanoyl homoserine lactone (C4), and RhlR is a transcription factor that responds to C4. LasR and RhlR control the transcription of hundreds of P. aeruginosa genes, many of which are critical virulence determinants, and LasR is required for RhlR function. We developed an ultra-high-throughput cell-based assay to screen a library of approximately 200,000 compounds for inhibitors of LasR-dependent gene expression. Although the library contained a large variety of chemical structures, the two best inhibitors resembled the acyl-homoserine lactone molecule that normally binds to LasR. One compound, a tetrazole with a 12-carbon alkyl tail designated PD12, had a 50% inhibitory concentration (IC50) of 30 nM. The second compound, V-06-018, had an IC50 of 10 microM and is a phenyl ring with a 12-carbon alkyl tail. A microarray analysis showed that both compounds were general inhibitors of quorum sensing, i.e., the expression levels of most LasR-dependent genes were affected. Both compounds also inhibited the production of two quorum-sensing-dependent virulence factors, elastase and pyocyanin. These compounds should be useful for studies of LasR-dependent gene regulation and might serve as scaffolds for the identification of new quorum-sensing modulators.
Collapse
Affiliation(s)
- Ute Müh
- Vertex Pharmaceuticals Inc., 2501 Crosspark Rd., MTF E160, Coralville, IA 52241, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Lequette Y, Lee JH, Ledgham F, Lazdunski A, Greenberg EP. A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J Bacteriol 2006; 188:3365-70. [PMID: 16621831 PMCID: PMC1447466 DOI: 10.1128/jb.188.9.3365-3370.2006] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa possesses two complete acyl-homoserine lactone (acyl-HSL) signaling systems. One system consists of LasI and LasR, which generate a 3-oxododecanoyl-homoserine lactone signal and respond to that signal, respectively. The other system is RhlI and RhlR, which generate butanoyl-homoserine lactone and respond to butanoyl-homoserine lactone, respectively. These quorum-sensing systems control hundreds of genes. There is also an orphan LasR-RhlR homolog, QscR, for which there is no cognate acyl-HSL synthetic enzyme. We previously reported that a qscR mutant is hypervirulent and showed that QscR transiently represses a few quorum-sensing-controlled genes. To better understand the role of QscR in P. aeruginosa gene regulation and to better understand the relationship between QscR, LasR, and RhlR control of gene expression, we used transcription profiling to identify a QscR-dependent regulon. Our analysis revealed that QscR activates some genes and represses others. Some of the repressed genes are not regulated by the LasR-I or RhlR-I systems, while others are. The LasI-generated 3-oxododecanoyl-homoserine lactone serves as a signal molecule for QscR. Thus, QscR appears to be an integral component of the P. aeruginosa quorum-sensing circuitry. QscR uses the LasI-generated acyl-homoserine lactone signal and controls a specific regulon that overlaps with the already overlapping LasR- and RhlR-dependent regulons.
Collapse
Affiliation(s)
- Yannick Lequette
- Department of Microbiology, University of Washington, Seattle 98195-7242, USA
| | | | | | | | | |
Collapse
|
80
|
Xiao G, He J, Rahme LG. Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology (Reading) 2006; 152:1679-1686. [PMID: 16735731 DOI: 10.1099/mic.0.28605-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The LysR-type transcriptional regulator MvfR (PqsR) (multiple virulence factor regulator) plays a critical role in Pseudomonas aeruginosa pathogenicity via the transcriptional regulation of multiple quorum-sensing (QS)-regulated virulence factors. LasR activates full mvfR transcription, and MvfR subsequently activates pqsA–E expression. This study identifies and characterizes the key cis-regulatory elements through which mvfR and pqsA–E transcription is regulated in the highly virulent P. aeruginosa strain PA14. Deletion and site-directed mutagenesis indicate that: (1) LasR activates mvfR transcription by binding to a las/rhl box, CTAACAAAAGACATAG, centred at −513 bp upstream of the MvfR translational start site; and (2) RhlR represses pqsA transcription by binding to a las/rhl box, CTGTGAGATTTGGGAG, centred at −311 bp upstream of the pqsA transcriptional initiation site. Furthermore, it is shown that MvfR activates pqsA–E transcription by binding to a LysR box, TTCGGACTCCGAA, centred at −45 bp relative to the pqsA transcriptional initiation site, demonstrating that this LysR box has a critical role in the physical interaction between the MvfR protein and the pqsA promoter. These results provide new insights into the regulatory relationships between LasR and mvfR, and between MvfR/RhlR and the pqs operon, and elucidate further the complex regulation of the P. aeruginosa QS circuitry.
