51
|
Nwugo CC, Gaddy JA, Zimbler DL, Actis LA. Deciphering the iron response in Acinetobacter baumannii: A proteomics approach. J Proteomics 2010; 74:44-58. [PMID: 20692388 DOI: 10.1016/j.jprot.2010.07.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/22/2010] [Accepted: 07/27/2010] [Indexed: 12/14/2022]
Abstract
Iron is an essential nutrient that plays a role in bacterial differential gene expression and protein production. Accordingly, the comparative analysis of total lysate and outer membrane fractions isolated from A. baumannii ATCC 19606(T) cells cultured under iron-rich and -chelated conditions using 2-D gel electrophoresis-mass spectrometry resulted in the identification of 58 protein spots differentially produced. While 19 and 35 of them represent iron-repressed and iron-induced protein spots, respectively, four other spots represent a metal chelation response unrelated to iron. Most of the iron-repressed protein spots represent outer membrane siderophore receptors, some of which could be involved in the utilization of siderophores produced by other bacteria. The iron-induced protein spots represent a wide range of proteins including those involved in iron storage, such as Bfr, metabolic and energy processes, such as AcnA, AcnB, GlyA, SdhA, and SodB, as well as lipid biosynthesis. The detection of an iron-regulated Hfq ortholog indicates that iron regulation in this bacterium could be mediated by Fur and small RNAs as described in other bacteria. The iron-induced production of OmpA suggests this protein plays a role in iron metabolism as shown by the diminished ability of an isogenic OmpA deficient derivative to grow under iron-chelated conditions.
Collapse
Affiliation(s)
- Chika C Nwugo
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | | | | | | |
Collapse
|
52
|
Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
53
|
Butler JE, Young ND, Lovley DR. Evolution from a respiratory ancestor to fill syntrophic and fermentative niches: comparative fenomics of six Geobacteraceae species. BMC Genomics 2009; 10:103. [PMID: 19284579 PMCID: PMC2669807 DOI: 10.1186/1471-2164-10-103] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 03/11/2009] [Indexed: 11/26/2022] Open
Abstract
Background The anaerobic degradation of organic matter in natural environments, and the biotechnical use of anaerobes in energy production and remediation of subsurface environments, both require the cooperative activity of a diversity of microorganisms in different metabolic niches. The Geobacteraceae family contains members with three important anaerobic metabolisms: fermentation, syntrophic degradation of fermentation intermediates, and anaerobic respiration. Results In order to learn more about the evolution of anaerobic microbial communities, the genome sequences of six Geobacteraceae species were analyzed. The results indicate that the last common Geobacteraceae ancestor contained sufficient genes for anaerobic respiration, completely oxidizing organic compounds with the reduction of external electron acceptors, features that are still retained in modern Geobacter and Desulfuromonas species. Evolution of specialization for fermentative growth arose twice, via distinct lateral gene transfer events, in Pelobacter carbinolicus and Pelobacter propionicus. Furthermore, P. carbinolicus gained hydrogenase genes and genes for ferredoxin reduction that appear to permit syntrophic growth via hydrogen production. The gain of new physiological capabilities in the Pelobacter species were accompanied by the loss of several key genes necessary for the complete oxidation of organic compounds and the genes for the c-type cytochromes required for extracellular electron transfer. Conclusion The results suggest that Pelobacter species evolved parallel strategies to enhance their ability to compete in environments in which electron acceptors for anaerobic respiration were limiting. More generally, these results demonstrate how relatively few gene changes can dramatically transform metabolic capabilities and expand the range of environments in which microorganisms can compete.
