51
|
Gulati M, Jain N, Anand B, Prakash B, Britton RA. Mutational analysis of the ribosome assembly GTPase RbgA provides insight into ribosome interaction and ribosome-stimulated GTPase activation. Nucleic Acids Res 2013; 41:3217-27. [PMID: 23325847 PMCID: PMC3597669 DOI: 10.1093/nar/gks1475] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ribosome biogenesis GTPase A protein (RbgA) is an essential GTPase required for the biogenesis of the 50S subunit in Bacillus subtilis. Homologs of RbgA are widely distributed in bacteria and eukaryotes and are implicated in ribosome assembly in the mitochondria, chloroplast and cytoplasm. Cells depleted of RbgA accumulate an immature large subunit that is missing key ribosomal proteins. RbgA, unlike many members of the Ras superfamily of GTPases, lacks a defined catalytic residue for carrying out guanosine triphosphate (GTP) hydrolysis. To probe RbgA function in ribosome assembly, we used a combined bioinformatics, genetic and biochemical approach. We identified a RNA-binding domain within the C-terminus of RbgA that is structurally similar to AmiR–NasR Transcription Anti-termination Regulator (ANTAR) domains, which are known to bind structured RNA. Mutation of key residues in the ANTAR domain altered RbgA association with the ribosome. We identified a putative catalytic residue within a highly conserved region of RbgA, His9, which is contained within a similar PGH motif found in elongation factor Tu (EF-Tu) that is required for GTP hydrolysis on interaction with the ribosome. Finally, our results support a model in which the GTPase activity of RbgA directly participates in the maturation of the large subunit rather than solely promoting dissociation of RbgA from the 50S subunit.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48823, USA
| | | | | | | | | |
Collapse
|
52
|
Chen SS, Williamson JR. Characterization of the ribosome biogenesis landscape in E. coli using quantitative mass spectrometry. J Mol Biol 2012; 425:767-79. [PMID: 23228329 DOI: 10.1016/j.jmb.2012.11.040] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/25/2012] [Accepted: 11/29/2012] [Indexed: 01/21/2023]
Abstract
The ribosome is an essential and highly complex biological system in all living cells. A large body of literature on the assembly of the ribosome in vitro is available, but a clear picture of this process inside the cell has yet to emerge. Here, we directly characterized in vivo ribosome assembly intermediates and associated assembly factors from wild-type Escherichia coli cells using a general quantitative mass spectrometry (qMS) approach. The presence of distinct populations of ribosome assembly intermediates was verified using an in vivo stable isotope pulse-labeling approach, and their exact ribosomal protein contents were characterized against an isotopically labeled standard. The model-free clustering analysis of the resultant protein levels for the different ribosomal particles produced four 30S assembly groups that correlate very well with previous in vitro assembly studies of the small ribosomal subunit and six 50S assembly groups that clearly define an in vivo assembly landscape for the larger ribosomal subunit. In addition, de novo proteomics identified a total of 21 known and potentially new ribosome assembly factors co-localized with various ribosomal particles. These results represent new in vivo assembly maps of the E. coli 30S and 50S subunits, and the general qMS approach should prove to be a solid platform for future studies of ribosome biogenesis across a host of model organisms.
Collapse
Affiliation(s)
- Stephen S Chen
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
53
|
Kint CI, Verstraeten N, Wens I, Liebens VR, Hofkens J, Versées W, Fauvart M, Michiels J. The Escherichia coli GTPase ObgE modulates hydroxyl radical levels in response to DNA replication fork arrest. FEBS J 2012; 279:3692-3704. [PMID: 22863262 DOI: 10.1111/j.1742-4658.2012.08731.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Obg proteins are universally conserved GTP-binding proteins that are essential for viability in bacteria. Homologs in different organisms are involved in various cellular processes, including DNA replication. The goal of this study was to analyse the structure-function relationship of Escherichia coli ObgE with regard to DNA replication in general and sensitivity to stalled replication forks in particular. Defined C-terminal chromosomal deletion mutants of obgE were constructed and tested for sensitivity to the replication inhibitor hydroxyurea. The ObgE C-terminal domain was shown to be dispensable for normal growth of E.coli. However, a region within this domain is involved in the cellular response to replication fork stress. In addition, a mutant obgE over-expression library was constructed by error-prone PCR and screened for increased hydroxyurea sensitivity. ObgE proteins with substitutions L159Q, G163V, P168V, G216A or R237C, located within distinct domains of ObgE, display dominant-negative effects leading to hydroxyurea hypersensitivity when over-expressed. These effects are abolished in strains with a single deletion of the iron transporter TonB or combined deletions the toxin/antitoxin modules RelBE/MazEF, strains both of which have been shown to be involved in a pathway that stimulates hydroxyl radical formation following hydroxyurea treatment. Moreover, the observed dominant-negative effects are lost in the presence of the hydroxyl radical scavenger thiourea. Together, these results indicate involvement of hydroxyl radical toxicity in ObgE-mediated protection against replication fork stress.
Collapse
Affiliation(s)
- Cyrielle I Kint
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Inez Wens
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Veerle R Liebens
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Johan Hofkens
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Wim Versées
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Belgium Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| |
Collapse
|
54
|
Kanjee U, Ogata K, Houry WA. Direct binding targets of the stringent response alarmone (p)ppGpp. Mol Microbiol 2012; 85:1029-43. [PMID: 22812515 DOI: 10.1111/j.1365-2958.2012.08177.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Escherichia coli stringent response, mediated by the alarmone ppGpp, is responsible for the reorganization of cellular transcription upon nutritional starvation and other stresses. These transcriptional changes occur mainly as a result of the direct effects of ppGpp and its partner transcription factor DksA on RNA polymerase. An often overlooked feature of the stringent response is the direct targeting of other proteins by ppGpp. Here we review the literature on proteins that are known to bind ppGpp and, based on sequence homology, X-ray crystal structures and in silico docking, we propose new potential protein binding targets for ppGpp. These proteins were found to fall into five main categories: (i) cellular GTPases, (ii) proteins involved in nucleotide metabolism, (iii) proteins involved in lipid metabolism, (iv) general metabolic proteins and (v) PLP-dependent basic aliphatic amino acid decarboxylases. Bioinformatic rationale is provided for expanding the role of ppGpp in regulating the activities of the cellular GTPases. Proteins involved in nucleotide and lipid metabolism and general metabolic proteins provide an interesting set of structurally varied stringent response targets. While the inhibition of some PLP-dependent decarboxylases by ppGpp suggests the existence of cross-talk between the acid stress and stringent response systems.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
55
|
Bang WY, Chen J, Jeong IS, Kim SW, Kim CW, Jung HS, Lee KH, Kweon HS, Yoko I, Shiina T, Bahk JD. Functional characterization of ObgC in ribosome biogenesis during chloroplast development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:122-34. [PMID: 22380942 DOI: 10.1111/j.1365-313x.2012.04976.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Spo0B-associated GTP-binding protein (Obg) GTPase, essential for bacterial viability, is also conserved in eukaryotes, but its primary role in eukaryotes remains unknown. Here, our functional characterization of Arabidopsis and rice obgc mutants strongly underlines the evolutionarily conserved role of eukaryotic Obgs in organellar ribosome biogenesis. The mutants exhibited a chlorotic phenotype, caused by retarded chloroplast development. A plastid DNA macroarray revealed a plastid-encoded RNA polymerase (PEP) deficiency in an obgc mutant, caused by incompleteness of the PEP complex, as its western blot exhibited reduced levels of RpoA protein, a component of PEP. Plastid rRNA profiling indicated that plastid rRNA processing is defective in obgc mutants, probably resulting in impaired ribosome biogenesis and, in turn, in reduced levels of RpoA protein. RNA co-immunoprecipitation revealed that ObgC specifically co-precipitates with 23S rRNA in vivo. These findings indicate that ObgC functions primarily in plastid ribosome biogenesis during chloroplast development. Furthermore, complementation analysis can provide new insights into the functional modes of three ObgC domains, including the Obg fold, G domain and OCT.