Collapse
Affiliation(s)
- Gaoping Xiao
- Department of Surgery, Microbiology and Molecular Genetics, Harvard Medical School, Department of Surgery, Massachusetts General Hospital, and Shriners Burns Institute, Boston, MA 02114, USA
| | - Jianxin He
- Department of Surgery, Microbiology and Molecular Genetics, Harvard Medical School, Department of Surgery, Massachusetts General Hospital, and Shriners Burns Institute, Boston, MA 02114, USA
| | - Laurence G Rahme
- Department of Surgery, Microbiology and Molecular Genetics, Harvard Medical School, Department of Surgery, Massachusetts General Hospital, and Shriners Burns Institute, Boston, MA 02114, USA
| |
Collapse
|
81
|
Lee JH, Lequette Y, Greenberg EP. Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol Microbiol 2006; 59:602-9. [PMID: 16390453 DOI: 10.1111/j.1365-2958.2005.04960.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa has two acyl-homoserine lactone (acyl-HSL) signalling systems, LasR-I and RhlR-I. LasI catalyses the synthesis of N-3-oxododecanoyl homoserine lactone (3OC12) and LasR is a transcription factor that requires 3OC12 as a ligand. RhlI catalyses the synthesis of N-butanoyl homoserine lactone (C4) and RhlR is a transcription factor that responds to C4. LasR and RhlR control the transcription of hundreds of P. aeruginosa genes. There is a third P. aeruginosa LasR-RhlR homologue encoded by qscR for which there is no cognate acyl-HSL synthase gene. To test the hypothesis that QscR functions by direct control of specific promoters in an acyl-HSL-dependent manner we purified QscR and characterized QscR activity in vitro. We also studied QscR activity in recombinant Escherichia coli. QscR binds to promoters that have elements similar in sequence to those found in LasR- or RhlR-dependent promoters but QscR does not bind to the LasR- or RhlR-specific promoters we examined. QscR binding to DNA requires 3OC12, but QscR exhibits a relaxed acyl-HSL specificity compared with the 3OC12-cognate signal receptor LasR. Our results support the hypothesis that there is a specific QscR-dependent regulon. We show that QscR controls genes in this regulon directly and that regulation is dependent on an acyl-HSL produced by LasI. Because of its relaxed signal specificity QscR may also respond to acyl-HSLs made by other bacteria in mixed bacterial communities.
Collapse
Affiliation(s)
- Joon-Hee Lee
- Department of Microbiology School of Medicine, University of Washington, Seattle, 98195-7242, USA
| | | | | |
Collapse
|
82
|
Abstract
Homologs of quorum-sensing luxR and luxI regulatory genes, avsR and avsI, were identified in Agrobacterium vitis strain F2/5. Compared to other LuxI proteins from related species, the deduced AvsI shows the greatest identity to SinI (71%) from Sinorhizobium meliloti Rm1021. AvsR possesses characteristic autoinducer binding and helix-turn-helix DNA binding domains and shares a high level of identity with SinR (38%) from Rm1021. Site-directed mutagenesis of avsR and avsI was performed, and both genes are essential for hypersensitive-like response (HR) and necrosis. Two hypothetical proteins (ORF1 and ORF2) that are positioned downstream of avsR-avsI are also essential for the phenotypes. Profiles of N-acyl-homoserine lactones (AHLs) isolated from the wild type and mutants revealed that disruption of avsI, ORF1, or ORF2 abolished the production of long-chain AHLs. Disruption of avsR reduces long-chain AHLs. Expression of a cloned avsI gene in A. tumefaciens strain NT1 resulted in synthesis of long-chain AHLs. The necrosis and HR phenotypes of the avsI and avsR mutants were fully complemented with cloned avsI. The addition of synthetic AHLs (C(16:1) and 3-O-C(16:1)) complemented grape necrosis in the avsR, avsI, ORF1, and ORF2 mutants. It was determined by reverse transcriptase PCR that the expression level of avsI is regulated by avsR but not by aviR or avhR, two other luxR homologs which were previously shown to be associated with induction of a tobacco hypersensitive response and grape necrosis. We further verified that avsR regulates avsI by measuring the expression of an avsI::lacZ fusion construct.