Collapse
Affiliation(s)
- Jessica E Butler
- Department of Microbiology, 203 Morrill Science Center IVN, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
54
|
Salmonella enterica serovar Typhimurium mutants unable to convert malate to pyruvate and oxaloacetate are avirulent and immunogenic in BALB/c mice. Infect Immun 2009; 77:1397-405. [PMID: 19168732 DOI: 10.1128/iai.01335-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we showed that the Salmonella enterica serovar Typhimurium SR-11 tricarboxylic acid (TCA) cycle must operate as a complete cycle for full virulence after oral infection of BALB/c mice (M. Tchawa Yimga, M. P. Leatham, J. H. Allen, D. C. Laux, T. Conway, and P. S. Cohen, Infect. Immun. 74:1130-1140, 2006). In the same study, we showed that for full virulence, malate must be converted to both oxaloacetate and pyruvate. Moreover, it was recently demonstrated that blocking conversion of succinyl-coenzyme A to succinate attenuates serovar Typhimurium SR-11 but does not make it avirulent; however, blocking conversion of succinate to fumarate renders it completely avirulent and protective against subsequent oral infection with the virulent serovar Typhimurium SR-11 wild-type strain (R. Mercado-Lubo, E. J. Gauger, M. P. Leatham, T. Conway, and P. S. Cohen, Infect. Immun. 76:1128-1134, 2008). Furthermore, the ability to convert succinate to fumarate appeared to be required only after serovar Typhimurium SR-11 became systemic. In the present study, evidence is presented that serovar Typhimurium SR-11 mutants that cannot convert fumarate to malate or that cannot convert malate to both oxaloacetate and pyruvate are also avirulent and protective in BALB/c mice. These results suggest that in BALB/c mice, the malate that is removed from the TCA cycle in serovar Typhimurium SR-11 for conversion to pyruvate must be replenished by succinate or one of its precursors, e.g., arginine or ornithine, which might be available in mouse phagocytes.
Collapse
|
55
|
Jin H, Wan Y, Zhou R, Li L, Luo R, Zhang S, Hu J, Langford PR, Chen H. Identification of genes transcribed byHaemophilus parasuisin necrotic porcine lung through the selective capture of transcribed sequences (SCOTS). Environ Microbiol 2008; 10:3326-36. [DOI: 10.1111/j.1462-2920.2008.01729.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
56
|
Abstract
The higher affinity of Cd(2+) for sulfur compounds than for nitrogen and oxygen led to the theoretical consideration that cadmium toxicity should result mainly from the binding of Cd(2+) to sulfide, thiol groups, and sulfur-rich complex compounds rather than from Cd(2+) replacement of transition-metal cations from nitrogen- or oxygen-rich biological compounds. This hypothesis was tested by using Escherichia coli for a global transcriptome analysis of cells synthesizing glutathione (GSH; wild type), gamma-glutamylcysteine (DeltagshB mutant), or neither of the two cellular thiols (DeltagshA mutant). The resulting data, some of which were validated by quantitative reverse transcription-PCR, were sorted using the KEGG (Kyoto Encyclopedia of Genes and Genomes) orthology system, which groups genes hierarchically with respect to the cellular functions of their respective products. The main difference among the three strains concerned tryptophan biosynthesis, which was up-regulated in wild-type cells upon cadmium shock and strongly up-regulated in DeltagshA cells but repressed in DeltagshB cells containing gamma-glutamylcysteine instead of GSH. Overall, however, all three E. coli strains responded to cadmium shock similarly, with the up-regulation of genes involved in protein, disulfide bond, and oxidative damage repair; cysteine and iron-sulfur cluster biosynthesis; the production of proteins containing sensitive iron-sulfur clusters; the storage of iron; and the detoxification of Cd(2+) by efflux. General energy conservation pathways and iron uptake were down-regulated. These findings indicated that the toxic action of Cd(2+) indeed results from the binding of the metal cation to sulfur, lending support to the hypothesis tested.
Collapse
|
57
|
Orencio-Trejo M, Flores N, Escalante A, Hernández-Chávez G, Bolívar F, Gosset G, Martinez A. Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities. BIOTECHNOLOGY FOR BIOFUELS 2008; 1:8. [PMID: 18471274 PMCID: PMC2396614 DOI: 10.1186/1754-6834-1-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 05/01/2008] [Indexed: 05/07/2023]
Abstract
BACKGROUND A metabolic regulation study was performed, based upon measurements of enzymatic activities, fermentation performance, and RT-PCR analysis of pathways related to central carbon metabolism, in an ethanologenic Escherichia coli strain (CCE14) derived from lineage C. In comparison with previous engineered strains, this E coli derivative has a higher ethanol production rate in mineral medium, as a result of the elevated heterologous expression of the chromosomally integrated genes encoding PDCZm and ADHZm (pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis). It is suggested that this behavior might be due to lineage differences between E. coli W and C. RESULTS This study demonstrated that the glycolytic flux is controlled, in this case, by reactions outside glycolysis, i.e., the fermentative pathways. Changes in ethanol production rate in this ethanologenic strain result in low organic acid production rates, and high glycolytic and ethanologenic fluxes, that correlate with enhanced transcription and enzymatic activity levels of PDCZm and ADHZm. Furthermore, a higher ethanol yield (90% of the theoretical) in glucose-mineral media was obtained with CCE14 in comparison with previous engineered E. coli strains, such as KO11, that produces a 70% yield under the same conditions. CONCLUSION Results suggest that a higher ethanol formation rate, caused by ahigher PDCZm and ADHZm activities induces a metabolic state that cells compensate through enhanced glucose transport, ATP synthesis, and NAD-NADH+H turnover rates. These results show that glycolytic enzymatic activities, present in E. coli W and C under fermentative conditions, are sufficient to contend with increases in glucose consumption and product formation rates.
