51
|
Hennequin C, Aumeran C, Robin F, Traore O, Forestier C. Antibiotic resistance and plasmid transfer capacity in biofilm formed with a CTX-M-15-producing Klebsiella pneumoniae isolate. J Antimicrob Chemother 2012; 67:2123-30. [PMID: 22577106 DOI: 10.1093/jac/dks169] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To characterize a CTX-M-15-producing Klebsiella pneumoniae isolate that was identified during an outbreak involving 16 patients who had undergone endoscopic retrograde cholangiopancreatography between December 2008 and August 2009. The strain was also detected in one endoscope used for these examinations. METHODS Disc diffusion assays, MICs and isoelectric focusing were used to characterize the plasmidic CTX-M-15 β-lactamase. PCRs were used to check for the presence of genes associated with virulence or antibiotic resistance. Antibiotic tolerance tests and plasmid transfer were carried out in both planktonic and biofilm conditions. RESULTS The strain belonged to sequence type 14 and to the virulent capsular serotype K2, but produced little glucuronic acid. It contained a 62.5 kb conjugative plasmid carrying the bla(CTX-M-15), bla(OXA-1) and aac(6')-Ib-cr genes and harboured few virulence genes (uge, wabG, kfu and mrkD). The strain was highly resistant to cefotaxime (MIC 516 mg/L) and the presence of this antibiotic at sub-MIC concentrations enhanced biofilm formation. The isolate was susceptible to ofloxacin (MIC 2 mg/L), but the bactericidal effect of this antibiotic was greater in planktonic cultures and 6 h old biofilm than in 24 or 48 h old biofilms. The K. pneumoniae strain was notable for its ability to transfer its plasmid, especially in biofilm conditions, in which the rate of plasmid transfer was about 0.5/donor. CONCLUSIONS These findings demonstrate the ability of this strain to survive in a hospital environment and to transfer its extended-spectrum β-lactamase-encoding plasmid.
Collapse
Affiliation(s)
- Claire Hennequin
- Clermont Université, UMR CNRS 6023 'Laboratoire Microorganismes: Génome Environnement (LMGE)', Université d'Auvergne, F-63000 Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
52
|
Pieretti G, Carillo S, Lindner B, Kim KK, Lee KC, Lee JS, Lanzetta R, Parrilli M, Corsaro MM. Characterization of the Core Oligosaccharide and the O-Antigen Biological Repeating Unit from Halomonas stevensii Lipopolysaccharide: The First Case of O-Antigen Linked to the Inner Core. Chemistry 2012; 18:3729-35. [DOI: 10.1002/chem.201102550] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Indexed: 11/10/2022]
|
53
|
Virulence factors and TEM-type β-lactamases produced by two isolates of an epidemic Klebsiella pneumoniae strain. Antimicrob Agents Chemother 2011; 56:1101-4. [PMID: 22106220 DOI: 10.1128/aac.05079-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two Klebsiella pneumoniae isolates of the same strain, identified in Poland, produced either TEM-47 or TEM-68, which differed by the Arg275Leu substitution. They harbored a few virulence factors, including an iron-chelating factor and capsule overproduction, suggesting that these factors were sufficient to enhance their nosocomial potency. TEM-68 and TEM-47 had similar enzymatic activities, but TEM-68 was less susceptible to inhibitors than TEM-47. These results confirm the role of the Arg275Leu substitution in the evolution of TEM enzymes.
Collapse
|
54
|
Characterization of a DHA-1-producing Klebsiella pneumoniae strain involved in an outbreak and role of the AmpR regulator in virulence. Antimicrob Agents Chemother 2011; 56:288-94. [PMID: 21986829 DOI: 10.1128/aac.00164-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A clonal strain of Klebsiella pneumoniae producing the plasmid-encoded cephalosporinase DHA-1 was isolated from four patients admitted to the teaching hospital of Clermont-Ferrand, France, in 2006. It was responsible for severe infections in three of the patients; the fourth was colonized only in the gastrointestinal tract. The strain had at least two plasmids encoding resistance to antibiotics (quinolones, aminoglycosides, chloramphenicol, sulfonamides, and trimethoprim), as shown by disk diffusion assay, and harbored only a few genes for virulence factors (wabG and mrkD), as shown by PCRs. DHA-1 synthesis is regulated by an upstream, divergently transcribed gene, ampR, which is also involved in the expression of virulence factors in Pseudomonas aeruginosa. To investigate the role of AmpR in K. pneumoniae, we cloned the wild-type ampR gene from the DHA-1 clonal isolate into a previously characterized K. pneumoniae background plasmid-cured strain, CH608. ampR was also introduced into a CH608 isogenic mutant deleted of ampD, in which AmpR is present only in its activator form, resulting in constitutive hyperproduction of the β-lactamase. We showed that ampR was involved in the upregulation of capsule synthesis and therefore in resistance to killing by serum. AmpR also modulated biofilm formation and type 3 fimbrial gene expression, as well as colonization of the murine gastrointestinal tract and adhesion to HT-29 intestinal epithelial cells. These results show the pleiotropic role of ampR in the pathogenesis process of K. pneumoniae.