Collapse
Affiliation(s)
- Guixia Hao
- Department of Plant Pathology, NYSAES, Cornell University, Geneva, NY 14456, USA
| | | |
Collapse
|
83
|
Rampioni G, Bertani I, Zennaro E, Polticelli F, Venturi V, Leoni L. The quorum-sensing negative regulator RsaL of Pseudomonas aeruginosa binds to the lasI promoter. J Bacteriol 2006; 188:815-9. [PMID: 16385073 PMCID: PMC1347304 DOI: 10.1128/jb.188.2.815-819.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutation in the rsaL gene of Pseudomonas aeruginosa produces dramatically higher amounts of N-acyl homoserine lactone with respect to the wild type, highlighting the key role of this negative regulator in controlling quorum sensing (QS) in this opportunistic pathogen. The DNA binding site of the RsaL protein on the rsaL-lasI bidirectional promoter partially overlaps the binding site of the LasR protein, consistent with the hypothesis that RsaL and LasR could be in binding competition on this promoter. This is the first direct demonstration that RsaL acts as a QS negative regulator by binding to the lasI promoter.
Collapse
Affiliation(s)
- Giordano Rampioni
- Department of Biology, University Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | | | | | | | | | | |
Collapse
|
84
|
Schuster M, Greenberg EP. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 2006; 296:73-81. [PMID: 16476569 DOI: 10.1016/j.ijmm.2006.01.036] [Citation(s) in RCA: 434] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa possesses two N-acyl-homoserine lactone quorum-sensing systems that regulate large, overlapping sets of genes. Recent global transcriptome and proteome analyses provided a wealth of information about the identity of the regulated genes, N-acyl-homoserine lactone signal specificity, timing of induction, and environmental effects on gene expression. Quorum-sensing gene expression in P. aeruginosa is also embedded in a highly interconnected network of other regulatory systems with a high potential for integrating and responding to multiple environmental signals. Such epigenetic complexity may constitute the basis for the exceptional adaptability of P. aeruginosa to diverse environments.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Microbiology, University of Washington, 1959 NE Pacific Street, HSB I-420, Seattle, WA 98195, USA
| | | |
Collapse
|
85
|
Wagner VE, Frelinger JG, Barth RK, Iglewski BH. Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. Trends Microbiol 2006; 14:55-8. [PMID: 16406629 DOI: 10.1016/j.tim.2005.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/04/2005] [Accepted: 12/15/2005] [Indexed: 11/25/2022]
Abstract
A recent study suggests that the opportunistic pathogen Pseudomonas aeruginosa can actively monitor the host immune system. The P. aeruginosa outer membrane protein OprF was found to bind specifically to the cytokine interferon-gamma (IFN-gamma), and this interaction upregulated production of virulence factors through a cell-cell communication system known as quorum sensing (QS). Taken together with previous findings that P. aeruginosa QS can alter the host immune response (e.g. by activation of IFN-gamma), these data illustrate an exciting new element of bacteria-host interactions in which the P. aeruginosa quorum-sensing system both senses and modulates the host immune state.
Collapse
Affiliation(s)
- Victoria E Wagner
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
86
|
Salunkhe P, Smart CHM, Morgan JAW, Panagea S, Walshaw MJ, Hart CA, Geffers R, Tümmler B, Winstanley C. A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol 2005; 187:4908-20. [PMID: 15995206 PMCID: PMC1169510 DOI: 10.1128/jb.187.14.4908-4920.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Liverpool epidemic strain (LES) of Pseudomonas aeruginosa is a transmissible aggressive pathogen of cystic fibrosis (CF) patients. We compared transcriptome profiles of two LES isolates with each other and with a laboratory and genetic reference strain (PAO1) after growth to late exponential phase and following exposure to oxidative stress. Both LES isolates exhibited enhanced antimicrobial resistances linked to specific mutations in efflux pump genes. Although transcription of AmpC beta-lactamase was up-regulated in both, one LES isolate contained a specific mutation rendering the ampC gene untranslatable. The virulence-related quorum-sensing (QS) regulon of LES431, an isolate that caused pneumonia in the non-CF parent of a CF patient, was considerably up-regulated in comparison to either isolate LES400, associated with a chronic CF infection, or strain PAO1. Premature activation of QS genes was detected in isolates from both non-CF parents and the CF patient in a previously reported infection episode. LES isolates lacking the up-regulated QS phenotype contained different frameshift mutations in lasR. When fed to Drosophila melanogaster, isolate LES431 killed the fruit flies more readily than either isolate LES400 or strain PAO1, indicating that virulence varies intraclonally. The LES may represent a clone with enhanced virulence and antimicrobial resistance characteristics that can vary or are lost due to mutations during long-term colonization but have contributed to the successful spread of the lineage throughout the CF population of the United Kingdom.