Collapse
Affiliation(s)
- Montserrat Orencio-Trejo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Georgina Hernández-Chávez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| |
Collapse
|
58
|
Rahman M, Hasan MR, Shimizu K. Growth phase-dependent changes in the expression of global regulatory genes and associated metabolic pathways in Escherichia coli. Biotechnol Lett 2008; 30:853-60. [DOI: 10.1007/s10529-007-9621-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/23/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
|
59
|
Kim J, Copley SD. Why metabolic enzymes are essential or nonessential for growth of Escherichia coli K12 on glucose. Biochemistry 2007; 46:12501-11. [PMID: 17935357 DOI: 10.1021/bi7014629] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genes encoding metabolic enzymes involved in glucose metabolism, the TCA cycle, and biosynthesis of amino acids, purines, pyrimidines, and cofactors would be expected to be essential for growth of Escherichia coli on glucose because the cells must synthesize all of the building blocks for cellular macromolecules. Surprisingly, 80 of 227 of these genes are not essential. Analysis of why these genes are not essential provides insights into the metabolic sophistication of E. coli and into the evolutionary pressures that have shaped its physiology. Alternative routes enabled by interconnecting pathways can allow a defective step to be bypassed. Isozymes, alternative enzymes, broad-specificity enzymes, and multifunctional enzymes can often substitute for a missing enzyme. We expect that the apparent redundancy in these metabolic pathways has arisen due to the need for E. coli to survive in a variety of habitats and therefore to have a metabolism that allows optimal exploitation of varying environmental resources and synthesis of small molecules when they cannot be obtained from the environment.
Collapse
Affiliation(s)
- Juhan Kim
- Cooperative Institute for Research in Environmental Sciences and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
60
|
Bore E, Hébraud M, Chafsey I, Chambon C, Skjæret C, Moen B, Møretrø T, Langsrud Ø, Rudi K, Langsrud S. Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses. Microbiology (Reading) 2007; 153:935-946. [PMID: 17379704 DOI: 10.1099/mic.0.29288-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Benzalkonium chloride (BC) is a commonly used disinfectant and preservative. This study describes changes in expression level at the transcriptomic and proteomic level for Escherichia coli K-12 gradually adapted to a tolerance level to BC of 7-8 times the initial MIC. Results from DNA arrays and two-dimensional gel electrophoresis for global gene and protein expression studies were confirmed by real-time quantitative PCR. Peptide mass fingerprinting by MALDI-TOF MS was used to identify differentially expressed proteins. Changes in expression level in adapted cells were shown for porins, drug transporters, glycolytic enzymes, ribosomal subunits and several genes and proteins involved in protection against oxidative stress and antibiotics. Adapted strains showed increased tolerance to several antibiotics. In conclusion, E. coli K-12 adapted to higher tolerance to BC acquired several general resistance mechanisms, including responses normally related to the multiple antibiotic resistance (Mar) regulon and protection against oxidative stress. The results revealed that BC treatment might result in superoxide stress in E. coli.