Collapse
Affiliation(s)
- Woo Young Bang
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology-GNTECH, Jinju 660-758, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 2012; 75:507-42, second and third pages of table of contents. [PMID: 21885683 DOI: 10.1128/mmbr.00009-11] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Collapse
|
57
|
Atkinson GC, Tenson T, Hauryliuk V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 2011; 6:e23479. [PMID: 21858139 PMCID: PMC3153485 DOI: 10.1371/journal.pone.0023479] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/18/2011] [Indexed: 12/01/2022] Open
Abstract
RelA/SpoT Homologue (RSH) proteins, named for their sequence similarity to the RelA and SpoT enzymes of Escherichia coli, comprise a superfamily of enzymes that synthesize and/or hydrolyze the alarmone ppGpp, activator of the “stringent” response and regulator of cellular metabolism. The classical “long” RSHs Rel, RelA and SpoT with the ppGpp hydrolase, synthetase, TGS and ACT domain architecture have been found across diverse bacteria and plant chloroplasts, while dedicated single domain ppGpp-synthesizing and -hydrolyzing RSHs have also been discovered in disparate bacteria and animals respectively. However, there is considerable confusion in terms of nomenclature and no comprehensive phylogenetic and sequence analyses have previously been carried out to classify RSHs on a genomic scale. We have performed high-throughput sensitive sequence searching of over 1000 genomes from across the tree of life, in combination with phylogenetic analyses to consolidate previous ad hoc identification of diverse RSHs in different organisms and provide a much-needed unifying terminology for the field. We classify RSHs into 30 subgroups comprising three groups: long RSHs, small alarmone synthetases (SASs), and small alarmone hydrolases (SAHs). Members of nineteen previously unidentified RSH subgroups can now be studied experimentally, including previously unknown RSHs in archaea, expanding the “stringent response” to this domain of life. We have analyzed possible combinations of RSH proteins and their domains in bacterial genomes and compared RSH content with available RSH knock-out data for various organisms to determine the rules of combining RSHs. Through comparative sequence analysis of long and small RSHs, we find exposed sites limited in conservation to the long RSHs that we propose are involved in transmitting regulatory signals. Such signals may be transmitted via NTD to CTD intra-molecular interactions, or inter-molecular interactions either among individual RSH molecules or among long RSHs and other binding partners such as the ribosome.
Collapse
|
58
|
Karpinets T, Greenwood D, Pogribny I, Samatova N. Bacterial stationary-state mutagenesis and Mammalian tumorigenesis as stress-induced cellular adaptations and the role of epigenetics. Curr Genomics 2011; 7:481-96. [PMID: 18369407 DOI: 10.2174/138920206779315764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/11/2006] [Accepted: 11/23/2006] [Indexed: 01/16/2023] Open
Abstract
Mechanisms of cellular adaptation may have some commonalities across different organisms. Revealing these common mechanisms may provide insight in the organismal level of adaptation and suggest solutions to important problems related to the adaptation. An increased rate of mutations, referred as the mutator phenotype, and beneficial nature of these mutations are common features of the bacterial stationary-state mutagenesis and of the tumorigenic transformations in mammalian cells. We argue that these commonalities of mammalian and bacterial cells result from their stress-induced adaptation that may be described in terms of a common model. Specifically, in both organisms the mutator phenotype is activated in a subpopulation of proliferating stressed cells as a strategy to survival. This strategy is an alternative to other survival strategies, such as senescence and programmed cell death, which are also activated in the stressed cells by different subpopulations. Sustained stress-related proliferative signalling and epigenetic mechanisms play a decisive role in the choice of the mutator phenotype survival strategy in the cells. They reprogram cellular functions by epigenetic silencing of cell-cycle inhibitors, DNA repair, programmed cell death, and by activation of repetitive DNA elements. This reprogramming leads to the mutator phenotype that is implemented by error-prone cell divisions with the involvement of Y family polymerases. Studies supporting the proposed model of stress-induced cellular adaptation are discussed. Cellular mechanisms involved in the bacterial stress-induced adaptation are considered in more detail.
Collapse
Affiliation(s)
- Tv Karpinets
- Computational Biology Institute, Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6164, Oak Ridge, TN 37831, USA
| | | | | | | |
Collapse
|
59
|
Blombach F, Launay H, Zorraquino V, Swarts DC, Cabrita LD, Benelli D, Christodoulou J, Londei P, van der Oost J. An HflX-type GTPase from Sulfolobus solfataricus binds to the 50S ribosomal subunit in all nucleotide-bound states. J Bacteriol 2011; 193:2861-7. [PMID: 21478358 PMCID: PMC3133125 DOI: 10.1128/jb.01552-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 03/26/2011] [Indexed: 02/06/2023] Open
Abstract
HflX GTPases are found in all three domains of life, the Bacteria, Archaea, and Eukarya. HflX from Escherichia coli has been shown to bind to the 50S ribosomal subunit in a nucleotide-dependent manner, and this interaction strongly stimulates its GTPase activity. We recently determined the structure of an HflX ortholog from the archaeon Sulfolobus solfataricus (SsoHflX). It revealed the presence of a novel HflX domain that might function in RNA binding and is linked to a canonical G domain. This domain arrangement is common to all archaeal, bacterial, and eukaryotic HflX GTPases. This paper shows that the archaeal SsoHflX, like its bacterial orthologs, binds to the 50S ribosomal subunit. This interaction does not depend on the presence of guanine nucleotides. The HflX domain is sufficient for ribosome interaction. Binding appears to be restricted to free 50S ribosomal subunits and does not occur with 70S ribosomes engaged in translation. The fingerprint (1)H-(15)N heteronuclear correlation nuclear magnetic resonance (NMR) spectrum of SsoHflX reveals a large number of well-resolved resonances that are broadened upon binding to the 50S ribosomal subunit. The GTPase activity of SsoHflX is stimulated by crude fractions of 50S ribosomal subunits, but this effect is lost with further high-salt purification of the 50S ribosomal subunits, suggesting that the stimulation depends on an extrinsic factor bound to the 50S ribosomal subunit. Our results reveal common properties but also marked differences between archaeal and bacterial HflX proteins.
Collapse
Affiliation(s)
- Fabian Blombach
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Assembling the archaeal ribosome: roles for translation-factor-related GTPases. Biochem Soc Trans 2011; 39:45-50. [PMID: 21265745 DOI: 10.1042/bst0390045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The assembly of ribosomal subunits from their individual components (rRNA and ribosomal proteins) requires the assistance of a multitude of factors in order to control and increase the efficiency of the assembly process. GTPases of the TRAFAC (translation-factor-related) class constitute a major type of ribosome-assembly factor in Eukaryota and Bacteria. They are thought to aid the stepwise assembly of ribosomal subunits through a 'molecular switch' mechanism that involves conformational changes in response to GTP hydrolysis. Most conserved TRAFAC GTPases are involved in ribosome assembly or other translation-associated processes. They typically interact with ribosomal subunits, but in many cases, the exact role that these GTPases play remains unclear. Previous studies almost exclusively focused on the systems of Bacteria and Eukaryota. Archaea possess several conserved TRAFAC GTPases as well, with some GTPase families being present only in the archaeo-eukaryotic lineage. In the present paper, we review the occurrence of TRAFAC GTPases with translation-associated functions in Archaea.
Collapse
|
61
|
Polkinghorne A, Vaughan L. Chlamydia abortus YhbZ, a truncated Obg family GTPase, associates with the Escherichia coli large ribosomal subunit. Microb Pathog 2011; 50:200-6. [DOI: 10.1016/j.micpath.2010.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
|
62
|
Sasindran SJ, Saikolappan S, Scofield VL, Dhandayuthapani S. Biochemical and physiological characterization of the GTP-binding protein Obg of Mycobacterium tuberculosis. BMC Microbiol 2011; 11:43. [PMID: 21352546 PMCID: PMC3056739 DOI: 10.1186/1471-2180-11-43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 02/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obg is a highly conserved GTP-binding protein that has homologues in bacteria, archaea and eukaryotes. In bacteria, Obg proteins are essential for growth, and they participate in spore formation, stress adaptation, ribosome assembly and chromosomal partitioning. This study was undertaken to investigate the biochemical and physiological characteristics of Obg in Mycobacterium tuberculosis, which causes tuberculosis in humans. RESULTS We overexpressed M. tuberculosis Obg in Escherichia coli and then purified the protein. This protein binds to, hydrolyzes and is phosphorylated with GTP. An anti-Obg antiserum, raised against the purified Obg, detects a 55 kDa protein in immunoblots of M. tuberculosis extracts. Immunoblotting also discloses that cultured M. tuberculosis cells contain increased amounts of Obg in the late log phase and in the stationary phase. Obg is also associated with ribosomes in M. tuberculosis, and it is distributed to all three ribosomal fractions (30 S, 50 S and 70 S). Finally, yeast two-hybrid analysis reveals that Obg interacts with the stress protein UsfX, indicating that M. tuberculosis Obg, like other bacterial Obgs, is a stress related protein. CONCLUSIONS Although its GTP-hydrolyzing and phosphorylating activities resemble those of other bacterial Obg homologues, M. tuberculosis Obg differs from them in these respects: (a) preferential association with the bacterial membrane; (b) association with all three ribosomal subunits, and (c) binding to the stress protein UsfX, rather than to RelA. Generation of mutant alleles of Obg of M. tuberculosis, and their characterization in vivo, may provide additional insights regarding its role in this important human pathogen.