Collapse
Affiliation(s)
- Prabhakar Salunkhe
- Clinical Research Group OE 6711, Medical Research School Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 2005; 187:4372-80. [PMID: 15968046 PMCID: PMC1151766 DOI: 10.1128/jb.187.13.4372-4380.2005] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis patients and is a major source of nosocomial infections. This bacterium controls many virulence factors by using two quorum-sensing systems, las and rhl. The las system is composed of the LasR regulator protein and its cell-to-cell signal, N-(3-oxododecanoyl) homoserine lactone, and the rhl system is composed of RhlR and the signal N-butyryl homoserine lactone. A third intercellular signal, the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4-quinolone), also regulates numerous virulence factors. PQS synthesis requires the expression of multiple operons, one of which is pqsABCDE. Previous experiments showed that the transcription of this operon, and therefore PQS production, is negatively regulated by the rhl quorum-sensing system and positively regulated by the las quorum-sensing system and PqsR (also known as MvfR), a LysR-type transcriptional regulator protein. With the use of DNA mobility shift assays and beta-galactosidase reporter fusions, we have studied the regulation of pqsR and its relationship to pqsA, lasR, and rhlR. We show that PqsR binds the promoter of pqsA and that this binding increases dramatically in the presence of PQS, implying that PQS acts as a coinducer for PqsR. We have also mapped the transcriptional start site for pqsR and found that the transcription of pqsR is positively regulated by lasR and negatively regulated by rhlR. These results suggest that a regulatory chain occurs where pqsR is under the control of LasR and RhlR and where PqsR in turn controls pqsABCDE, which is required for the production of PQS.
Collapse
Affiliation(s)
- Dana S Wade
- Department of Microbiology and Immunology, East Carolina University School of Medicine, BT 132, 600 Moye Blvd., Greenville, NC 27834, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Wagner VE, Gillis RJ, Iglewski BH. Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa. Vaccine 2005; 22 Suppl 1:S15-20. [PMID: 15576196 DOI: 10.1016/j.vaccine.2004.08.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa possesses two well-studied quorum-sensing (QS) systems (las and rhl) that are important in the production of virulence factors, antibiotic sensitivity, and biofilm development. High-density oligonucleotide microarrays were used to further characterize the las QS system and to investigate the effect of environment (planktonic or biofilm mode of growth, absence or presence of oxygen) and nutritional conditions on detection of transcripts encoding QS-regulated virulence factors. Transcriptome results indicate that the QS system is far more complex than previously proposed. Interestingly, we found that many QS-regulated genes encoding virulence products were expressed in all conditions investigated.
Collapse
Affiliation(s)
- Victoria E Wagner
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY 14642, USA
| | | | | |
Collapse
|
89
|
Karig D, Weiss R. Signal-amplifying genetic circuit enables in vivo observation of weak promoter activation in the Rhl quorum sensing system. Biotechnol Bioeng 2005; 89:709-18. [PMID: 15641095 DOI: 10.1002/bit.20371] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Small changes in transcriptional activity often significantly affect phenotype but are not detectable in vivo by conventional means. To address this problem, we present a technique for detecting weak transcriptional responses using signal-amplifying genetic circuits. We apply this technique to reveal previously undetectable log phase responses of several Rhl quorum sensing controlled (qsc) promoters from Pseudomonas aeruginosa. Genetic circuits with Rhl promoters and transcriptional amplification components were built and tested in Escherichia coli. This enabled us to isolate the behavior of the promoters under study from Las and quinolone interactions. To amplify qsc promoter responses to acyl-homoserine lactones (AHL), the highly efficient lambda repressor gene was placed downstream of several Rhl promoters and coupled to a fluorescent reporter under the control of the lambda P(R) promoter. With amplification, up to approximately 100-fold differences in fluorescence levels between AHL induced and noninduced cultures were observed for promoters whose responses were otherwise not detectable. In addition, the combination of using signal amplification and performing experiments in E. coli simplified the analysis of AHL signal crosstalk. For example, we discovered that while a C4HSL/RhlR complex activates both qscrhlA and qscphzA1, a 3OC12HSL/RhlR complex activates qscphzA1 but not qscrhlA in our system. This crosstalk information is particularly important since one of the potential uses of amplification constructs is for the detection of specific quorum sensing signals in environmental and clinical isolates. Furthermore, the process of decomposing networks into basic parts, isolating these components in a well-defined background, and using amplification to characterize both crosstalk and cognate signal responses embodies an important approach to understanding complex genetic networks.