Collapse
Affiliation(s)
- Erlend Bore
- The Norwegian University of Life Science (UMB), PO Box 5003, N-1432 Ås, Norway
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Michel Hébraud
- Plate-forme Protéomique, INRA site de Theix, 63122 Saint-Genès Champanelle, France
- UR454 Microbiologie-Equipe QuaSA, INRA site de Theix, 63122 Saint-Genès Champanelle, France
| | - Ingrid Chafsey
- UR454 Microbiologie-Equipe QuaSA, INRA site de Theix, 63122 Saint-Genès Champanelle, France
| | - Christophe Chambon
- Plate-forme Protéomique, INRA site de Theix, 63122 Saint-Genès Champanelle, France
| | - Camilla Skjæret
- The Norwegian University of Life Science (UMB), PO Box 5003, N-1432 Ås, Norway
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Birgitte Moen
- The Norwegian University of Life Science (UMB), PO Box 5003, N-1432 Ås, Norway
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Trond Møretrø
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Øyvind Langsrud
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Knut Rudi
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Solveig Langsrud
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| |
Collapse
|
61
|
Woodyer RD, Shao Z, Thomas PM, Kelleher NL, Blodgett JAV, Metcalf WW, van der Donk WA, Zhao H. Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. ACTA ACUST UNITED AC 2007; 13:1171-82. [PMID: 17113999 DOI: 10.1016/j.chembiol.2006.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 08/31/2006] [Accepted: 09/11/2006] [Indexed: 11/19/2022]
Abstract
Fosfomycin is a clinically utilized, highly effective antibiotic, which is active against methicillin- and vancomycin-resistant pathogens. Here we report the cloning and characterization of a complete fosfomycin biosynthetic cluster from Streptomyces fradiae and heterologous production of fosfomycin in S. lividans. Sequence analysis coupled with gene deletion and disruption revealed that the minimal cluster consists of fom1-4, fomA-D. A LuxR-type activator that was apparently required for heterologous fosfomycin production was also discovered approximately 13 kb away from the cluster and was named fomR. The genes fomE and fomF, previously thought to be involved in fosfomycin biosynthesis, were shown not to be essential by gene disruption. This work provides new insights into fosfomycin biosynthesis and opens the door for fosfomycin overproduction and creation of new analogs via biomolecular pathway engineering.
Collapse
Affiliation(s)
- Ryan D Woodyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Tempel R, Lai XH, Crosa L, Kozlowicz B, Heffron F. Attenuated Francisella novicida transposon mutants protect mice against wild-type challenge. Infect Immun 2006; 74:5095-105. [PMID: 16926401 PMCID: PMC1594869 DOI: 10.1128/iai.00598-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is the bacterial pathogen that causes tularemia in humans and a number of animals. To date, there is no approved vaccine for this widespread and life-threatening disease. The goal of this study was to identify F. tularensis mutants that can be used in the development of a live attenuated vaccine. We screened F. novicida transposon mutants to identify mutants that exhibited reduced growth in mouse macrophages, as these cells are the preferred host cells of Francisella and an essential component of the innate immune system. This approach yielded 16 F. novicida mutants that were 100-fold more attenuated for virulence in a mouse model than the wild-type parental strain. These mutants were then tested to determine their abilities to protect mice against challenge with high doses of wild-type bacteria. Five of the 16 attenuated mutants (with mutations corresponding to dsbB, FTT0742, pdpB, fumA, and carB in the F. tularensis SCHU S4 strain) provided mice with protection against challenge with high doses (>8 x 10(5) CFU) of wild-type F. novicida. We believe that these findings will be of use in the design of a vaccine against tularemia.
Collapse
Affiliation(s)
- Rebecca Tempel
- 6543 Basic Sciences Addition/CROET Building, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
63
|
Abstract
DNA microarrays were used to probe the transcriptional response of Escherichia coli to N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Fifty-five transcripts were significantly up-regulated, including all of the genes that are regulated by Zur and many that are regulated by Fur. In the same TPEN-treated cells, 46 transcripts were significantly down-regulated.
Collapse
Affiliation(s)
- Tara K Sigdel
- Department of Chemistry and Biochemistry, 160 Hughes Hall, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
64
|
Partridge JD, Scott C, Tang Y, Poole RK, Green J. Escherichia coli Transcriptome Dynamics during the Transition from Anaerobic to Aerobic Conditions. J Biol Chem 2006; 281:27806-15. [PMID: 16857675 DOI: 10.1074/jbc.m603450200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli is a metabolically versatile bacterium that is able to grow in the presence and absence of oxygen. Several previous transcript-profiling experiments have compared separate anaerobic and aerobic cultures. Here the process of adaptation was investigated by determining changes in transcript profiles when anaerobic steady-state cultures were perturbed by the introduction of air. Within 5 min of culture aeration the abundances of transcripts associated with anaerobic metabolism were decreased, whereas transcripts associated with aerobic metabolism were increased. In addition to the rapid switch to aerobic central metabolism, transcript profiling, supported by experiments with relevant mutants, revealed transient changes suggesting that the peroxide stress response, methionine biosynthesis, and degradation of putrescine play important roles during the adaptation to aerobic conditions.