Collapse
Affiliation(s)
- Smitha J Sasindran
- Regional Academic Health Center and Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, Edinburg, Texas 78541, USA
| | | | | | | |
Collapse
|
63
|
Pal RR, Das B, Dasgupta S, Bhadra RK. Genetic components of stringent response in Vibrio cholerae. Indian J Med Res 2011; 133:212-7. [PMID: 21415497 PMCID: PMC3089054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Nutritional stress elicits stringent response in bacteria involving modulation of expression of several genes. This is mainly triggered by the intracellular accumulation of two small molecules, namely, guanosine 3'-diphosphate 5'-triphosphate and guanosine 3',5'-bis(diphosphate), collectively called (p)ppGpp. Like in other Gram-negative bacteria, the cellular level of (p)ppGpp is maintained in Vibrio cholerae, the causative bacterial pathogen of the disease cholera, by the products of two genes relA and spoT. However, apart from relA and spoT, a novel gene relV has recently been identified in V. cholerae, the product of which has been shown to be involved in (p)ppGpp synthesis under glucose or fatty acid starvation in a ∆relA ∆spoT mutant background. Furthermore, the GTP binding essential protein CgtA and a non-DNA binding transcription factor DksA also seem to play several important roles in modulating stringent response and regulation of other genes in this pathogen. The present review briefly discusses about the role of all these genes mainly in the management of stringent response in V. cholerae.
Collapse
Affiliation(s)
- Ritesh Ranjan Pal
- Infectious Diseases & Immunology Division, Indian Institute of Chemical Biology (CSIR), Kolkata, India
| | - Bhabatosh Das
- Infectious Diseases & Immunology Division, Indian Institute of Chemical Biology (CSIR), Kolkata, India,Present address: Centre de Genetique Moleculaire, Batiment 26, CNRS UPR2167, Avenue de la Terrasse 91198, Gif Sur Yvette, France
| | - Shreya Dasgupta
- Infectious Diseases & Immunology Division, Indian Institute of Chemical Biology (CSIR), Kolkata, India
| | - Rupak K. Bhadra
- Infectious Diseases & Immunology Division, Indian Institute of Chemical Biology (CSIR), Kolkata, India,Reprint requests: Dr Rupak K. Bhadra, Infectious Diseases & Immunology Division, Indian Institute of Chemical Biology (CSIR) 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India e-mail:
| |
Collapse
|
64
|
Lee Y, Bang WY, Kim S, Lazar P, Kim CW, Bahk JD, Lee KW. Molecular modeling study for interaction between Bacillus subtilis Obg and Nucleotides. PLoS One 2010; 5:e12597. [PMID: 20830302 PMCID: PMC2935376 DOI: 10.1371/journal.pone.0012597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 08/16/2010] [Indexed: 11/19/2022] Open
Abstract
The bacterial Obg proteins (Spo0B-associated GTP-binding protein) belong to the subfamily of P-loop GTPase proteins that contain two equally and highly conserved domains, a C-terminal GTP binding domain and an N-terminal glycine-rich domain which is referred as the “Obg fold” and now it is considered as one of the new targets for antibacterial drug. When the Obg protein is associated with GTP, it becomes activated, because conformation of Obg fold changes due to the structural changes of GTPase switch elements in GTP binding site. In order to investigate the effects and structural changes in GTP bound to Obg and GTPase switch elements for activation, four different molecular dynamics (MD) simulations were performed with/without the three different nucleotides (GTP, GDP, and GDP + Pi) using the Bacillus subtilis Obg (BsObg) structure. The protein structures generated from the four different systems were compared using their representative structures. The pattern of Cα-Cα distance plot and angle between the two Obg fold domains of simulated apo form and each system (GTP, GDP, and GDP+Pi) were significantly different in the GTP-bound system from the others. The switch 2 element was significantly changed in GTP-bound system. Also root-mean-square fluctuation (RMSF) analysis revealed that the flexibility of the switch 2 element region was much higher than the others. This was caused by the characteristic binding mode of the nucleotides. When GTP was bound to Obg, its γ-phosphate oxygen was found to interact with the key residue (D212) of the switch 2 element, on the contrary there was no such interaction found in other systems. Based on the results, we were able to predict the possible binding conformation of the activated form of Obg with L13, which is essential for the assembly with ribosome.
Collapse
Affiliation(s)
- Yuno Lee
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Woo Young Bang
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
- Swine Science and Technology Center, Jinju National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Songmi Kim
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Prettina Lazar
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Chul Wook Kim
- Swine Science and Technology Center, Jinju National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Jeong Dong Bahk
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
- * E-mail:
| |
Collapse
|
65
|
Garcia C, Khan NZ, Nannmark U, Aronsson H. The chloroplast protein CPSAR1, dually localized in the stroma and the inner envelope membrane, is involved in thylakoid biogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:73-85. [PMID: 20408996 DOI: 10.1111/j.1365-313x.2010.04225.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Thylakoid biogenesis is a crucial step for plant development involving the combined action of many cellular actors. CPSAR1 is shown here to be required for the normal organization of mature thylakoid stacks, and ultimately for embryo development. CPSAR1 is a chloroplast protein that has a dual localization in the stroma and the inner envelope membrane, according to microscopy studies and subfractionation analysis. CPSAR1 is close to the Obg nucleotide binding protein subfamily and displays GTPase activity, as demonstrated by in vitro assays. Disruption of the CPSAR1 gene via T-DNA insertion results in the arrest of embryo development. In addition, transmission electron microscopy analysis indicates that mutant embryos are unable to develop thylakoid membranes, and remain white. Unstacked membrane structures resembling single lamellae accumulate in the stroma, and do not assemble into mature thylakoid stacks. CPSAR1 RNA interference induces partially developed thylakoids leading to pale-green embryos. Altogether, the presented data demonstrate that CPSAR1 is a protein essential for the formation of normal thylakoid membranes, and suggest a possible involvement in the initiation of vesicles from the inner envelope membrane for the transfer of lipids to the thylakoids.
Collapse
Affiliation(s)
- Christel Garcia
- Department of Plant and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden
| | | | | | | |
Collapse
|
66
|
Abstract
Like for all microbes, the goal of every pathogen is to survive and replicate. However, to overcome the formidable defenses of their hosts, pathogens are also endowed with traits commonly associated with virulence, such as surface attachment, cell or tissue invasion, and transmission. Numerous pathogens couple their specific virulence pathways with more general adaptations, like stress resistance, by integrating dedicated regulators with global signaling networks. In particular, many of nature's most dreaded bacteria rely on nucleotide alarmones to cue metabolic disturbances and coordinate survival and virulence programs. Here we discuss how components of the stringent response contribute to the virulence of a wide variety of pathogenic bacteria.
Collapse
Affiliation(s)
- Zachary D. Dalebroux
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah L. Svensson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michele S. Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
67
|
Wu H, Sun L, Blombach F, Brouns SJJ, Snijders APL, Lorenzen K, van den Heuvel RHH, Heck AJR, Fu S, Li X, Zhang XC, Rao Z, van der Oost J. Structure of the ribosome associating GTPase HflX. Proteins 2010; 78:705-13. [PMID: 19787775 DOI: 10.1002/prot.22599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The HflX-family is a widely distributed but poorly characterized family of translation factor-related guanosine triphosphatases (GTPases) that interact with the large ribosomal subunit. This study describes the crystal structure of HflX from Sulfolobus solfataricus solved to 2.0-A resolution in apo- and GDP-bound forms. The enzyme displays a two-domain architecture with a novel "HflX domain" at the N-terminus, and a classical G-domain at the C-terminus. The HflX domain is composed of a four-stranded parallel beta-sheet flanked by two alpha-helices on either side, and an anti-parallel coiled coil of two long alpha-helices that lead to the G-domain. The cleft between the two domains accommodates the nucleotide binding site as well as the switch II region, which mediates interactions between the two domains. Conformational changes of the switch regions are therefore anticipated to reposition the HflX-domain upon GTP-binding. Slow GTPase activity has been confirmed, with an HflX domain deletion mutant exhibiting a 24-fold enhanced turnover rate, suggesting a regulatory role for the HflX domain. The conserved positively charged surface patches of the HflX-domain may mediate interaction with the large ribosomal subunit. The present study provides a structural basis to uncover the functional role of this GTPases family whose function is largely unknown.
Collapse
Affiliation(s)
- Hao Wu
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Shields MJ, Fischer JJ, Wieden HJ. Toward understanding the function of the universally conserved GTPase HflX from Escherichia coli: a kinetic approach. Biochemistry 2009; 48:10793-802. [PMID: 19824612 DOI: 10.1021/bi901074h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein synthesis is a highly conserved process in all living cells involving several members of the translation factor (TRAFAC) class of P-loop GTPases, which play essential roles during translation. The universally conserved GTPase HflX has previously been shown to associate with the 50S ribosomal subunit, as well as to bind and hydrolyze both GTP and ATP. In an effort to elucidate the cellular function of HflX, we have determined the kinetic parameters governing the interaction between HflX and these two purine nucleotides using fluorescence-based steady-state and pre-steady-state techniques. On the basis of these, we demonstrate that the GTPase and ATPase activity of HflX is stimulated by 50S and 70S ribosomal particles. However, given cellular concentrations of the two purine nucleotides, approximately 80% of HflX will be bound to guanine nucleotides, indicating that HflX may function as a guanine nucleotide dependent enzyme in vivo. Using a highly purified reconstituted in vitro translation system, we show that the GTPase activity of HflX is also stimulated by poly(U) programmed 70S ribosomes and that the ribosome-dependent GTPase stimulation is specifically inhibited by the antibiotic chloramphenicol, which binds to the large ribosomal subunit, but not by kanamycin, an aminoglycoside targeting the small ribosomal subunit.
