51
|
Murray M, Salvatierra G, Dávila-Barclay A, Ayzanoa B, Castillo-Vilcahuaman C, Huang M, Pajuelo MJ, Lescano AG, Cabrera L, Calderón M, Berg DE, Gilman RH, Tsukayama P. Market Chickens as a Source of Antibiotic-Resistant Escherichia coli in a Peri-Urban Community in Lima, Peru. Front Microbiol 2021; 12:635871. [PMID: 33737922 PMCID: PMC7961087 DOI: 10.3389/fmicb.2021.635871] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
The widespread and poorly regulated use of antibiotics in animal production in low- and middle-income countries (LMICs) is increasingly associated with the emergence and dissemination of antibiotic resistance genes (ARGs) in retail animal products. Here, we compared Escherichia coli from chickens and humans with varying levels of exposure to chicken meat in a low-income community in the southern outskirts of Lima, Peru. We hypothesize that current practices in local poultry production result in highly resistant commensal bacteria in chickens that can potentially colonize the human gut. E. coli was isolated from cloacal swabs of non-organic (n = 41) and organic chickens (n = 20), as well as from stools of market chicken vendors (n = 23), non-vendors (n = 48), and babies (n = 60). 315 E. coli isolates from humans (n = 150) and chickens (n = 165) were identified, with chickens showing higher rates of multidrug-resistant and extended-spectrum beta-lactamase phenotypes. Non-organic chicken isolates were more resistant to most antibiotics tested than human isolates, while organic chicken isolates were susceptible to most antibiotics. Whole-genome sequencing of 118 isolates identified shared phylogroups between human and animal populations and 604 ARG hits across genomes. Resistance to florfenicol (an antibiotic commonly used as a growth promoter in poultry but not approved for human use) was higher in chicken vendors compared to other human groups. Isolates from non-organic chickens contained genes conferring resistance to clinically relevant antibiotics, including mcr-1 for colistin resistance, blaCTX-M ESBLs, and blaKPC-3 carbapenemase. Our findings suggest that E. coli strains from market chickens are a potential source of ARGs that can be transmitted to human commensals.
Collapse
Affiliation(s)
- Matthew Murray
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Guillermo Salvatierra
- Laboratorio de Genómica Microbiana, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandra Dávila-Barclay
- Laboratorio de Genómica Microbiana, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Brenda Ayzanoa
- Laboratorio de Genómica Microbiana, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Camila Castillo-Vilcahuaman
- Laboratorio de Genómica Microbiana, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michelle Huang
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Mónica J Pajuelo
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Laboratorio de Microbiología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrés G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Maritza Calderón
- Laboratorios de Enfermedades Infecciosas, Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Douglas E Berg
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Robert H Gilman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Pablo Tsukayama
- Laboratorio de Genómica Microbiana, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
52
|
Goldmeier MN, Katz S, Glaser F, Belakhov V, Khononov A, Baasov T. Toward Catalytic Antibiotics: Redesign of Fluoroquinolones to Catalytically Fragment Chromosomal DNA. ACS Infect Dis 2021; 7:608-623. [PMID: 33448785 DOI: 10.1021/acsinfecdis.0c00777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A library of ciprofloxacin-nuclease conjugates was designed and synthesized to investigate their potential as catalytic antibiotics. The Cu(II) complexes of the new designer compounds (i) showed excellent in vitro hydrolytic and oxidative DNase activity, (ii) showed good antibacterial activity against both Gram-negative and Gram-positive bacteria, and (iii) proved to be highly potent bacterial DNA gyrase inhibitors via a mechanism that involves stabilization of the fluoroquinolone-topoisomerase-DNA ternary complex. Furthermore, the Cu(II) complexes of two of the new designer compounds were shown to fragment supercoiled plasmid DNA into linear DNA in the presence of DNA gyrase, demonstrating a "proof of concept" in vitro. These ciprofloxacin-nuclease conjugates can therefore serve as models with which to develop next-generation, in vivo functioning catalytic antimicrobials.