Collapse
Affiliation(s)
- Jonathan D Partridge
- Department of Molecular Biology and Biotechnology, the University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
65
|
Rahman M, Hasan MR, Oba T, Shimizu K. Effect of rpoS gene knockout on the metabolism of Escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations. Biotechnol Bioeng 2006; 94:585-95. [PMID: 16511888 DOI: 10.1002/bit.20858] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The RNA polymerase sigma factor, encoded by rpoS gene, controls the expression of a large number of genes in Escherichia coli under stress conditions. The present study investigated the growth characteristics and metabolic pathways of rpoS gene knockout mutant of E. coli growing in LB media under aerobic condition. The analyses were made based on gene expressions obtained by DNA microarray and RT-PCR, enzyme activities and intracellular metabolite concentrations at the exponential and early stationary phases of growth. Although the glucose utilization pattern of the mutant was similar to the parent strain, the mutant failed to utilize acetate throughout the cultivation period. Microarray data indicated that the expression levels of several important genes of acetate metabolism such as acs, aceAB, cysDEK, fadR, etc. were significantly altered in the absence of rpoS gene. Interestingly, there was an increased activity of TCA cycle during the exponential growth phase, which was gradually diminished at the onset of stationary phase. Moreover, rpoS mutation had profound effect on the expression of several other genes of E. coli metabolic pathways that were not described earlier. The changes in the gene expressions, enzyme activities and intracellular metabolite concentrations of the rpoS mutant are discussed in details with reference to the major metabolic pathways of E. coli.
Collapse
Affiliation(s)
- Mahbuba Rahman
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | | | | | | |
Collapse
|
66
|
Lara AR, Leal L, Flores N, Gosset G, Bolívar F, Ramírez OT. Transcriptional and metabolic response of recombinantEscherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnol Bioeng 2006; 93:372-85. [PMID: 16187334 DOI: 10.1002/bit.20704] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Escherichia coli, expressing recombinant green fluorescent protein (GFP), was subjected to dissolved oxygen tension (DOT) oscillations in a two-compartment system for simulating gradients that can occur in large-scale bioreactors. Cells were continuously circulated between the anaerobic (0% DOT) and aerobic (10% DOT) vessels of the scale-down system to mimic an overall circulation time of 50 s, and a mean residence time in the anaerobic and aerobic compartments of 33 and 17 s, respectively. Transcription levels of mixed acid fermentation genes (ldhA, poxB, frdD, ackA, adhE, pflD, and fdhF), measured by quantitative RT-PCR, increased between 1.5- to over 6-fold under oscillatory DOT compared to aerobic cultures (constant 10% DOT). In addition, the transcription level of fumB increased whereas it decreased for sucA and sucB, suggesting that the tricarboxylic acid cycle was functioning as two open branches. Gene transcription levels revealed that cytrochrome bd, which has higher affinity to oxygen but lower energy efficiency, was preferred over cytochrome bO3 in oscillatory DOT cultures. Post-transcriptional processing limited heterologous protein production in the scale-down system, as inferred from similar gfp transcription but 19% lower GFP concentration compared to aerobic cultures. Simulated DOT gradients also affected the transcription of genes of the glyoxylate shunt (aceA), of global regulators of aerobic and anaerobic metabolism (fnr, arcA, and arcB), and other relevant genes (luxS, sodA, fumA, and sdhB). Transcriptional changes explained the observed alterations in overall stoichiometric and kinetic parameters, and production of ethanol and organic acids. Differences in transcription levels between aerobic and anaerobic compartments were also observed, indicating that E. coli can respond very fast to intermittent DOT conditions. The transcriptional responses of E. coli to DOT gradients reported here are useful for establishing rational scale-up criteria and strain design strategies for improved culture performance at large scales.
Collapse
Affiliation(s)
- Alvaro R Lara
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
67
|
Nam TW, Park YH, Jeong HJ, Ryu S, Seok YJ. Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation by the CRP*cAMP complex. Nucleic Acids Res 2005; 33:6712-22. [PMID: 16314304 PMCID: PMC1297706 DOI: 10.1093/nar/gki978] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expression of the Escherichia coli sdhCDAB operon encoding the succinate dehydrogenase complex is regulated in response to growth conditions, such as anaerobiosis and carbon sources. An anaerobic repression of sdhCDAB is known to be mediated by the ArcB/A two-component system and the global Fnr anaerobic regulator. While the cAMP receptor protein (CRP) and Cra (formerly FruR) are known as key mediators of catabolite repression, they have been excluded from the glucose repression of the sdhCDAB operon. Although the glucose repression of sdhCDAB was reported to involve a mechanism dependent on the ptsG expression, the molecular mechanism underlying the glucose repression has never been clarified. In this study, we re-examined the mechanism of the sdhCDAB repression by glucose and found that CRP directly regulates expression of the sdhCDAB operon and that the glucose repression of this operon occurs in a cAMP-dependent manner. The levels of phosphorylated enzyme IIA(Glc) and intracellular cAMP on various carbon sources were proportional to the expression levels of sdhC-lacZ. Disruption of crp or cya completely abolished the glucose repression of sdhC-lacZ expression. Together with data showing correlation between the intracellular cAMP concentrations and the sdhC-lacZ expression levels in several mutants and wild type, in vitro transcription assays suggest that the decrease in the CRP.cAMP level in the presence of glucose is the major determinant of the glucose repression of the sdhCDAB operon.