Collapse
Affiliation(s)
- Michael J Shields
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | |
Collapse
|
69
|
Bang WY, Hata A, Jeong IS, Umeda T, Masuda T, Chen J, Yoko I, Suwastika IN, Kim DW, Im CH, Lee BH, Lee Y, Lee KW, Shiina T, Bahk JD. AtObgC, a plant ortholog of bacterial Obg, is a chloroplast-targeting GTPase essential for early embryogenesis. PLANT MOLECULAR BIOLOGY 2009; 71:379-90. [PMID: 19636801 DOI: 10.1007/s11103-009-9529-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/14/2009] [Indexed: 05/21/2023]
Abstract
Obg is a ribosome-associated GTPase essential for bacterial viability and is conserved in most organisms, from bacteria to eukaryotes. Obg is also expressed in plants, which predicts an important role for this molecule in plant viability; however, the functions of the plant Obg homologs have not been reported. Here, we first identified Arabidopsis AtObgC as a plant chloroplast-targeting Obg and elucidated its molecular biological and physiological properties. AtObgC encodes a plant-specific Obg GTPase that contains an N-terminal region for chloroplast targeting and has intrinsic GTP hydrolysis activity. A targeting assay using a few AtObgC N-terminal truncation mutants revealed that AtObgC localizes to chloroplasts and its transit peptide consists of more than 50 amino acid residues. Interestingly, GFP-fused full-length AtObgC exhibited a punctate staining pattern in chloroplasts of Arabidopsis protoplasts, which suggests a dimerization or multimerization of AtObgC. Moreover, its Obg fold was indispensable for the generation of the punctate staining pattern, and thus, was supposed to be important for such oligomerization of AtObgC by mediating the protein-protein interaction. In addition, the T-DNA insertion AtObgC null mutant exhibited an embryonic lethal phenotype that disturbed the early stage of embryogenesis. Altogether, our results provide a significant implication that AtObgC as a chloroplast targeting GTPase plays an important role at the early embryogenesis by exerting its function in chloroplast protein synthesis.
Collapse
Affiliation(s)
- Woo Young Bang
- Division of Applied Life Sciences (BK21 and EB-NCRC), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
The assembly of the ribosome, a complex molecular machine composed of RNA and protein, is a poorly understood process. Recent work has demonstrated that GTPases are likely to play key roles in the assembly of ribosomes in bacteria and eukaryotes. This review highlights several bacterial ribosome assembly GTPases (RA-GTPases) and discusses possible functions for these proteins in the biogenesis of individual ribosomal subunits and subunit joining. RA-GTPases appear to link various aspects of the cell cycle and metabolism with translation. How these RA-GTPases may coordinate these connections are discussed.
Collapse
Affiliation(s)
- Robert A Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
71
|
Simons SP, McLellan TJ, Aeed PA, Zaniewski RP, Desbonnet CR, Wondrack LM, Marr ES, Subashi TA, Dougherty TJ, Xu Z, Wang IK, LeMotte PK, Maguire BA. Purification of the large ribosomal subunit via its association with the small subunit. Anal Biochem 2009; 395:77-85. [PMID: 19646947 DOI: 10.1016/j.ab.2009.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 11/17/2022]
Abstract
We have developed an affinity purification of the large ribosomal subunit from Deinococcus radiodurans that exploits its association with FLAG-tagged 30S subunits. Thus, capture is indirect so that no modification of the 50S is required and elution is achieved under mild conditions (low magnesium) that disrupt the association, avoiding the addition of competitor ligands or coelution of common contaminants. Efficient purification of highly pure 50S is achieved, and the chromatography simultaneously sorts the 50S into three classes according to their association status (unassociated, loosely associated, or tightly associated), improving homogeneity.
Collapse
MESH Headings
- Bacterial Proteins/analysis
- Centrifugation, Density Gradient
- Chromatography, Affinity
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Databases, Protein
- Deinococcus/ultrastructure
- Gene Expression
- Magnesium Chloride
- Oligopeptides
- Peptide Fragments/analysis
- Peptides/genetics
- RNA, Bacterial/analysis
- RNA, Ribosomal/analysis
- Recombinant Fusion Proteins
- Ribosomal Proteins/analysis
- Ribosomal Proteins/genetics
- Ribosome Subunits, Large, Bacterial/chemistry
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
- Spectrometry, Mass, Electrospray Ionization
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Samuel P Simons
- Department of Exploratory Medicinal Sciences, Pfizer Global Research and Development, Groton, CT 06340, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Persky NS, Ferullo DJ, Cooper DL, Moore HR, Lovett ST. The ObgE/CgtA GTPase influences the stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 2009; 73:253-66. [PMID: 19555460 PMCID: PMC2771346 DOI: 10.1111/j.1365-2958.2009.06767.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stringent response is important for bacterial survival under stressful conditions, such as amino acid starvation, and is characterized by the accumulation of ppGpp and pppGpp. ObgE (CgtA, YhbZ) is an essential conserved GTPase in Escherichia coli and several observations have implicated the protein in the control of the stringent response. However, consequences of the protein on specific responses to amino acid starvation have not been noted. We show that ObgE binds to ppGpp with biologically relevant affinity in vitro, implicating ppGpp as an in vivo ligand of ObgE. ObgE mutants increase the ratio of pppGpp to ppGpp within the cell during the stringent response. These changes are correlated with a delayed inhibition of DNA replication by the stringent response, delayed resumption of DNA replication after release, as well as a decreased survival after amino acid deprivation. With these data, we place ObgE as an active effector of the response to amino acid starvation in vivo. Our data correlate the pppGpp/ppGpp ratio with DNA replication control under bacterial starvation conditions, suggesting a possible role for the relative balance of these two nucleotides.
Collapse
Affiliation(s)
- Nicole S. Persky
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Daniel J. Ferullo
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Deani L. Cooper
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Hayley R. Moore
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Susan T. Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| |
Collapse
|
73
|
Boehm A, Steiner S, Zaehringer F, Casanova A, Hamburger F, Ritz D, Keck W, Ackermann M, Schirmer T, Jenal U. Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol Microbiol 2009; 72:1500-16. [PMID: 19460094 DOI: 10.1111/j.1365-2958.2009.06739.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biofilms are communities of surface-attached, matrix-embedded microbial cells that can resist antimicrobial chemotherapy and contribute to persistent infections. Using an Escherichia coli biofilm model we found that exposure of bacteria to subinhibitory concentrations of ribosome-targeting antibiotics leads to strong biofilm induction. We present evidence that this effect is elicited by the ribosome in response to translational stress. Biofilm induction involves upregulation of the polysaccharide adhesin poly-beta-1,6-N-acetyl-glucosamine (poly-GlcNAc) and two components of the poly-GlcNAc biosynthesis machinery, PgaA and PgaD. Poly-GlcNAc control depends on the bacterial signalling molecules guanosine-bis 3', 5'(diphosphate) (ppGpp) and bis-(3'-5')-cyclic di-GMP (c-di-GMP). Treatment with translation inhibitors causes a ppGpp hydrolase (SpoT)-mediated reduction of ppGpp levels, resulting in specific derepression of PgaA. Maximal induction of PgaD and poly-GlcNAc synthesis requires the production of c-di-GMP by the dedicated diguanylate cyclase YdeH. Our results identify a novel regulatory mechanism that relies on ppGpp signalling to relay information about ribosomal performance to the Pga machinery, thereby inducing adhesin production and biofilm formation. Based on the important synergistic roles of ppGpp and c-di-GMP in this process, we suggest that interference with bacterial second messenger signalling might represent an effective means for biofilm control during chronic infections.