Collapse
|
55
|
A UDP-HexNAc:polyprenol-P GalNAc-1-P transferase (WecP) representing a new subgroup of the enzyme family. J Bacteriol 2011; 193:1943-52. [PMID: 21335454 DOI: 10.1128/jb.01441-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Aeromonas hydrophila AH-3 WecP represents a new class of UDP-HexNAc:polyprenol-P HexNAc-1-P transferases. These enzymes use a membrane-associated polyprenol phosphate acceptor (undecaprenyl phosphate [Und-P]) and a cytoplasmic UDP-d-N-acetylhexosamine sugar nucleotide as the donor substrate. Until now, all the WecA enzymes tested were able to transfer UDP-GlcNAc to the Und-P. In this study, we present in vitro and in vivo proofs that A. hydrophila AH-3 WecP transfers GalNAc to Und-P and is unable to transfer GlcNAc to the same enzyme substrate. The molecular topology of WecP is more similar to that of WbaP (UDP-Gal polyprenol-P transferase) than to that of WecA (UDP-GlcNAc polyprenol-P transferase). WecP is the first UDP-HexNAc:polyprenol-P GalNAc-1-P transferase described.
Collapse
|
56
|
Lin WH, Wang MC, Tseng CC, Ko WC, Wu AB, Zheng PX, Wu JJ. Clinical and microbiological characteristics of Klebsiella pneumoniae isolates causing community-acquired urinary tract infections. Infection 2010; 38:459-64. [PMID: 20734217 DOI: 10.1007/s15010-010-0049-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/03/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND Klebsiella pneumoniae is the second most common species causing urinary tract infections (UTI). However, the host factors and virulence genes of K. pneumoniae related to UTI are poorly understood. The aim of this study was to analyze the capsular phenotype and virulence genes of K. pneumoniae isolates and host factors potentially relevant to community-acquired UTI. METHODS Fifty-four K. pneumoniae isolates from patients with community-acquired UTI, 76 isolates from healthy adults, and 29 from patients with community-acquired pneumonia were compared. The virulence genes (rmpA, magA, uge, and wabG) and serotype (K1, K2, K5, K20, K54, or K57) were characterized by polymerase chain reaction (PCR). The modified string test was used to determine the hypermucoviscosity. RESULTS Diabetes mellitus was the most frequent underlying disease among UTI patients (53.7%, 29/54). No predominant K serotype was found in UTI strains. The hypermucoviscosity phenotype and rmpA gene were more often found in UTI isolates than in those from healthy adults (27.8 vs. 2.6%, P < 0.01; 29.6 vs. 11.8%, P < 0.01, respectively), whereas no significant difference in the frequency of magA, uge, wabG, or serotype genes was found. The prevalence of rmpA was significantly lower in isolates from patients with immunosuppression, chronic renal insufficiency, and urinary tract obstruction. Multivariate analysis showed that immunosuppression was negatively associated with the prevalence of rmpA. CONCLUSION Hypermucoviscosity was highly correlated with the presence of the rmpA gene in UTI strains, and rmpA may have a role in community-acquired UTI, especially in hosts without immunosuppression.