Collapse
Affiliation(s)
- David Karig
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
90
|
Lequette Y, Greenberg EP. Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 2005; 187:37-44. [PMID: 15601686 PMCID: PMC538809 DOI: 10.1128/jb.187.1.37-44.2005] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa biofilms can develop mushroom-like structures with stalks and caps consisting of discrete subpopulations of cells. Self-produced rhamnolipid surfactants have been shown to be important in development of the mushroom-like structures. The quorum-sensing-controlled rhlAB operon is required for rhamnolipid synthesis. We have introduced an rhlA-gfp fusion into a neutral site in the P. aeruginosa genome to study rhlAB promoter activity in rhamnolipid-producing biofilms. Expression of the rhlA-gfp fusion in biofilms requires the quorum-sensing signal butanoyl-homoserine lactone, but other factors are also required for expression. Early in biofilm development rhlA-gfp expression is low, even in the presence of added butanoyl-homoserine lactone. Expression of the fusion becomes apparent after microcolonies with a depth of >20 mum have formed and, as shown by differential labeling with rfp or fluorescent dyes, rhlA-gfp is preferentially expressed in the stalks rather than the caps of mature mushrooms. The rhlA-gfp expression pattern is not greatly influenced by addition of butanoyl-homoserine lactone to the biofilm growth medium. We propose that rhamnolipid synthesis occurs in biofilms after stalks have formed but prior to capping in the mushroom-like structures. The differential expression of rhlAB may play a role in the development of normal biofilm architecture.
Collapse
Affiliation(s)
- Yannick Lequette
- Department of Microbiology, 540 EMRB, Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
91
|
Huber B, Feldmann F, Köthe M, Vandamme P, Wopperer J, Riedel K, Eberl L. Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect Immun 2004; 72:7220-30. [PMID: 15557647 PMCID: PMC529107 DOI: 10.1128/iai.72.12.7220-7230.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia H111, which was isolated from a cystic fibrosis patient, employs a quorum-sensing (QS) system, encoded by cep, to control the expression of virulence factors as well as the formation of biofilms. The QS system is thought to ensure that pathogenic traits are expressed only when the bacterial population density is high enough to overwhelm the host before it is able to mount an efficient response. While the wild-type strain effectively kills the nematode Caenorhabditis elegans, the pathogenicity of mutants with defective quorum sensing is attenuated. To date, very little is known about the cep-regulated virulence factors required for nematode killing. Here we report the identification of a cep-regulated gene, whose predicted amino acid sequence is highly similar to the QS-regulated protein AidA of the plant pathogen Ralstonia solanacearum. By use of polyclonal antibodies directed against AidA, it is demonstrated that the protein is expressed in the late-exponential phase and accumulates during growth arrest. We show that B. cenocepacia H111 AidA is essential for slow killing of C. elegans but has little effect on fast killing, suggesting that the protein plays a role in the accumulation of the strain in the nematode gut. Thus, AidA appears to be required for establishing an infection-like process rather than acting as a toxin. Furthermore, evidence is provided that AidA is produced not only by B. cenocepacia but also by many other strains of the Burkholderia cepacia complex.
Collapse
Affiliation(s)
- Birgit Huber
- Department of Microbiology, Institute of Plant Biology, University Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
92
|
Shiner EK, Reddy S, Timmons C, Li G, Williams SC, Rumbaugh KP. Construction of a bacterial autoinducer detection system in mammalian cells. Biol Proced Online 2004; 6:268-276. [PMID: 15630481 PMCID: PMC539822 DOI: 10.1251/bpo98] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 12/16/2004] [Accepted: 12/20/2004] [Indexed: 11/23/2022] Open
Abstract
Quorum sensing (QS) is a cell density-dependent signaling system used by bacteria to coordinate gene expression within a population. QS systems in Gram negative bacteria consist of transcription factors of the LuxR family and their acyl homoserine lactone (AHL) ligands. We describe here a method for examining QS signaling systems in mammalian cells that uses engineered LuxR-type proteins from the opportunistic pathogen, Pseudomonas aeruginosa, which can function as AHL-dependent transcription factors. The engineered proteins respond to their cognate ligands and display sequence specific DNA binding properties. This system has several potential biotechnological and biological applications. It may be used to characterize any LuxR-type protein, screen animal and plant cell extracts or exudates for compounds that mimic or interfere with AHL signaling or to screen different cell types for AHL inactivating activities.