Collapse
Affiliation(s)
- Alex Boehm
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Saccharomyces cerevisiae Rbg1 protein and its binding partner Gir2 interact on Polyribosomes with Gcn1. EUKARYOTIC CELL 2009; 8:1061-71. [PMID: 19448108 DOI: 10.1128/ec.00356-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rbg1 is a previously uncharacterized protein of Saccharomyces cerevisiae belonging to the Obg/CgtA subfamily of GTP-binding proteins whose members are involved in ribosome function in both prokaryotes and eukaryotes. We show here that Rbg1 specifically associates with translating ribosomes. In addition, in this study proteins were identified that interact with Rbg1 by yeast two-hybrid screening and include Tma46, Ygr250c, Yap1, and Gir2. Gir2 contains a GI (Gcn2 and Impact) domain similar to that of Gcn2, an essential factor of the general amino acid control pathway required for overcoming amino acid shortage. Interestingly, we found that Gir2, like Gcn2, interacts with Gcn1 through its GI domain, and overexpression of Gir2, under conditions mimicking amino acid starvation, resulted in inhibition of growth that could be reversed by Gcn2 co-overexpression. Moreover, we found that Gir2 also cofractionated with polyribosomes, and this fractionation pattern was partially dependent on the presence of Gcn1. Based on these findings, we conclude that Rbg1 and its interacting partner Gir2 associate with ribosomes, and their possible biological roles are discussed.
Collapse
|
75
|
Nord S, Bylund GO, Lövgren JM, Wikström PM. The RimP Protein Is Important for Maturation of the 30S Ribosomal Subunit. J Mol Biol 2009; 386:742-53. [DOI: 10.1016/j.jmb.2008.12.076] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/18/2008] [Accepted: 12/29/2008] [Indexed: 01/21/2023]
|
76
|
Polkinghorne A, Ziegler U, González-Hernández Y, Pospischil A, Timms P, Vaughan L. Chlamydophila pneumoniae HflX belongs to an uncharacterized family of conserved GTPases and associates with the Escherichia coli 50S large ribosomal subunit. MICROBIOLOGY-SGM 2008; 154:3537-3546. [PMID: 18957606 DOI: 10.1099/mic.0.2008/022137-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Predicted members of the HflX subfamily of phosphate-binding-loop guanosine triphosphatases (GTPases) are widely distributed in the bacterial kingdom but remain virtually uncharacterized. In an attempt to understand mechanisms used for regulation of growth and development in the chlamydiae, obligate intracellular and developmentally complex bacteria, we have begun investigations into chlamydial GTPases; we report here what appears to be the first analysis of a HflX family GTPase using a predicted homologue from Chlamydophila pneumoniae. In agreement with phylogenetic predictions for members of this GTPase family, purified recombinant Cp. pneumoniae HflX was specific for guanine nucleotides and exhibited a slow intrinsic GTPase activity when incubated with [gamma-(32)P]GTP. Using HflX-specific monoclonal antibodies, HflX could be detected by Western blotting and high-resolution confocal microscopy throughout the vegetative growth cycle of Cp. pneumoniae and, at early time points, appeared to partly localize to the membrane. Ectopic expression of Cp. pneumoniae HflX in Escherichia coli revealed co-sedimentation of HflX with the E. coli 50S large ribosomal subunit. The results of this work open up some intriguing possibilities for the role of GTPases belonging to this previously uncharacterized family of bacterial GTPases. Ribosome association is a feature shared by other important conserved GTPase families and more detailed investigations will be required to delineate the role of HflX in bacterial ribosome function.
Collapse
Affiliation(s)
- Adam Polkinghorne
- Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 268, Zurich 8057, Switzerland
| | - Urs Ziegler
- Institute of Anatomy and Center for Microscopy and Image Analysis, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | | | - Andreas Pospischil
- Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 268, Zurich 8057, Switzerland
| | - Peter Timms
- Institute of Health and Biomedical Innovation and School of Life Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Lloyd Vaughan
- Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 268, Zurich 8057, Switzerland
| |
Collapse
|
77
|
Ferullo DJ, Lovett ST. The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet 2008; 4:e1000300. [PMID: 19079575 PMCID: PMC2586660 DOI: 10.1371/journal.pgen.1000300] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/07/2008] [Indexed: 11/18/2022] Open
Abstract
The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions.
Collapse
Affiliation(s)
- Daniel J. Ferullo
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Susan T. Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
78
|
Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction. J Bacteriol 2008; 191:616-24. [PMID: 18996989 DOI: 10.1128/jb.01195-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria respond to nutritional stress by producing (p)ppGpp, which triggers a stringent response resulting in growth arrest and expression of resistance genes. In Escherichia coli, RelA produces (p)ppGpp upon amino acid starvation by detecting stalled ribosomes. The SpoT enzyme responds to various other types of starvation by unknown mechanisms. We previously described an interaction between SpoT and the central cofactor of lipid synthesis, acyl carrier protein (ACP), which is involved in detecting starvation signals in lipid metabolism and triggering SpoT-dependent (p)ppGpp accumulation. However, most bacteria possess a unique protein homologous to RelA/SpoT (Rsh) that is able to synthesize and degrade (p)ppGpp and is therefore more closely related to SpoT function. In this study, we asked if the ACP-SpoT interaction is specific for bacteria containing two RelA and SpoT enzymes or if it is a general feature that is conserved in Rsh enzymes. By testing various combinations of SpoT, RelA, and Rsh enzymes and ACPs of E. coli, Pseudomonas aeruginosa, Bacillus subtilis and Streptococcus pneumoniae, we found that the interaction between (p)ppGpp synthases and ACP seemed to be restricted to SpoT proteins of bacteria containing the two RelA and SpoT proteins and to ACP proteins encoded by genes located in fatty acid synthesis operons. When Rsh enzymes from B. subtilis and S. pneumoniae are produced in E. coli, the behavior of these enzymes is different from the behavior of both RelA and SpoT proteins with respect to (p)ppGpp synthesis. This suggests that bacteria have evolved several different modes of (p)ppGpp regulation in order to respond to nutrient starvation.
Collapse
|
79
|
SpoT-triggered stringent response controls usp gene expression in Pseudomonas aeruginosa. J Bacteriol 2008; 190:7189-99. [PMID: 18776018 DOI: 10.1128/jb.00600-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The universal stress proteins (Usps) UspK (PA3309) and UspN (PA4352) of Pseudomonas aeruginosa are essential for surviving specific anaerobic energy stress conditions such as pyruvate fermentation and anaerobic stationary phase. Expression of the respective genes is under the control of the oxygen-sensing regulator Anr. In this study we investigated the regulation of uspN and three additional P. aeruginosa usp genes: uspL (PA1789), uspM (PA4328), and uspO (PA5027). Anr induces expression of these genes in response to anaerobic conditions. Using promoter-lacZ fusions, we showed that PuspL-lacZ, PuspM-lacZ, and PuspO-lacZ were also induced in stationary phase as described for PuspN-lacZ. However, stationary phase gene expression was abolished in the P. aeruginosa triple mutant Deltaanr DeltarelA DeltaspoT. The relA and spoT genes encode the regulatory components of the stringent response. We determined pppGpp and ppGpp levels using a thin-layer chromatography approach and detected the accumulation of ppGpp in the wild type and the DeltarelA mutant in stationary phase, indicating a SpoT-derived control of ppGpp accumulation. Additional investigation of stationary phase in LB medium revealed that alkaline pH values are involved in the regulatory process of ppGpp accumulation.
Collapse
|
80
|
SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. J Bacteriol 2008; 190:6867-80. [PMID: 18723629 DOI: 10.1128/jb.00700-08] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell cycle progression and polar differentiation are temporally coordinated in Caulobacter crescentus. This oligotrophic bacterium divides asymmetrically to produce a motile swarmer cell that represses DNA replication and a sessile stalked cell that replicates its DNA. The initiation of DNA replication coincides with the proteolysis of the CtrA replication inhibitor and the accumulation of DnaA, the replication initiator, upon differentiation of the swarmer cell into a stalked cell. We analyzed the adaptive response of C. crescentus swarmer cells to carbon starvation and found that there was a block in both the swarmer-to-stalked cell polar differentiation program and the initiation of DNA replication. SpoT is a bifunctional synthase/hydrolase that controls the steady-state level of the stress-signaling nucleotide (p)ppGpp, and carbon starvation caused a SpoT-dependent increase in (p)ppGpp concentration. Carbon starvation activates DnaA proteolysis (B. Gorbatyuk and G. T. Marczynski, Mol. Microbiol. 55:1233-1245, 2005). We observed that SpoT is required for this phenomenon in swarmer cells, and in the absence of SpoT, carbon-starved swarmer cells inappropriately initiated DNA replication. Since SpoT controls (p)ppGpp abundance, we propose that this nucleotide relays carbon starvation signals to the cellular factors responsible for activating DnaA proteolysis, thereby inhibiting the initiation of DNA replication. SpoT, however, was not required for the carbon starvation block of the swarmer-to-stalked cell polar differentiation program. Thus, swarmer cells utilize at least two independent signaling pathways to relay carbon starvation signals: a SpoT-dependent pathway mediating the inhibition of DNA replication initiation, and a SpoT-independent pathway(s) that blocks morphological differentiation.