Collapse
Affiliation(s)
- W-H Lin
- Institute of Clinical Medicine, National Cheng-Kung University Hospital, National Cheng Kung University College of Medicine, No 1, University Rd, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
57
|
Functional identification of the Proteus mirabilis core lipopolysaccharide biosynthesis genes. J Bacteriol 2010; 192:4413-24. [PMID: 20622068 DOI: 10.1128/jb.00494-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we report the identification of genes required for the biosynthesis of the core lipopolysaccharides (LPSs) of two strains of Proteus mirabilis. Since P. mirabilis and Klebsiella pneumoniae share a core LPS carbohydrate backbone extending up to the second outer-core residue, the functions of the common P. mirabilis genes was elucidated by genetic complementation studies using well-defined mutants of K. pneumoniae. The functions of strain-specific outer-core genes were identified by using as surrogate acceptors LPSs from two well-defined K. pneumoniae core LPS mutants. This approach allowed the identification of two new heptosyltransferases (WamA and WamC), a galactosyltransferase (WamB), and an N-acetylglucosaminyltransferase (WamD). In both strains, most of these genes were found in the so-called waa gene cluster, although one common core biosynthetic gene (wabO) was found outside this cluster.
Collapse
|
58
|
Pieretti G, Corsaro MM, Lanzetta R, Parrilli M, Vilches S, Merino S, Tomás JM. Structure of the Core Region from the Lipopolysaccharide ofPlesiomonas shigelloidesStrain 302-73 (Serotype O1). European J Org Chem 2009. [DOI: 10.1002/ejoc.200801200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
59
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. MASS SPECTROMETRY REVIEWS 2009; 28:273-361. [PMID: 18825656 PMCID: PMC7168468 DOI: 10.1002/mas.20192] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/13/2023]
Abstract
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
60
|
Jimenez N, Canals R, Lacasta A, Kondakova AN, Lindner B, Knirel YA, Merino S, Regué M, Tomás JM. Molecular analysis of three Aeromonas hydrophila AH-3 (serotype O34) lipopolysaccharide core biosynthesis gene clusters. J Bacteriol 2008; 190:3176-84. [PMID: 18310345 PMCID: PMC2347379 DOI: 10.1128/jb.01874-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/17/2008] [Indexed: 01/21/2023] Open
Abstract
By the isolation of three different Aeromonas hydrophila strain AH-3 (serotype O34) mutants with an altered lipopolysaccharide (LPS) migration in gels, three genomic regions encompassing LPS core biosynthesis genes were identified and characterized. When possible, mutants were constructed using each gene from the three regions, containing seven, four, and two genes (regions 1 to 3, respectively). The mutant LPS core structures were elucidated by using mass spectrometry, methylation analysis, and comparison with the full core structure of an O-antigen-lacking AH-3 mutant previously established by us. Combining the gene sequence and complementation test data with the structural data and phenotypic characterization of the mutant LPSs enabled a presumptive assignment of all LPS core biosynthesis gene functions in A. hydrophila AH-3. The three regions and the genes contained are in complete agreement with the recently sequenced genome of A. hydrophila ATCC 7966. The functions of the A. hydrophila genes waaC in region 3 and waaF in region 2 were completely established, allowing the genome annotations of the two heptosyl transferase products not previously assigned. Having the functions of all genes involved with the LPS core biosynthesis and most corresponding single-gene mutants now allows experimental work on the role of the LPS core in the virulence of A. hydrophila.
Collapse
Affiliation(s)
- Natalia Jimenez
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Fresno S, Jiménez N, Canals R, Merino S, Corsaro MM, Lanzetta R, Parrilli M, Pieretti G, Regué M, Tomás JM. A second galacturonic acid transferase is required for core lipopolysaccharide biosynthesis and complete capsule association with the cell surface in Klebsiella pneumoniae. J Bacteriol 2006; 189:1128-37. [PMID: 17142396 PMCID: PMC1797326 DOI: 10.1128/jb.01489-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The core lipopolysaccharide (LPS) of Klebsiella pneumoniae contains two galacturonic acid (GalA) residues, but only one GalA transferase (WabG) has been identified. Data from chemical and structural analysis of LPS isolated from a wabO mutant show the absence of the inner core beta-GalA residue linked to L-glycero-D-manno-heptose III (L,D-Hep III). An in vitro assay demonstrates that the purified WabO is able to catalyze the transfer of GalA from UDP-GalA to the acceptor LPS isolated from the wabO mutant, but not to LPS isolated from waaQ mutant (deficient in l,d-Hep III). The absence of this inner core beta-GalA residue results in a decrease in virulence in a capsule-dependent experimental mouse pneumonia model. In addition, this mutation leads to a strong reduction in cell-bound capsule. Interestingly, a K66 Klebsiella strain (natural isolate) without a functional wabO gene shows reduced levels of cell-bound capsule in comparison to those of other K66 strains. Thus, the WabO enzyme plays an important role in core LPS biosynthesis and determines the level of cell-bound capsule in Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Sandra Fresno