Collapse
Affiliation(s)
- Erin K. Shiner
- Department of Microbiology & Immunology, Texas Tech University Health Sciences Center. Lubbock, Texas. USA
| | - Sheila Reddy
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas and Southwest Cancer Center at UMC. Lubbock, Texas. USA
| | - Cody Timmons
- Department of Chemistry and Biochemistry, Texas Tech University. Lubbock, Texas. USA
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University. Lubbock, Texas. USA
| | - Simon C. Williams
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas and Southwest Cancer Center at UMC. Lubbock, Texas. USA
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center. 3601 4 Street, Lubbock, Texas 79430. USA
| |
Collapse
|
93
|
Schuster M, Urbanowski ML, Greenberg EP. Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci U S A 2004; 101:15833-9. [PMID: 15505212 PMCID: PMC528741 DOI: 10.1073/pnas.0407229101] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Along with their cognate acyl-homoserine lactone signals, the quorum sensing regulators LasR and RhlR control the expression of hundreds of genes in the opportunistic human pathogen Pseudomonas aeruginosa. This extensive, overlapping regulatory network affords the opportunity to systematically investigate the sequence requirements and specificity determinants of large families of target promoters. Many of the P. aeruginosa quorum-controlled genes possess conserved palindromic promoter elements predicted to be binding sites for either one or both transcriptional regulators, but biochemical proof has not been reported. We have purified native LasR and characterized binding to various quorum-controlled promoters in vitro. Purified LasR was a dimer in solution that irreversibly bound two molecules of 3-oxo-C12-homoserine lactone. LasR bound several las-responsive promoters specifically and with high affinity, interacting cooperatively with some promoters and noncooperatively with others. LasR recognized some, but not all, of the predicted binding sites, and also bound to several unexpected sites. In contrast to predictions from genetic data, we found that the recognition sequences of las-specific promoters showed little overall sequence conservation and did not require dyad symmetry. We found distinct differences in sequence composition between las-specific noncooperative, las-specific cooperative, and rhl-responsive promoters. These results provide the basis for defining promoter specificity elements in P. aeruginosa quorum sensing. Insights into the molecular mechanism of LasR function have implications for the development of quorum-sensing targeted antivirulence compounds.
Collapse
Affiliation(s)
- M Schuster
- Department of Microbiology and W. M. Keck Microbial Communities and Cell Signaling Program, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
94
|
Cornelis P, Aendekerk S. A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2004; 150:752-756. [PMID: 15073285 DOI: 10.1099/mic.0.27086-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Pierre Cornelis
- Laboratory of Microbial Interactions, Department of Cellular and Molecular Interactions, Flanders Interuniversity Institute of Biotechnology, Vrije Universiteit Brussel, Institute of Molecular Biology, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Séverine Aendekerk
- Laboratory of Microbial Interactions, Department of Cellular and Molecular Interactions, Flanders Interuniversity Institute of Biotechnology, Vrije Universiteit Brussel, Institute of Molecular Biology, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
95
|
Knutsen E, Ween O, Håvarstein LS. Two separate quorum-sensing systems upregulate transcription of the same ABC transporter in Streptococcus pneumoniae. J Bacteriol 2004; 186:3078-85. [PMID: 15126469 PMCID: PMC400622 DOI: 10.1128/jb.186.10.3078-3085.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococcus pneumoniae secretes two different peptide pheromones used for intercellular communication. These peptides, which have completely unrelated primary structures, activate two separate signal transduction pathways, ComABCDE and BlpABCSRH, which regulate natural genetic transformation and bacteriocin production, respectively. Each signal transduction pathway contains a response regulator (ComE and BlpR, respectively) that activates transcription of target genes by binding to similar, but not identical, imperfect direct repeat motifs. In general the direct repeat binding sites are specific for one or the other of the two response regulators, ensuring that competence development and bacteriocin production are regulated separately. However, in the present study we show that the rate of transcription of an operon, encoding an ABC transporter of unknown function, can be stimulated by both peptide pheromones. We also show that this cross-induction is due to a hybrid direct repeat motif that can respond to both ComE and BlpR. To our knowledge this kind of convergent gene regulation by two separate two-component regulatory systems has not been described before in bacteria.