Collapse
|
81
|
Characterization of E. coli ribosomal particles : combined analysis of whole proteins by mass spectrometry and of proteolytic digests by liquid chromatography-tandem mass spectrometry. Methods Mol Biol 2008. [PMID: 18370028 DOI: 10.1007/978-1-59745-028-7_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
This chapter describes the purification of ribosomal particles from a mutant strain of Escherichia coli using sucrose gradients and the characterization of their protein composition by a combination of mass spectrometry (MS) techniques. The main objective is to identify the ribosomal proteins that are missing in an aberrant ribosomal particle corresponding to a defective large subunit. To address this question, the tryptic digests of the purified ribosomal particles are analyzed by the coupling between liquid chromatography and tandem MS. The presence or absence of a given ribosomal protein in the defective particle is determined by comparing the MS intensities of its identified tryptic peptides with that of the mature large subunit. These analyses also allow identification of proteins copurifying with the ribosomal particles. To detect low-mass proteins escaping identification by the above method, intact proteins are also analyzed by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) and nano-ESI-QqTOF MS.
Collapse
|
82
|
The growth-promoting and stress response activities of the Bacillus subtilis GTP binding protein Obg are separable by mutation. J Bacteriol 2008; 190:6625-35. [PMID: 18689482 DOI: 10.1128/jb.00799-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis Obg is a ribosome-associating GTP binding protein that is needed for growth, sporulation, and induction of the bacterium's general stress regulon (GSR). It is unclear whether the roles of Obg in sporulation and stress responsiveness are direct or a secondary effect of its growth-promoting functions. The present work addresses this question by an analysis of two obg alleles whose phenotypes argue for direct roles for Obg in each process. The first allele [obg(G92D)] encodes a missense change in the protein's highly conserved "obg fold" region. This mutation impairs cell growth and the ability of Obg to associate with ribosomes but fails to block sporulation or the induction of the GSR. The second obg mutation [obg(Delta22)] replaces the 22-amino-acid carboxy-terminal sequence of Obg with an alternative 26-amino-acid sequence. This Obg variant cofractionates with ribosomes and allows normal growth but blocks sporulation and impairs the induction of the GSR. Additional experiments revealed that the block on sporulation occurs early, preventing the activation of the essential sporulation transcription factor Spo0A, while inhibition of the GSR appears to involve a failure of the protein cascade that normally activates the GSR to effectively catalyze the reactions needed to activate the GSR transcription factor (sigma(B)).
Collapse
|
83
|
Harinarayanan R, Murphy H, Cashel M. Synthetic growth phenotypes of Escherichia coli lacking ppGpp and transketolase A (tktA) are due to ppGpp-mediated transcriptional regulation of tktB. Mol Microbiol 2008; 69:882-94. [PMID: 18532980 PMCID: PMC2561915 DOI: 10.1111/j.1365-2958.2008.06317.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many physiological adjustments to nutrient changes involve ppGpp. Recent attempts to deduce ppGpp regulatory effects using proteomics or gene profiling can rigorously identify proteins or transcripts, but the functional significance is often unclear. Using a random screen for synthetic lethals we found a ppGpp-dependent functional pathway that operates through transketolase B (TktB), and which is 'buffered' in wildtype strain by the presence of an isozyme, transketolase A (TktA). Transketolase activity is required in cells to make erythrose-4-phosphate, a precursor of aromatic amino acids and vitamins. By studying tktB-dependent nutritional requirements as well as measuring activities using PtalA-tktB'-lacZ transcriptional reporter fusion, we show positive transcriptional regulation of the talA-tktB operon by ppGpp. Our results show the existence of RpoS-dependent and RpoS-independent modes of positive regulation by ppGpp. Both routes of activation are magnified by elevating ppGpp levels with a spoT mutation (spoT-R39A) defective in hydrolase but not synthetase activity or with the stringent suppressor mutations rpoB-A532Delta or rpoB-T563P in the absence of ppGpp.
Collapse
Affiliation(s)
- Rajendran Harinarayanan
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
84
|
Gradia DF, Rau K, Umaki ACS, de Souza FSP, Probst CM, Correa A, Holetz FB, Avila AR, Krieger MA, Goldenberg S, Fragoso SP. Characterization of a novel Obg-like ATPase in the protozoan Trypanosoma cruzi. Int J Parasitol 2008; 39:49-58. [PMID: 18713637 DOI: 10.1016/j.ijpara.2008.05.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/12/2008] [Accepted: 05/29/2008] [Indexed: 11/26/2022]
Abstract
We characterized a gene encoding an YchF-related protein, TcYchF, potentially associated with the protein translation machinery of Trypanosoma cruzi. YchF belongs to the translation factor-related (TRAFAC) class of P-loop NTPases. The coding region of the gene is 1185bp long and encodes a 44.3kDa protein. BlastX searches showed TcYchF to be very similar (45-86%) to putative GTP-binding proteins from eukaryotes, including some species of trypanosomatids (Leishmania major and Trypanosoma brucei). A lower but significant level of similarity (38-43%) was also found between the predicted sequences of TcYchF and bacterial YyaF/YchF GTPases of the Spo0B-associated GTP-binding protein (Obg) family. Some of the most important features of the G domain of this family of GTPases are conserved in TcYchF. However, we found that TcYchF preferentially hydrolyzed ATP rather than GTP. The function of YyaF/YchF is unknown, but other members of the Obg family are known to be associated with ribosomal subunits. Immunoblots of the polysome fraction from sucrose gradients showed that TcYchF was associated with ribosomal subunits and polysomes. Immunoprecipitation assays showed that TcYchF was also associated with the proteasome of T. cruzi. Furthermore, inactivation of the T. brucei homolog of TcYchF by RNA interference inhibited the growth of procyclic forms of the parasite. These data suggest that this protein plays an important role in the translation machinery of trypanosomes.
Collapse
Affiliation(s)
- Daniela F Gradia
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader 3775, Curitiba 81350-010, Paraná, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Salmonella enterica serovar Typhimurium BipA exhibits two distinct ribosome binding modes. J Bacteriol 2008; 190:5944-52. [PMID: 18621905 DOI: 10.1128/jb.00763-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess the GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.
Collapse
|
86
|
Expression profiles reveal parallel evolution of epistatic interactions involving the CRP regulon in Escherichia coli. PLoS Genet 2008; 4:e35. [PMID: 18282111 PMCID: PMC2242816 DOI: 10.1371/journal.pgen.0040035] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 12/26/2007] [Indexed: 12/15/2022] Open
Abstract
The extent and nature of epistatic interactions between mutations are issues of fundamental importance in evolutionary biology. However, they are difficult to study and their influence on adaptation remains poorly understood. Here, we use a systems-level approach to examine epistatic interactions that arose during the evolution of Escherichia coli in a defined environment. We used expression arrays to compare the effect on global patterns of gene expression of deleting a central regulatory gene, crp. Effects were measured in two lineages that had independently evolved for 20,000 generations and in their common ancestor. We found that deleting crp had a much more dramatic effect on the expression profile of the two evolved lines than on the ancestor. Because the sequence of the crp gene was unchanged during evolution, these differences indicate epistatic interactions between crp and mutations at other loci that accumulated during evolution. Moreover, a striking degree of parallelism was observed between the two independently evolved lines; 115 genes that were not crp-dependent in the ancestor became dependent on crp in both evolved lines. An analysis of changes in crp dependence of well-characterized regulons identified a number of regulatory genes as candidates for harboring beneficial mutations that could account for these parallel expression changes. Mutations within three of these genes have previously been found and shown to contribute to fitness. Overall, these findings indicate that epistasis has been important in the adaptive evolution of these lines, and they provide new insight into the types of genetic changes through which epistasis can evolve. More generally, we demonstrate that expression profiles can be profitably used to investigate epistatic interactions. The effect of a genetic mutation can depend on the genotype of the organism in which it occurs. For example, a mutation that is beneficial in one genetic background might be neutral or even deleterious in another. The interactions between genes that cause this dependence—known as epistasis—play an important role in many evolutionary theories. However, they are difficult to study and remain poorly understood. We used a novel approach to examine the evolution of interactions arising between a key regulatory gene, crp, and mutations that occurred during the adaptation of a bacterium, Escherichia coli, to a laboratory environment. To do this, we measured the effect of deleting crp on the expression of all genes in the organism, providing a sensitive measure to identify new interactions involving this gene. We found that deleting crp had a dramatic and parallel effect on gene expression in two independently evolved populations, but much less effect in their ancestor. An analysis of these changes identified a number of regulatory genes as candidates for harboring beneficial mutations that could account for the parallel changes. These findings indicate that epistasis has played an important role in the evolution of these populations, and they provide insight into the types of genetic changes through which epistasis can evolve.
Collapse
|
87
|
Functional analysis of the essential GTP-binding-protein-coding gene cgtA of Vibrio cholerae. J Bacteriol 2008; 190:4764-71. [PMID: 18456812 DOI: 10.1128/jb.02021-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cgtA gene, coding for the conserved G protein CgtA, is essential in bacteria. In contrast to a previous report, here we show by using genetic analysis that cgtA is essential in Vibrio cholerae even in a Delta relA background. Depletion of CgtA affected the growth of V. cholerae and rendered the cells highly sensitive to the replication inhibitor hydroxyurea. Overexpression of V. cholerae CgtA caused distinct elongation of Escherichia coli cells. Deletion analysis indicated that the C-terminal end of CgtA plays a critical role in its proper function.