Collapse
Affiliation(s)
- Moshe N. Goldmeier
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Sofya Katz
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabian Glaser
- The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Valery Belakhov
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Alina Khononov
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Timor Baasov
- Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
53
|
Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26041093. [PMID: 33669627 PMCID: PMC7922942 DOI: 10.3390/molecules26041093] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Essential oils (EOs) are known to have varying degrees of antimicrobial properties that are mainly due to the presence of bioactive compounds. These include antiviral, nematicidal, antifungal, insecticidal and antioxidant properties. This review highlights the potential of EOs and their compounds for application as antifungal agents for the treatment of skin diseases via conventional and nonconventional approaches. A search was conducted using three databases (Scopus, Web of Science, Google Scholar), and all relevant articles from the period of 2010-2020 that are freely available in English were extracted. In our findings, EOs with a high percentage of monoterpenes showed strong ability as potential antifungal agents. Lavandula sp., Salvia sp., Thymus sp., Citrus sp., and Cymbopogon sp. were among the various species found to show excellent antifungal properties against various skin diseases. Some researchers developed advanced formulations such as gel, semi-solid, and ointment bases to further evaluate the effectiveness of EOs as antifungal agents. To date, most studies on the application of EOs as antifungal agents were performed using in vitro techniques, and only a limited number pursued in vivo and intervention-based research.
Collapse
|
54
|
The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021; 10:pathogens10020165. [PMID: 33557078 PMCID: PMC7913839 DOI: 10.3390/pathogens10020165] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Inefficiency of medical therapies used in order to cure patients with bacterial infections requires not only to actively look for new therapeutic strategies but also to carefully select antibiotics based on variety of parameters, including microbiological. Minimal inhibitory concentration (MIC) defines in vitro levels of susceptibility or resistance of specific bacterial strains to applied antibiotic. Reliable assessment of MIC has a significant impact on the choice of a therapeutic strategy, which affects efficiency of an infection therapy. In order to obtain credible MIC, many elements must be considered, such as proper method choice, adherence to labeling rules, and competent interpretation of the results. In this paper, two methods have been discussed: dilution and gradient used for MIC estimation. Factors which affect MIC results along with the interpretation guidelines have been described. Furthermore, opportunities to utilize MIC in clinical practice, with pharmacokinetic /pharmacodynamic parameters taken into consideration, have been investigated. Due to problems related to PK determination in individual patients, statistical estimation of the possibility of achievement of the PK/PD index, based on the Monte Carlo, was discussed. In order to provide comprehensive insights, the possible limitations of MIC, which scientists are aware of, have been outlined.
Collapse
|
55
|
Liu J, Wu P, Wang F, Niu W, Ahmed Z, Chen M, Lu G, Dang Z. Differential regulation and the underlying mechanisms of clay minerals to Escherichia coli under the stress of polymyxin B: Comparing halloysite with kaolinite. CHEMOSPHERE 2021; 265:129095. [PMID: 33302200 DOI: 10.1016/j.chemosphere.2020.129095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The reuse of polymyxin B (PMB) has attracted extensive attention. Although the resistance mechanism to PMB is clear, there are few reports on the regulation mechanisms and effects of clay minerals on bacteria induced by PMB. The focus of this study is to investigate the multidrug resistance, cell morphology and physiological modification of Escherichia coli (E. coli) exposed to PMB in the presence and absence of clay minerals. To be specific, E. coli was cultured serially for 15 days in the increasing concentration of PMB, with or without halloysite or kaolinite. The potential influence mechanisms of halloysite and kaolinite on E. coli was analyzed by proteomics, antibiotic resistance testing, confocal laser scanning microscopy, scanning electron microscopy and Fourier transform infrared. The results showed that kaolinite could obviously promote the growth of bacteria. Moreover, compared with halloysite, kaolinite could stimulate the overexpression of PMB resistance-related proteins ArnA, ArnB and EptA in E. coli exposed to PMB, and promote the synthesis of peptidoglycan and activate glycolysis pathway to produce energy. In contrast, halloysite was able to regulate the production of low molecular weight thiols by E. coli to prevent bacteria from producing excessive reactive oxygen species, activate the oxidative phosphorylation pathway to supply energy for bacterial life activities, and reduce multidrug resistance of E. coli in a variety of ways. These findings are essential for exploring the impacts of clay minerals on the emergence and spread of multi-drug resistant strains in the environment.