- Departamento de Microbiología, Facultad de Biologia, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Canals R, Jiménez N, Vilches S, Regué M, Merino S, Tomás JM. Role of Gne and GalE in the virulence of Aeromonas hydrophila serotype O34. J Bacteriol 2006; 189:540-50. [PMID: 17098903 PMCID: PMC1797372 DOI: 10.1128/jb.01260-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mesophilic Aeromonas hydrophila AH-3 (serotype O34) strain shows two different UDP-hexose epimerases in its genome: GalE (EC 3.1.5.2) and Gne (EC 3.1.5.7). Similar homologues were detected in the different mesophilic Aeromonas strains tested. GalE shows only UDP-galactose 4-epimerase activity, while Gne is able to perform a dual activity (mainly UDP-N-acetyl galactosamine 4-epimerase and also UDP-galactose 4-epimerase). We studied the activities in vitro of both epimerases and also in vivo through the lipopolysaccharide (LPS) structure of A. hydrophila gne mutants, A. hydrophila galE mutants, A. hydrophila galE-gne double mutants, and independently complemented mutants with both genes. Furthermore, the enzymatic activity in vivo, which renders different LPS structures on the mentioned A. hydrophila mutant strains or the complemented mutants, allowed us to confirm a clear relationship between the virulence of these strains and the presence/absence of the O34 antigen LPS.
Collapse
Affiliation(s)
- Rocío Canals
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
63
|
Fresno S, Jiménez N, Izquierdo L, Merino S, Corsaro MM, De Castro C, Parrilli M, Naldi T, Regué M, Tomás JM. The ionic interaction of Klebsiella pneumoniae K2 capsule and core lipopolysaccharide. Microbiology (Reading) 2006; 152:1807-1818. [PMID: 16735743 DOI: 10.1099/mic.0.28611-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete structures of LPS core types 1 and 2 fromKlebsiella pneumoniaehave been described by other authors. They are characterized by a lack of phosphoryl residues, but they contain galacturonic acid (GalA) residues, which contribute to the necessary negative charges. The presence of a capsule was determined in core-LPS non-polar mutants from strains 52145 (O1 : K2), DL1 (O1 : K1) and C3 (O8 : K66). O-antigen ligase (waaL) mutants produced a capsule. Core mutants containing the GalA residues were capsulated, while those lacking the residues were non capsulated. Since the proteins involved in the transfer of GalA (WabG) and glucosamine residues (WabH) are known, the chemical basis of the capsular-K2–cell-surface association was studied. Phenol/water extracts fromK. pneumoniae52145ΔwabH waaLand 52145ΔwaaLmutants, but not those from fromK. pneumoniae52145ΔwabG waaLmutant, contained both LPS and capsular polysaccharide, even after hydrophobic chromatography. The two polysaccharides were dissociated by gel-filtration chromatography, eluting with detergent and metal-ion chelators. From these results, it is concluded that the K2 capsular polysaccharide is associated by an ionic interaction to the LPS through the negative charge provided by the carboxyl groups of the GalA residues.
Collapse
Affiliation(s)
- Sandra Fresno
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Natalia Jiménez
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Luis Izquierdo
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Maria Michela Corsaro
- Dipartimento di Chimica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Cristina De Castro
- Dipartimento di Chimica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Michelangelo Parrilli
- Dipartimento di Chimica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Teresa Naldi
- Dipartimento di Chimica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Miguel Regué
- Departamento de Microbiología y Parasitología Sanitarias, Facultad de Farmacia, Universidad de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| |
Collapse
|
64
|
Lawlor MS, Hsu J, Rick PD, Miller VL. Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Mol Microbiol 2006; 58:1054-73. [PMID: 16262790 DOI: 10.1111/j.1365-2958.2005.04918.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Klebsiella pneumoniae is a Gram-negative enterobacterium that has historically been, and currently remains, a significant cause of human disease. It is a frequent cause of urinary tract infections and pneumonia, and subsequent systemic infections can have mortality rates as high as 60%. Despite its clinical significance, few virulence factors of K. pneumoniae have been identified or characterized. In this study we present a mouse model of acute K. pneumoniae respiratory infection using an intranasal inoculation method, and examine the progression of both pulmonary and systemic disease. Wild-type infection recapitulates many aspects of clinical disease, including significant bacterial growth in both the trachea and lungs, an inflammatory immune response characterized by dramatic neutrophil influx, and a steady progression to systemic disease with ensuing mortality. These observations are contrasted with an infection by an isogenic capsule-deficient strain that shows an inability to cause disease in either pulmonary or systemic tissues. The consistency and clinical accuracy of the intranasal mouse model proved to be a useful tool as we conducted a genetic screen to identify novel virulence factors of K. pneumoniae. A total of 4800 independent insertional mutants were evaluated using a signature-tagged mutagenesis protocol. A total of 106 independent mutants failed to be recovered from either the lungs or spleens of infected mice. Small scale independent infections proved to be helpful as a secondary screening method, as opposed to the more traditional competitive index assay. Those mutants showing verified attenuation contained insertions in loci with a variety of putative functions, including a large number of hypothetical open reading frames. Subsequent experiments support the premise that the central mechanism of K. pneumoniae pathogenesis is the production of a polysaccharide-rich cell surface that provides protection from the inflammatory response.