Collapse
|
88
|
RelA functionally suppresses the growth defect caused by a mutation in the G domain of the essential Der protein. J Bacteriol 2008; 190:3236-43. [PMID: 18296517 DOI: 10.1128/jb.01758-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A unique bacterial GTPase, Der, containing two tandem GTP-binding domains, is essential for cell growth and plays a crucial role in a large ribosomal subunit in Escherichia coli. The depletion of Der resulted in accumulation of both large and small ribosomal subunits and also affected the stability of large ribosomal subunits. However, its exact cellular function still remains elusive. Previously, we have shown that two G domain mutants, DerN118D and DerN321D, cannot support cell growth at low temperatures, suggesting that both GTP-binding domains are indispensable. In this study, we show that both Der variants are defective in ribosome biogenesis. Genetic screening of an E. coli genomic library was performed to identify the genes which, when expressed from a multicopy plasmid, can restore the growth defect of the DerN321D mutant at restrictive temperatures. Among seven suppressors isolated, four were located at 62.7 min on the E. coli genomic map, and the gene responsible for the suppression of DerN321D was identified as the relA gene which encodes a ribosome-associated (p)ppGpp synthetase. The synthetic activity of RelA was found to be essential for its DerN321D suppressor activity. Overexpression of RelA in a suppressor strain did not affect the expression of DerN321D but suppressed the polysome defects caused by the DerN321D mutant. This is the first demonstration of suppression of impaired function of Der by a functional enzyme. A possible mechanism of the suppression of DerN321D by RelA overproduction is discussed.
Collapse
|
89
|
Abstract
YsxC is a small GTPase of Bacillus subtilis with essential but still unknown function, although recent works have suggested that it might be involved in ribosome biogenesis. Here, purified YsxC overexpressed in Escherichia coli was found to be partly associated with high-molecular-weight material, most likely rRNA, and thus eluted from gel filtration as a large complex. In addition, purification of ribosomes from an E. coli strain overexpressing YsxC allowed the copurification of the YsxC protein. Purified YsxC was shown to bind preferentially to the 50S subunit of B. subtilis ribosomes; this interaction was modulated by nucleotides and was stronger in the presence of a nonhydrolyzable GTP analogue than with GTP. Far-Western blotting analysis performed with His(6)-YsxC and ribosomal proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that YsxC interacted with at least four ribosomal proteins from the 50S subunit. Two of these putative protein partners were identified by mass spectrometry as L1 and L3, while the third reactive band in the one-dimensional gel contained L6 and L10. The fourth band that reacted with YsxC contained a mixture of three proteins, L7/L12, L23, and L27, suggesting that at least one of them binds to YsxC. Coimmobilization assays confirmed that L1, L6, and L7/L12 interact with YsxC. Together, these results suggest that YsxC plays a role in ribosome assembly.
Collapse
|
90
|
Lamb HK, Thompson P, Elliott C, Charles IG, Richards J, Lockyer M, Watkins N, Nichols C, Stammers DK, Bagshaw CR, Cooper A, Hawkins AR. Functional analysis of the GTPases EngA and YhbZ encoded by Salmonella typhimurium. Protein Sci 2007; 16:2391-402. [PMID: 17905831 PMCID: PMC2211706 DOI: 10.1110/ps.072900907] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 07/10/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
The S. typhimurium genome encodes proteins, designated EngA and YhbZ, which have a high sequence identity with the GTPases EngA/Der and ObgE/CgtAE of Escherichia coli. The wild-type activity of the E. coli proteins is essential for normal ribosome maturation and cell viability. In order to characterize the potential involvement of the Salmonella typhimurium EngA and YhbZ proteins in ribosome biology, we used high stringency affinity chromatography experiments to identify strongly binding ribosomal partner proteins. A combination of biochemical and microcalorimetric analysis was then used to characterize these protein:protein interactions and quantify nucleotide binding affinities. These experiments show that YhbZ specifically interacts with the pseudouridine synthase RluD (KD=2 microM and 1:1 stoichiometry), and we show for the first time that EngA can interact with the ribosomal structural protein S7. Thermodynamic analysis shows both EngA and YhbZ bind GDP with a higher affinity than GTP (20-fold difference for EngA and 3.8-fold for YhbZ), and that the two nucleotide binding sites in EngA show a 5.3-fold difference in affinity for GDP. We report a fluorescence assay for nucleotide binding to EngA and YhbZ, which is suitable for identifying inhibitors specific for this ligand-binding site, which would potentially inhibit their biological functions. The interactions of YhbZ with ribosome structural proteins that we identify may demonstrate a previously unreported additional function for this class of GTPase: that of ensuring delivery of rRNA modifying enzymes to the appropriate region of the ribosome.
Collapse
Affiliation(s)
- Heather K Lamb
- Institute of Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Philippe N, Crozat E, Lenski RE, Schneider D. Evolution of global regulatory networks during a long-term experiment with Escherichia coli. Bioessays 2007; 29:846-60. [PMID: 17691099 DOI: 10.1002/bies.20629] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Evolution has shaped all living organisms on Earth, although many details of this process are shrouded in time. However, it is possible to see, with one's own eyes, evolution as it happens by performing experiments in defined laboratory conditions with microbes that have suitably fast generations. The longest-running microbial evolution experiment was started in 1988, at which time twelve populations were founded by the same strain of Escherichia coli. Since then, the populations have been serially propagated and have evolved for tens of thousands of generations in the same environment. The populations show numerous parallel phenotypic changes, and such parallelism is a hallmark of adaptive evolution. Many genetic targets of natural selection have been identified, revealing a high level of genetic parallelism as well. Beneficial mutations affect all levels of gene regulation in the cells including individual genes and operons all the way to global regulatory networks. Of particular interest, two highly interconnected networks -- governing DNA superhelicity and the stringent response -- have been demonstrated to be deeply involved in the phenotypic and genetic adaptation of these experimental populations.
Collapse
Affiliation(s)
- Nadège Philippe
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR5163, Université Joseph Fourier, Grenoble, France
| | | | | | | |
Collapse
|
92
|
Bremer H, Dennis P. Feedback control of ribosome function in Escherichia coli. Biochimie 2007; 90:493-9. [PMID: 17999920 DOI: 10.1016/j.biochi.2007.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 10/20/2007] [Indexed: 11/19/2022]
Abstract
We have previously proposed that the rate of ribosome function during balanced growth in E. coli, expressed as the rate of peptide chain elongation, is adjusted by a feedback mechanism: whenever that rate is submaximal (i.e. below 22 amino acid residues polymerized per active ribosome at 37 degrees C), the feedback signal ppGpp is generated by an activation of the ppGpp synthetase expressed from the spoT gene. The accumulation of ppGpp reduces the synthesis of additional ribosomes and thereby reduces the consumption of amino acids which, in turn, allows the remaining ribosomes to function at a higher rate. Here we have described with supporting evidence the proposed feedback loop in greater detail and provided a mathematical analysis which predicts that the SpoT ppGpp synthetase activity should be highest when the ribosomes function at their half-maximal rate. This prediction is consistent with reported observations and is independent of the particular (unknown) mechanism by which the rate of translation controls the ppGpp synthetase activity of SpoT.
Collapse
Affiliation(s)
- H Bremer
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA.
| | | |
Collapse
|
93
|
Abstract
GTPases are a universally conserved class of regulatory proteins involved in such diverse cellular functions as signal transduction, translation, cytoskeleton formation, and intracellular transport. GTPases are also required for ribosome assembly in eukaryotes and bacteria, where they present themselves as possible regulatory molecules. Strikingly, in bacteria they represent the largest class of essential assembly factors. A review of their common structural, biochemical and genetic interactions is presented and integrated with models for their function in ribosome assembly.
Collapse
Affiliation(s)
- Katrin Karbstein
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
94
|
Kaczanowska M, Rydén-Aulin M. Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 2007; 71:477-94. [PMID: 17804668 PMCID: PMC2168646 DOI: 10.1128/mmbr.00013-07] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation, the decoding of mRNA into protein, is the third and final element of the central dogma. The ribosome, a nucleoprotein particle, is responsible and essential for this process. The bacterial ribosome consists of three rRNA molecules and approximately 55 proteins, components that are put together in an intricate and tightly regulated way. When finally matured, the quality of the particle, as well as the amount of active ribosomes, must be checked. The focus of this review is ribosome biogenesis in Escherichia coli and its cross-talk with the ongoing protein synthesis. We discuss how the ribosomal components are produced and how their synthesis is regulated according to growth rate and the nutritional contents of the medium. We also present the many accessory factors important for the correct assembly process, the list of which has grown substantially during the last few years, even though the precise mechanisms and roles of most of the proteins are not understood.