Collapse
Affiliation(s)
- Juan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, PR China.
| | - Fang Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Wenchao Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
56
|
Soldano A, Yao H, Punchi Hewage AND, Meraz K, Annor-Gyamfi JK, Bunce RA, Battaile KP, Lovell S, Rivera M. Small Molecule Inhibitors of the Bacterioferritin (BfrB)-Ferredoxin (Bfd) Complex Kill Biofilm-Embedded Pseudomonas aeruginosa Cells. ACS Infect Dis 2021; 7:123-140. [PMID: 33269912 PMCID: PMC7802073 DOI: 10.1021/acsinfecdis.0c00669] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 01/05/2023]
Abstract
Bacteria depend on a well-regulated iron homeostasis to survive adverse environments. A key component of the iron homeostasis machinery is the compartmentalization of Fe3+ in bacterioferritin and its subsequent mobilization as Fe2+ to satisfy metabolic requirements. In Pseudomonas aeruginosa Fe3+ is compartmentalized in bacterioferritin (BfrB), and its mobilization to the cytosol requires binding of a ferredoxin (Bfd) to reduce the stored Fe3+ and release the soluble Fe2+. Blocking the BfrB-Bfd complex in P. aeruginosa by deletion of the bfd gene triggers an irreversible accumulation of Fe3+ in BfrB, concomitant cytosolic iron deficiency and significant impairment of biofilm development. Herein we report that small molecules developed to bind BfrB at the Bfd binding site block the BfrB-Bfd complex, inhibit the mobilization of iron from BfrB in P. aeruginosa cells, elicit a bacteriostatic effect on planktonic cells, and are bactericidal to cells embedded in mature biofilms.
Collapse
Affiliation(s)
- Anabel Soldano
- Department
of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States
| | - Huili Yao
- Department
of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States
| | | | - Kevin Meraz
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Joel K. Annor-Gyamfi
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Richard A. Bunce
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Kevin P. Battaile
- NYX, New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein
Structure Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Mario Rivera
- Department
of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
57
|
Macesic N, Nelson B, Mcconville TH, Giddins MJ, Green DA, Stump S, Gomez-Simmonds A, Annavajhala MK, Uhlemann AC. Emergence of Polymyxin Resistance in Clinical Klebsiella pneumoniae Through Diverse Genetic Adaptations: A Genomic, Retrospective Cohort Study. Clin Infect Dis 2021; 70:2084-2091. [PMID: 31513705 DOI: 10.1093/cid/ciz623] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Polymyxins are antimicrobials of last resort for the treatment of carbapenem-resistant Enterobacteriaceae, but resistance in 5% to >40% isolates has been reported. We conducted a genomic survey of clinical polymyxin-resistant (PR) Klebsiella pneumoniae to determine the molecular mechanisms of PR and the role of polymyxin exposure versus transmission in PR emergence. METHODS We included 88 patients with PR K. pneumoniae from 2011-2018 and collected demographic, antimicrobial exposure, and infection data. Whole-genome sequencing was performed on 388 isolates, including 164 PR isolates. Variant calling and insertion sequence detection were performed, focusing on key genes associated with PR (mgrB, crrAB, phoPQ, and pmrAB). We conducted phylogenetic analyses of key K. pneumoniae multi-locus sequence types (ST258, ST17, ST307, and ST392). RESULTS Polymyxin exposure was documented in 53/88 (60%) patients prior to PR detection. Through an analysis of key PR genes, we detected 129 individual variants and 72 unique variant combinations in PR isolates. This included multiple, distinct changes in 36% of patients with serial PR isolates. Insertion sequence disruption was limited to mgrB (P < .001). Polymyxin minimum inhibitory concentrations showed stepwise increases with the number of PR genes affected (P < .001). When clusters containing PR isolates in ≥2 patients were analyzed, 10/14 had multiple genetic events leading to PR. CONCLUSIONS Molecular mechanisms leading to PR in clinical K. pneumoniae isolates are remarkably heterogenous, even within clusters or individual patients. Polymyxin exposure with de novo PR emergence led to PR in the majority of patients, rather than transmission. Optimizing polymyxin use should be a key strategy in stopping the spread of PR.