Collapse
Affiliation(s)
| | | | | | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National UniversitySeoul 151-742, Korea
| | - Yeong-Jae Seok
- To whom correspondence should be addressed. Tel: +82 2 880 8827; Fax: +82 2 888 4911;
| |
Collapse
|
68
|
Gadgil M, Kapur V, Hu WS. Transcriptional response of Escherichia coli to temperature shift. Biotechnol Prog 2005; 21:689-99. [PMID: 15932244 DOI: 10.1021/bp049630l] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Temperature shift is often practiced in the cultivation of Escherichia coli to reduce undesired metabolite formation and to maximize synthesis of correctly folded heterologous protein. As the culture temperature is decreased below the optimal 37 degrees C, growth rate decreases and many physiological changes occur. In this study, we investigated the gene expression dynamics of E. coli on switching its cultivation temperature from 37 to 33 and 28 degrees C using whole genome DNA microarrays. Approximately 9% of the genome altered expression level on temperature shift. Overall, the alteration of transcription upon the downshift of temperature is rapid and globally distributed over a wide range of gene classes. The general trends of transcriptional changes at 28 and 33 degrees C were similar. The largest functional class among the differentially expressed genes was energy metabolism. About 12% of genes in energy metabolism show a decrease in their level of expression, and approximately 6% show an increase. Consistent with the decrease in the glucose uptake rate, many genes involved in glycolysis and the PTS sugar transport systems show decreased expression. Genes encoding enzymes related to amino acid biosynthesis and transport also have reduced expression levels. Such decrease in expression probably reflects the reduced growth rate and the accompanying reduction in energy and amino acid demand at lower temperatures. However, nearly all genes encoding enzymes in the TCA cycle have increased expression levels, which may well be compensating the reduction of the activity of TCA cycle enzymes at lower temperatures. Temperature shift also results in shift of the cytochromes from the high affinity cytochrome o system to the low affinity cytochrome d system. There is no evidence that protein processing genes are selectively altered to create favorable conditions for heterologous protein synthesis. Our results indicate that the beneficial effect of temperature shift in many biotechnological processes is likely to be attributed to the general effect of reduced growth and metabolism.
Collapse
Affiliation(s)
- Mugdha Gadgil
- Department of Chemical Engineering and Materials Science, Biomedical Genomics Center, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, USA
| | | | | |
Collapse
|
69
|
Regulation of Nitrate and Nitrite Respiration in γ-Proteobacteria: A Comparative Genomics Study. Mol Biol 2005. [DOI: 10.1007/s11008-005-0088-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
70
|
Salmon KA, Hung SP, Steffen NR, Krupp R, Baldi P, Hatfield GW, Gunsalus RP. Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA. J Biol Chem 2005; 280:15084-96. [PMID: 15699038 DOI: 10.1074/jbc.m414030200] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ArcAB two-component system of Escherichia coli regulates the aerobic/anaerobic expression of genes that encode respiratory proteins whose synthesis is coordinated during aerobic/anaerobic cell growth. A genomic study of E. coli was undertaken to identify other potential targets of oxygen and ArcA regulation. A group of 175 genes generated from this study and our previous study on oxygen regulation (Salmon, K., Hung, S. P., Mekjian, K., Baldi, P., Hatfield, G. W., and Gunsalus, R. P. (2003) J. Biol. Chem. 278, 29837-29855), called our gold standard gene set, have p values <0.00013 and a posterior probability of differential expression value of 0.99. These 175 genes clustered into eight expression patterns and represent genes involved in a large number of cell processes, including small molecule biosynthesis, macromolecular synthesis, and aerobic/anaerobic respiration and fermentation. In addition, 119 of these 175 genes were also identified in our previous study of the fnr allele. A MEME/weight matrix method was used to identify a new putative ArcA-binding site for all genes of the E. coli genome. 16 new sites were identified upstream of genes in our gold standard set. The strict statistical analyses that we have performed on our data allow us to predict that 1139 genes in the E. coli genome are regulated either directly or indirectly by the ArcA protein with a 99% confidence level.