Collapse
Affiliation(s)
- Matthew S Lawlor
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
65
|
Yu WL, Ko WC, Cheng KC, Lee HC, Ke DS, Lee CC, Fung CP, Chuang YC. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis 2006; 42:1351-8. [PMID: 16619144 DOI: 10.1086/503420] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 12/19/2005] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The association of the magA gene with the hypermucoviscosity phenotype relevant to the pathogenesis of Klebsiella pneumoniae liver abscess has been reported in Taiwan. Similarly, the rmpA gene, known as a positive regulator of extracapsular polysaccharide synthesis that confers a mucoid phenotype, may be another candidate gene causing hypermucoviscosity. However, the association of rmpA with K. pneumoniae clinical syndromes is unreported. We aimed to investigate the clinical correlation between rmpA and primary Klebsiella abscess, focusing on sites other than the liver. METHODS From July 2003 through December 2004, a total of 151 K. pneumoniae isolates recovered from 151 patients with bacteremia were collected from 2 large medical centers in southern Taiwan. Clinical data were collected from medical records. The genes rmpA and magA were amplified by polymerase chain reaction using specific primers. RESULTS The prevalences of hypermucoviscosity, rmpA, and magA were 38%, 48%, and 17%, respectively. As determined by statistical multivariate analysis, strains carrying rmpA were significantly associated with the hypermucoviscosity phenotype, and there was a significant correlation with purulent tissue infections, such as liver abscess and lung, neck, psoas muscle, or other focal abscess. CONCLUSION Our data support a statistical correlation between the rmpA gene and virulence in terms of abscess formation for these hypermucoviscous K. pneumoniae strains. Hypermucoviscosity associated with rmpA, together with a thorough physical examination, may be helpful as a guide to carry out appropriate diagnostic tests on patients with an initially unknown source of K. pneumoniae bacteremia, particularly when looking for the occurrence of an underlying abscess.
Collapse
Affiliation(s)
- Wen-Liang Yu
- Department of Intensive Care Medicine, Chi-Mei Medical Center, Yungkang City, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Canals R, Jiménez N, Vilches S, Regué M, Merino S, Tomás JM. The UDP N-acetylgalactosamine 4-epimerase gene is essential for mesophilic Aeromonas hydrophila serotype O34 virulence. Infect Immun 2006; 74:537-48. [PMID: 16369010 PMCID: PMC1346635 DOI: 10.1128/iai.74.1.537-548.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mesophilic Aeromonas hydrophila strains of serotype O34 typically express smooth lipopolysaccharide (LPS) on their surface. A single mutation in the gene that codes for UDP N-acetylgalactosamine 4-epimerase (gne) confers the O(-) phenotype (LPS without O-antigen molecules) on a strain in serotypes O18 and O34, but not in serotypes O1 and O2. The gne gene is present in all the mesophilic Aeromonas strains tested. No changes were observed for the LPS core in a gne mutant from A. hydrophila strain AH-3 (serotype O34). O34 antigen LPS contains N-acetylgalactosamine, while no such sugar residue forms part of the LPS core from A. hydrophila AH-3. Some of the pathogenic features of A. hydrophila AH-3 gne mutants are drastically reduced (serum resistance or adhesion to Hep-2 cells), and the gne mutants are less virulent for fish and mice compared to the wild-type strain. Strain AH-3, like other mesophilic Aeromonas strains, possess two kinds of flagella, and the absence of O34 antigen molecules by gne mutation in this strain reduced motility without any effect on the biogenesis of both polar and lateral flagella. The reintroduction of the single wild-type gne gene in the corresponding mutants completely restored the wild-type phenotype (presence of smooth LPS) independently of the O wild-type serotype, restored the virulence of the wild-type strain, and restored motility (either swimming or swarming).