Collapse
Affiliation(s)
- Magdalena Kaczanowska
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
95
|
Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 2007; 42:187-219. [PMID: 17562451 DOI: 10.1080/10409230701360843] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Munich, Germany.
| | | |
Collapse
|
96
|
Jiang M, Sullivan SM, Wout PK, Maddock JR. G-protein control of the ribosome-associated stress response protein SpoT. J Bacteriol 2007; 189:6140-7. [PMID: 17616600 PMCID: PMC1951942 DOI: 10.1128/jb.00315-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial response to stress is controlled by two proteins, RelA and SpoT. RelA generates the alarmone (p)ppGpp under amino acid starvation, whereas SpoT is responsible for (p)ppGpp hydrolysis and for synthesis of (p)ppGpp under a variety of cellular stress conditions. It is widely accepted that RelA is associated with translating ribosomes. The cellular location of SpoT, however, has been controversial. SpoT physically interacts with the ribosome-associated GTPase CgtA, and we show here that, under an optimized salt condition, SpoT is also associated with a pre-50S particle. Analysis of spoT and cgtA mutants and strains overexpressing CgtA suggests that the ribosome associations of SpoT and CgtA are mutually independent. The steady-state level of (p)ppGpp is increased in a cgtA mutant, but the accumulation of (p)ppGpp during amino acid starvation is not affected, providing strong evidence that CgtA regulates the (p)ppGpp level during exponential growth but not during the stringent response. We show that CgtA is not associated with pre-50S particles during amino acid starvation, indicating that under these conditions in which (p)ppGpp accumulates, CgtA is not bound either to the pre-50S particle or to SpoT. We propose that, in addition to its role as a 50S assembly factor, CgtA promotes SpoT (p)ppGpp degradation activity on the ribosome and that the loss of CgtA from the ribosome is necessary for maximal (p)ppGpp accumulation under stress conditions. Intriguingly, we found that in the absence of spoT and relA, cgtA is still an essential gene in Escherichia coli.
Collapse
Affiliation(s)
- Mengxi Jiang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| | | | | | | |
Collapse
|
97
|
Matsuo Y, Oshima T, Loh PC, Morimoto T, Ogasawara N. Isolation and characterization of a dominant negative mutant of Bacillus subtilis GTP-binding protein, YlqF, essential for biogenesis and maintenance of the 50 S ribosomal subunit. J Biol Chem 2007; 282:25270-7. [PMID: 17613524 DOI: 10.1074/jbc.m703894200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The circularly permuted GTPase YlqF is essential for cell viability and is broadly conserved from Gram-positive bacteria to eukaryotes. We previously reported that YlqF participates in the late step of 50 S ribosomal subunit assembly in Bacillus subtilis. Here, we demonstrate that an N-terminal deletion mutant of YlqF (YlqFDeltaN10) inhibits cell growth even in the presence of wild-type YlqF. In contrast to the wild-type protein, the GTPase activity of this mutant was not stimulated by the 50 S subunit and did not dissociate from the premature 50 S subunit. Thus, YlqFDeltaN10 acts as a competitive inhibitor of wild-type YlqF. Premature 50 S subunit lacking ribosomal protein L27 and with a reduced amount of L16 accumulated in YlqFDeltaN10-overexpressing cells and in YlqF-depleted cells, suggesting that YlqFDeltaN10 binds to the premature 50 S subunit. Moreover, premature 50 S subunit from both YlqFDeltaN10-overexpressing and YlqF-depleted cells more strongly enhanced the GTPase activity of YlqF than the mature 50 S subunit of the 70 S ribosome. Collectively, our results indicate that YlqF is targeted to the premature 50 S subunit lacking ribosomal proteins L16 and L27 to assemble functional 50 S subunit through a GTPase activity-dependent conformational change of 23 S rRNA.
Collapse
Affiliation(s)
- Yoshitaka Matsuo
- Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
98
|
Fuentes JL, Datta K, Sullivan SM, Walker A, Maddock JR. In vivo functional characterization of the Saccharomyces cerevisiae 60S biogenesis GTPase Nog1. Mol Genet Genomics 2007; 278:105-23. [PMID: 17443350 DOI: 10.1007/s00438-007-0233-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 03/16/2007] [Indexed: 01/08/2023]
Abstract
The Saccharomyces cerevisiae Nog1 GTPase is critical for assembly of the large ribosomal subunit. Mutations in conserved residues in the GTP-binding pocket cause defects in cell growth and 60S ribosome assembly but mutant proteins retain their ability to associate with the pre-60S. Association of Nog1 with the pre-60S is independent of guanine nucleotide added to cell extracts. Thus, it appears that nucleotide occupancy does not substantially affect Nog1 association with pre-60S particles. Somewhat surprisingly, neither of the conserved threonines in the G2 motif of the GTPase domain is essential for Nog1 function. Neither the steady-state rRNA levels nor the protein composition (as determined by isobaric labeling and identification by mass spectrometry of peptides) of the pre-60S particles in the nog1P176V mutant are grossly perturbed, although levels of four proteins (Nog1, Nop2, Nop15, and Tif6) are modestly reduced in pre-60S particles isolated from the mutant. Deletion analysis revealed that the C-terminal 168 amino acids are not required for function; however, the N-terminal 126 amino acids are required. Optimal association with pre-60S particles requires sequences between amino acids 347-456. Several conserved charge-to-alanine substitutions outside the GTPase domain display modest growth phenotypes indicating that these residues are not critical for function.
Collapse
Affiliation(s)
- Jennifer L Fuentes
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
99
|
Raskin DM, Judson N, Mekalanos JJ. Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae. Proc Natl Acad Sci U S A 2007; 104:4636-41. [PMID: 17360576 PMCID: PMC1838653 DOI: 10.1073/pnas.0611650104] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Indexed: 11/18/2022] Open
Abstract
The gene encoding the conserved bacterial G protein CgtA (Obg) is essential for viability in every organism in which it has been studied. CgtA has been reported to be involved in several diverse bacterial functions, including ribosome assembly, DNA repair, sporulation, and morphological development. However, none of these functions have been identified as essential. Here we show that depletion of CgtA in Vibrio cholerae causes global changes in gene expression that are consistent with induction of a classical low nutrient stress response or "stringent" response. We show that depletion of CgtA leads to increased ppGpp levels that correlate with induction of the global stress response and cessation of growth. The enzyme RelA is responsible for synthesis of the alarmone ppGpp during the stringent response. We show that CgtA is no longer essential in a relA deletion mutant and thus conclude that the essentiality of CgtA is directly linked to its ability to affect ppGpp levels. The enzyme SpoT degrades ppGpp, and here we show that SpoT is essential in a RelA+ CgtA+ background but not in a relA deletion mutant. We also confirmed that CgtA interacts with SpoT in a two-hybrid assay. We suggest that the essential function of CgtA is as a repressor of the stringent response that acts by regulating SpoT activity to maintain low ppGpp levels when bacteria are growing in a nutrient-rich environment.
Collapse
Affiliation(s)
- David M. Raskin
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| | - Nicholas Judson
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
100
|
Jiang M, Sullivan SM, Walker AK, Strahler JR, Andrews PC, Maddock JR. Identification of novel Escherichia coli ribosome-associated proteins using isobaric tags and multidimensional protein identification techniques. J Bacteriol 2007; 189:3434-44. [PMID: 17337586 PMCID: PMC1855874 DOI: 10.1128/jb.00090-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biogenesis of the large ribosomal subunit requires the coordinate assembly of two rRNAs and 33 ribosomal proteins. In vivo, additional ribosome assembly factors, such as helicases, GTPases, pseudouridine synthetases, and methyltransferases, are also critical for ribosome assembly. To identify novel ribosome-associated proteins, we used a proteomic approach (isotope tagging for relative and absolute quantitation) that allows for semiquantitation of proteins from complex protein mixtures. Ribosomal subunits were separated by sucrose density centrifugation, and the relevant fractions were pooled and analyzed. The utility and reproducibility of the technique were validated via a double duplex labeling method. Next, we examined proteins from 30S, 50S, and translating ribosomes isolated at both 16 degrees C and 37 degrees C. We show that the use of isobaric tags to quantify proteins from these particles is an excellent predictor of the particles with which the proteins associate. Moreover, in addition to bona fide ribosomal proteins, additional proteins that comigrated with different ribosomal particles were detected, including both known ribosomal assembly factors and unknown proteins. The ribosome association of several of these proteins, as well as others predicted to be associated with ribosomes, was verified by immunoblotting. Curiously, deletion mutants for the majority of these ribosome-associated proteins had little effect on cell growth or on the polyribosome profiles.
Collapse
Affiliation(s)
- M Jiang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| | | | | | | | | | | |
Collapse
|