Collapse
Affiliation(s)
- Kirsty A Salmon
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1489, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Brown DG, Allen C. Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt. Mol Microbiol 2004; 53:1641-60. [PMID: 15341645 DOI: 10.1111/j.1365-2958.2004.04237.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phytopathogen Ralstonia solanacearum has over 5000 genes, many of which probably facilitate bacterial wilt disease development. Using in vivo expression technology (IVET), we screened a library of 133 200 R. solanacearum strain K60 promoter fusions and isolated approximately 900 fusions expressed during bacterial growth in tomato plants. Sequence analysis of 307 fusions revealed 153 unique in planta-expressed (ipx) genes. These genes included seven previously identified virulence genes (pehR, vsrB, vsrD, rpoS, hrcC, pme and gspK) as well as seven additional putative virulence factors. A significant number of ipx genes may reflect adaptation to the host xylem environment; 19.6%ipx genes are predicted to encode proteins with metabolic and/or transport functions, and 9.8%ipx genes encode proteins possibly involved in stress responses. Many ipx genes (18%) encode putative transmembrane proteins. A majority of ipx genes isolated encode proteins of unknown function, and 13% were unique to R. solanacearum. The ipx genes were variably induced in planta; beta-glucuronidase reporter gene expression analysis of a subset of 44 ipx fusions revealed that in planta expression levels were between two- and 37-fold higher than in culture. The expression of many ipx genes was subject to known R. solanacearum virulence regulators. Of 32 fusions tested, 28 were affected by at least one virulence regulator; several fusions were controlled by multiple regulators. Two ipx fusion strains isolated in this screen were reduced in virulence on tomato, indicating that gene(s) important for bacterial wilt pathogenesis were interrupted by the IVET insertion; mutations in other ipx genes are necessary to determine their roles in virulence and in planta growth. Collectively, this profile of ipx genes suggests that in its host, R. solanacearum confronts and overcomes a stressful and nutrient-poor environment.
Collapse
Affiliation(s)
- Darby G Brown
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
72
|
Roop RM, Gee JM, Robertson GT, Richardson JM, Ng WL, Winkler ME. Brucella stationary-phase gene expression and virulence. Annu Rev Microbiol 2004; 57:57-76. [PMID: 12730323 DOI: 10.1146/annurev.micro.57.030502.090803] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The capacity of the Brucella spp. to establish and maintain long-term residence in the phagosomal compartment of host macrophages is critical to their ability to produce chronic infections in their mammalian hosts. The RNA binding protein host factor I (HF-I) encoded by the hfq gene is required for the efficient translation of the stationary-phase sigma factor RpoS in many bacteria, and a Brucella abortus hfq mutant displays a phenotype in vitro, which suggests that it has a generalized defect in stationary-phase physiology. The inability of the B. abortus hfq mutant to survive and replicate in a wild-type manner in cultured murine macrophages, and the profound attenuation displayed by this strain and its B. melitensis counterpart in experimentally infected animals indicate that stationary-phase physiology plays an essential role in the capacity of the brucellae to establish and maintain long-term intracellular residence in host macrophages. The nature of the Brucella HF-I-regulated genes that have been identified to date suggests that the corresponding gene products contribute to the remarkable capacity of the brucellae to resist the harsh environmental conditions they encounter during their prolonged residence in the phagosomal compartment.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27858-4354, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Kuo JT, Chang YJ, Tseng CP. Growth rate regulation of lac operon expression in Escherichia coli is cyclic AMP dependent. FEBS Lett 2003; 553:397-402. [PMID: 14572658 DOI: 10.1016/s0014-5793(03)01071-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In contrast to the ribosomal RNA gene expression increasing with growth rate, transcription of the lac operon is downregulated by cell growth rate. In continuous culture, growth rate regulation of lac promoter was independent of carbon substrate used and its location on the chromosome. Since the lac operon is activated by cyclic adenosine monophosphate (cAMP), which decreases with increasing cell growth rate, expression of plac-lacZ reporter fusion was analyzed in cya mutant under various growth conditions. The results demonstrated that expression of plac-lacZ in cya mutant was both lower and growth rate independent. In addition, ppGpp (guanosine tetraphosphate) was not involved in the mechanism of growth rate regulation of the lac promoter. Thus, the results of this study indicate that cAMP mediates the growth rate-dependent regulation of lac operon expression in Escherichia coli.