Collapse
Affiliation(s)
- Rocío Canals
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
67
|
Regué M, Izquierdo L, Fresno S, Jimenez N, Piqué N, Corsaro MM, Parrilli M, Naldi T, Merino S, Tomás JM. The Incorporation of Glucosamine into Enterobacterial Core Lipopolysaccharide. J Biol Chem 2005; 280:36648-56. [PMID: 16131489 DOI: 10.1074/jbc.m506278200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The core lipopolysaccharide (LPS) of Klebsiella pneumoniae is characterized by the presence of disaccharide alphaGlcN-(1,4)-alphaGalA attached by an alpha1,3 linkage to l-glycero-d-manno-heptopyranose II (ld-HeppII). Previously it has been shown that the WabH enzyme catalyzes the incorporation of GlcNAc from UDP-GlcNAc to outer core LPS. The presence of GlcNAc instead of GlcN and the lack of UDP-GlcN in bacteria indicate that an additional enzymatic step is required. In this work we identified a new gene (wabN) in the K. pneumoniae core LPS biosynthetic cluster. Chemical and structural analysis of K. pneumoniae non-polar wabN mutants showed truncated core LPS with GlcNAc instead of GlcN. In vitro assays using LPS truncated at the level of d-galacturonic acid (GalA) and cell-free extract containing WabH and WabN together led to the incorporation of GlcN, whereas none of them alone were able to do it. This result suggests that the later enzyme (WabN) catalyzes the deacetylation of the core LPS containing the GlcNAc residue. Thus, the incorporation of the GlcN residue to core LPS in K. pneumoniae requires two distinct enzymatic steps. WabN homologues are found in Serratia marcescens and some Proteus strains that show the same disaccharide alphaGlcN-(1,4)-alphaGalA attached by an alpha1,3 linkage to ld-HeppII.
Collapse
Affiliation(s)
- Miguel Regué
- Departamento de Microbiología y Parasitología Sanitarias, Facultad de Farmacia, Universidad de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Regué M, Izquierdo L, Fresno S, Piqué N, Corsaro MM, Naldi T, De Castro C, Waidelich D, Merino S, Tomás JM. A second outer-core region in Klebsiella pneumoniae lipopolysaccharide. J Bacteriol 2005; 187:4198-206. [PMID: 15937181 PMCID: PMC1151721 DOI: 10.1128/jb.187.12.4198-4206.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Up to now only one major type of core oligosaccharide has been found in the lipopolysaccharide of all Klebsiella pneumoniae strains analyzed. Applying a different screening approach, we identified a novel Klebsiella pneumoniae core (type 2). Both Klebsiella core types share the same inner core and the outer-core-proximal disaccharide, GlcN-(1,4)-GalA, but they differ in the GlcN substituents. In core type 2, the GlcpN residue is substituted at the O-4 position by the disaccharide beta-Glcp(1-6)-alpha-Glcp(1, while in core type 1 the GlcpN residue is substituted at the O-6 position by either the disaccharide alpha-Hep(1-4)-alpha-Kdo(2 or a Kdo residue (Kdo is 3-deoxy-D-manno-octulosonic acid). This difference correlates with the presence of a three-gene region in the corresponding core biosynthetic clusters. Engineering of both core types by interchanging this specific region allowed studying the effect on virulence. The replacement of Klebsiella core type 1 in a highly type 2 virulent strain (52145) induces lower virulence than core type 2 in a murine infection model.