Collapse
Affiliation(s)
- Eivind Knutsen
- Department of Chemistry, Biotechnology, and Food Science, Agricultural University of Norway, N-1432 As, Norway
| | | | | |
Collapse
|
96
|
Williams SC, Patterson EK, Carty NL, Griswold JA, Hamood AN, Rumbaugh KP. Pseudomonas aeruginosa autoinducer enters and functions in mammalian cells. J Bacteriol 2004; 186:2281-7. [PMID: 15060029 PMCID: PMC412166 DOI: 10.1128/jb.186.8.2281-2287.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing (QS) is a cell density-dependent signaling mechanism used by many bacteria to control gene expression. Several recent reports indicate that the signaling molecules (autoinducers) that mediate QS in Pseudomonas aeruginosa may also modulate gene expression in host cells; however, the mechanisms are largely unknown. Here we show that two P. aeruginosa autoinducers, N-3-oxododecanoyl-homoserine lactone and N-butyryl-homoserine lactone, can both enter eukaryotic cells and activate artificial chimeric transcription factors based on their cognate transcriptional activators, LasR and RhlR, respectively. The autoinducers promoted nuclear localization of chimeric proteins containing the full LasR or RhlR coding region, and the LasR-based proteins were capable of activating transcription of a LasR-dependent luciferase gene. Responsiveness to autoinducer required the N-terminal autoinducer-binding domains of LasR and RhlR. Truncated proteins consisting of only the C-terminal helix-turn-helix DNA-binding domains of both proteins attached to a nuclear localization signal efficiently translocated to the nucleus in the absence of autoinducer, and truncated LasR-based proteins functioned as constitutively active transcription factors. Chimeric LasR proteins were only activated by their cognate autoinducer ligand and not by N-butyryl-L-homoserine lactone. These data provide evidence that autoinducer molecules from human pathogens can enter mammalian cells and suggest that autoinducers may influence gene expression in host cells by interacting with and activating as-yet-unidentified endogenous proteins.
Collapse
Affiliation(s)
- Simon C Williams
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | |
Collapse
|
97
|
Schuster M, Hawkins AC, Harwood CS, Greenberg EP. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 2004; 51:973-85. [PMID: 14763974 DOI: 10.1046/j.1365-2958.2003.03886.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli and some other gamma-Proteobacteria, the alternative sigma factor RpoS functions as a regulator of the general stress response. The role of RpoS in Pseudomonas aeruginosa is not clear. Although P. aeruginosa RpoS contributes to the resistance to several environmental stresses, its role appears to be less pivotal than in E. coli. In P. aeruginosa, RpoS also regulates the production of several virulence factors and influences the expression of individual genes that are controlled by quorum sensing. Some quorum-controlled genes are induced by RpoS, whereas others are repressed. To gain insights about RpoS function in P. aeruginosa and to understand better the regulation of quorum-controlled genes, we used transcript profiling to define an RpoS regulon. We identified 772 genes regulated by RpoS in stationary but not in logarithmic growth phase (504 were induced and 268 were repressed), and we identified putative RpoS promoter sequence elements with similarity to the E. coli RpoS consensus in several of these genes. Many genes in the regulon, for example a set of chemotaxis genes, have assigned functions that are distinct from those in E. coli and are not obviously related to a stress response. Furthermore, RpoS affects the expression of more than 40% of all quorum-controlled genes identified in our previous transcriptome analysis. This highlights the significance of RpoS as a global factor that controls quorum-sensing gene expression at the onset of stationary phase. The transcription profiling results have allowed us to build a model that accommodates previous seemingly conflicting reports.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Microbiology, W.M. Keck Microbial Communities and Cell Signaling Program, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
98
|