Collapse
Affiliation(s)
- Jong-Tar Kuo
- Department of Biological Science and Technology, National Chiao Tung University, 75 PO-Ai Street, Hsin-Chu, R.O.C., Taiwan
| | | | | |
Collapse
|
74
|
Peng L, Shimizu K. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol 2003; 61:163-78. [PMID: 12655459 DOI: 10.1007/s00253-002-1202-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Revised: 11/08/2002] [Accepted: 11/15/2002] [Indexed: 11/24/2022]
Abstract
Regulation of the main metabolic pathways of Escherichia coli K12 was investigated based on 2-dimensional electrophoresis (2DE) and the measurement of enzyme activities. The cells were grown aerobically in different carbon sources, such as glucose, acetate, gluconate or glycerol. Microaerobic cultivation was also conducted with glucose as a carbon source. Fifty-two proteins could be identified based on 2DE, and 26 enzyme activities from the main metabolic pathways-including glycolysis, pentose phosphate pathway, TCA cycle, Entner-Doudoroff pathway and fermentative pathway-were assayed. These enzyme activities, together with global and quantitative protein expression, gave us a clear picture of metabolic regulation. The results show that, compared with the control experiment with glucose as a carbon source under aerobic conditions, glycolytic enzymes were slightly up-regulated (<2-fold), TCA cycle enzymes were significantly down-regulated (2- to 10-fold), and fermentative enzymes such as pfl and adhE were highly up-regulated (>10-fold) under microaerobic conditions in glucose medium. When acetate was used as a carbon source, pfkA, pykF, ppc and zwf were down-regulated, while fbp, pckA, ppsA and mez were significantly up-regulated. Glyoxylate enzymes such as aceA and aceB were strongly up-regulated (>10-fold) and TCA-cycle-related enzymes were also up-regulated to some extent. With gluconate as a carbon source, edd, eda, fbp and TCA cycle enzymes were up-regulated. With glycerol as a carbon source, fbp and TCA cycle enzymes were up-regulated, while ackA was significantly down-regulated. Protein abundance obtained by 2DE correlated well with enzyme activity, with a few exceptions (e.g., isocitrate dehydrogenase), during aerobic growth on acetate.
Collapse
Affiliation(s)
- L Peng
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, 820-8502, Iizuka, Fukuoka, Japan
| | | |
Collapse
|
75
|
Abstract
The orbital structure of molecular oxygen constrains it to accept electrons one at a time, and its unfavourable univalent reduction potential ensures that it can do so only with low-potential redox partners. In E. coli, this restriction prevents oxygen from oxidizing structural molecules. Instead, it primarily oxidizes reduced flavins, a reaction that is harmful only in that it generates superoxide and hydrogen peroxide as products. These species are stronger oxidants than is oxygen itself. They can oxidize dehydratase iron-sulphur clusters and sulphydryls, respectively, and thereby inactivate enzymes that are dependent upon these functional groups. Hydrogen peroxide also oxidizes free iron, generating hydroxyl radicals. Because hydroxyl radicals react with virtually any biomolecules they encounter, their reactivity is broadly dissipated, and only their reactions with DNA are known to have an important physiological impact. E. coli elaborates scavenging and repair systems to minimize the impact of this adventitious chemistry; mutants that lack these defences grow poorly in aerobic habitats. Some of the growth deficits of these mutants cannot be easily ascribed to sulphydryl, cluster, or DNA damage, indicating that important aspects of oxidative stress still lack a biochemical explanation. Obligate anaerobes cannot tolerate oxygen because they utilize metabolic schemes built around enzymes that react with oxidants. The reliance upon low-potential flavoproteins for anaerobic respiration probably causes substantial superoxide and hydrogen peroxide to be produced when anaerobes are exposed to air. These species then generate damage of the same type that they produce in aerotolerant bacteria. However, obligate anaerobes also utilize several classes of dioxygen-sensitive enzymes that are not needed by aerobes. These enzymes are used for processes that help maintain the redox balance during anaerobic fermentations. They catalyse reactions that are chemically difficult, and the reaction mechanisms require the solvent exposure of radicals or low-potential metal clusters that can react rapidly with oxygen. Recent work has uncovered adaptive strategies by which obligate anaerobes seek to minimize the damage done by superoxide and hydrogen peroxide. Their failure to divest themselves of enzymes that can be directly damaged by molecular oxygen suggests that evolution has not yet provided economical options to them.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|