Collapse
Affiliation(s)
- Miguel Regué
- Departamento de Microbiología i Parasitología Sanitarias, Facultad de Farmacia, Universidad de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Frirdich E, Bouwman C, Vinogradov E, Whitfield C. The role of galacturonic acid in outer membrane stability in Klebsiella pneumoniae. J Biol Chem 2005; 280:27604-12. [PMID: 15929980 DOI: 10.1074/jbc.m504987200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most members of the Enterobacteriaceae, including Escherichia coli and Salmonella, the lipopolysaccharide core oligosaccharide backbone is modified by phosphoryl groups. The negative charges provided by these residues are important in maintaining the barrier function of the outer membrane. Mutants lacking the core heptose region and the phosphate residues display pleiotrophic defects collectively known as the deep-rough phenotype, characterized by changes in outer membrane structure and function. Klebsiella pneumoniae lacks phosphoryl residues in its core, but instead contains galacturonic acid. The goal of this study was to determine the contribution of galacturonic acid as a critical source of negative charge. A mutant was created lacking all galacturonic acid by targeting UDP-galacturonic acid precursor synthesis through a mutation in gla(KP). Gla(KP) is a K. pneumoniae UDP-galacturonic acid C4 epimerase providing UDP-galacturonic acid for core synthesis. The gla(KP) gene was inactivated and the structure of the mutant lipopolysaccharide was determined by mass spectrometry. The mutant displayed characteristics of a deep-rough phenotype, exhibiting a hypersensitivity to hydrophobic compounds and polymyxin B, an altered outer membrane profile, and the release of the periplasmic enzyme beta-lactamase. These results indicate that the negative charge provided by the carboxyl groups of galacturonic acid do play an equivalent role to the core oligosaccharide phosphate residues in establishing outer membrane integrity in E. coli and Salmonella.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Molecular and Cellular Biology, University of Guelph, Guelph Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
70
|
Vilches S, Urgell C, Merino S, Chacón MR, Soler L, Castro-Escarpulli G, Figueras MJ, Tomás JM. Complete type III secretion system of a mesophilic Aeromonas hydrophila strain. Appl Environ Microbiol 2005; 70:6914-9. [PMID: 15528564 PMCID: PMC525241 DOI: 10.1128/aem.70.11.6914-6919.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the existence and genetic organization of a functional type III secretion system (TTSS) in a mesophilic Aeromonas strain by initially using the Aeromonas hydrophila strain AH-3. We report for the first time the complete TTSS DNA sequence of an Aeromonas strain that comprises 35 genes organized in a similar disposition as that in Pseudomonas aeruginosa. Using several gene probes, we also determined the presence of a TTSS in clinical or environmental strains of different Aeromonas species: A. hydrophila, A. veronii, and A. caviae. By using one of the TTSS genes (ascV), we were able to obtain a defined insertion mutant in strain AH-3 (AH-3AscV), which showed reduced toxicity and virulence in comparison with the wild-type strain. Complementation of the mutant strain with a plasmid vector carrying ascV was fully able to restore the wild-type toxicity and virulence.
Collapse
Affiliation(s)
- Silvia Vilches
- Departamento Microbiología, Facultad Biología, Universidad de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Frirdich E, Vinogradov E, Whitfield C. Biosynthesis of a Novel 3-Deoxy-D-manno-oct-2-ulosonic Acid-containing Outer Core Oligosaccharide in the Lipopolysaccharide of Klebsiella pneumoniae. J Biol Chem 2004; 279:27928-40. [PMID: 15090547 DOI: 10.1074/jbc.m402549200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The core oligosaccharide region of Klebsiella pneumoniae lipopolysaccharide contains some novel features that distinguish it from the corresponding lipopolysaccharide region in other members of the Enterobacteriaceae family, such as Escherichia coli and Salmonella. The conserved Klebsiella outer core contains the unusual trisaccharide 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo)-(2,6)-GlcN-(1,4)-GalUA. In general, Kdo residues are normally found in the inner core, but in K. pneumoniae, this Kdo residue provides the ligation site for O polysaccharide. The outer core Kdo residue can also be non-stoichiometrically substituted with an l-glycero-d-manno-heptopyranose (Hep) residue, another component more frequently found in the inner core. To understand the genetics and biosynthesis of core oligosaccharide synthesis in Klebsiella, the gene products involved in the addition of the outer core GlcN (WabH), Kdo (WabI), and Hep (WabJ) residues as well as the inner core HepIII residue (WaaQ) were identified. Non-polar mutations were created in each of the genes, and the resulting mutant lipopolysaccharide was analyzed by mass spectrometry. The in vitro glycosyltransferase activity of WabI and WabH was verified. WabI transferred a Kdo residue from CMP-Kdo onto the acceptor lipopolysaccharide. The activated precursor required for GlcN addition has not been identified. However, lysates overexpressing WabH were able to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the outer core.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|