Wu L, Zaborina O, Zaborin A, Chang EB, Musch M, Holbrook C, Shapiro J, Turner JR, Wu G, Lee KYC, Alverdy JC. High-molecular-weight polyethylene glycol prevents lethal sepsis due to intestinal Pseudomonas aeruginosa. Gastroenterology 2004; 126:488-98. [PMID: 14762786 DOI: 10.1053/j.gastro.2003.11.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS During stress, erosion of protective intestinal mucus occurs in association with adherence to and disruption of the intestinal epithelial barrier by invading opportunistic microbial pathogens. The aims of this study were to test the ability of a high-molecular-weight polyethylene glycol compound, polyethylene glycol 15-20, to protect the intestinal epithelium against microbial invasion during stress. METHODS The ability of polyethylene glycol 15-20 to protect the intestinal epithelium against the opportunistic pathogen Pseudomonas aeruginosa was tested in cultured Caco-2 cells. Bacterial virulence gene expression, bacterial adherence, and transepithelial electrical resistance were examined in response to apical inoculation of P. aeruginosa onto Caco-2 cells. Complementary in vivo studies were performed in a murine model of lethal sepsis due to intestinal P. aeruginosa in which surgical stress (30% hepatectomy) was combined with direct inoculation of P. aeruginosa into the cecum. RESULTS High-molecular-weight polyethylene glycol (polyethylene glycol 15-20) conferred complete protection against the barrier-dysregulating effects of P. aeruginosa in Caco-2 cells. Intestinal application of polyethylene glycol 15-20 in stressed mice protected against the lethal effects of intestinal P. aeruginosa. Mechanisms of this effect seem to involve the ability of polyethylene glycol 15-20 to distance P. aeruginosa from the intestinal epithelium and render it completely insensate to key environmental stimuli that activate its virulence. CONCLUSIONS High-molecular-weight polyethylene glycol has the potential to function as a surrogate mucin within the intestinal tract of a stressed host by inhibiting key interactive events between colonizing microbes and their epithelial cell targets.
Collapse
Affiliation(s)
- Licheng Wu
- Department of Surgery, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Medina G, Juárez K, Díaz R, Soberón-Chávez G. Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. MICROBIOLOGY-SGM 2004; 149:3073-3081. [PMID: 14600219 DOI: 10.1099/mic.0.26282-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Pseudomonas aeruginosa rhlR gene encodes the transcriptional regulator RhlR which has a central role in the quorum-sensing response. Different gene products involved in bacterial pathogenesis are regulated at the transcriptional level by two quorum-sensing response systems, Las and Rhl. The expression of rhlR has been reported to be under the control of the Las system, but its transcriptional regulation has not been studied in detail. Here, the rhlR promoter region has been characterized and shown to present four different transcription start sites, two of which are included in the upstream gene (rhlB) coding region. It was found that rhlR expression is not only dependent on LasR but also on different regulatory proteins such as Vfr and RhlR itself, and also on the alternative sigma factor sigma(54). It is reported that rhlR expression is partially LasR-independent under certain culture conditions and is strongly influenced by environmental factors.
Collapse
Affiliation(s)
- Gerardo Medina
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Katy Juárez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Rafael Díaz
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| |
Collapse
|
100
|
McGrath S, Wade DS, Pesci EC. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol Lett 2004; 230:27-34. [PMID: 14734162 DOI: 10.1016/s0378-1097(03)00849-8] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa regulates the production of numerous virulence factors via the action of two separate but coordinated quorum sensing systems, las and rhl. These systems control the transcription of genes in response to population density through the intercellular signals N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C(12)-HSL) and N-(butanoyl)-L-homoserine lactone (C(4)-HSL). A third P. aeruginosa signal, 2-heptyl-3-hydroxy-4-quinolone [Pseudomonas quinolone signal (PQS)], also plays a significant role in the transcription of multiple P. aeruginosa virulence genes. PQS is intertwined in the P. aeruginosa quorum sensing hierarchy with its production and bioactivity requiring the las and rhl quorum sensing systems, respectively. This report presents a preliminary transcriptional analysis of pqsA, the first gene of the recently discovered PQS biosynthetic gene cluster. We show that pqsA transcription required pqsR, a transcriptional activator protein encoded within the PQS biosynthetic gene cluster. It was also found that the transcription of pqsA and subsequent production of PQS was induced by the las quorum sensing system and repressed by the rhl quorum sensing system. In addition, PQS production was dependent on the ratio of 3-oxo-C(12)-HSL to C(4)-HSL, suggesting a regulatory balance between quorum sensing systems. These data are an important early step toward understanding the regulation of PQS synthesis and the role of PQS in P. aeruginosa intercellular signaling.
Collapse
Affiliation(s)
- Stephen McGrath
- Department of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | | | |
Collapse
|