Collapse
Affiliation(s)
- Nenad Macesic
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York.,Central Clinical School, Monash University, Melbourne, Australia
| | - Brian Nelson
- Department of Pharmacy, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York City, New York
| | - Thomas H Mcconville
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York
| | - Marla J Giddins
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York.,Microbiome & Pathogen Genomics Core, , New York City, New York
| | - Daniel A Green
- Clinical Microbiology Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York
| | - Stephania Stump
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York.,Microbiome & Pathogen Genomics Core, , New York City, New York
| | - Angela Gomez-Simmonds
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York
| | - Medini K Annavajhala
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York.,Microbiome & Pathogen Genomics Core, , New York City, New York
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York City, New York.,Microbiome & Pathogen Genomics Core, , New York City, New York
| |
Collapse
|
58
|
A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids. PLoS Pathog 2020; 16:e1009119. [PMID: 33290418 PMCID: PMC7748285 DOI: 10.1371/journal.ppat.1009119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/18/2020] [Accepted: 11/01/2020] [Indexed: 01/01/2023] Open
Abstract
Infections caused by Gram-negative bacteria are difficult to fight because these pathogens exclude or expel many clinical antibiotics and host defense molecules. However, mammals have evolved a substantial immune arsenal that weakens pathogen defenses, suggesting the feasibility of developing therapies that work in concert with innate immunity to kill Gram-negative bacteria. Using chemical genetics, we recently identified a small molecule, JD1, that kills Salmonella enterica serovar Typhimurium (S. Typhimurium) residing within macrophages. JD1 is not antibacterial in standard microbiological media, but rapidly inhibits growth and curtails bacterial survival under broth conditions that compromise the outer membrane or reduce efflux pump activity. Using a combination of cellular indicators and super resolution microscopy, we found that JD1 damaged bacterial cytoplasmic membranes by increasing fluidity, disrupting barrier function, and causing the formation of membrane distortions. We quantified macrophage cell membrane integrity and mitochondrial membrane potential and found that disruption of eukaryotic cell membranes required approximately 30-fold more JD1 than was needed to kill bacteria in macrophages. Moreover, JD1 preferentially damaged liposomes with compositions similar to E. coli inner membranes versus mammalian cell membranes. Cholesterol, a component of mammalian cell membranes, was protective in the presence of neutral lipids. In mice, intraperitoneal administration of JD1 reduced tissue colonization by S. Typhimurium. These observations indicate that during infection, JD1 gains access to and disrupts the cytoplasmic membrane of Gram-negative bacteria, and that neutral lipids and cholesterol protect mammalian membranes from JD1-mediated damage. Thus, it may be possible to develop therapeutics that exploit host innate immunity to gain access to Gram-negative bacteria and then preferentially damage the bacterial cell membrane over host membranes.
Collapse
|
59
|
Variability in Zinc Concentration among Mueller-Hinton Broth Brands: Impact on Antimicrobial Susceptibility Testing of Metallo-β-Lactamase-Producing Enterobacteriaceae. J Clin Microbiol 2020; 58:JCM.02019-20. [PMID: 32999009 DOI: 10.1128/jcm.02019-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/27/2020] [Indexed: 01/13/2023] Open
Abstract
Zinc concentrations in cation-adjusted Mueller-Hinton broth (caMHB) from different manufacturers have been found to differ. Here, we evaluated the impact of utilizing different brands and lots of commercially available caMHB on the classification of the antimicrobial susceptibility of metallo-β-lactamase (MBL)-harboring Enterobacteriaceae We also evaluated the addition of EDTA to caMHB as a means of achieving zinc-limited media. Fifteen clinical Enterobacteriaceae isolates (harboring NDM [n = 7], VIM [n = 3], IMP [n = 2], or KPC [n = 3]) and nine different commercial lots from three caMHB manufacturers (Becton, Dickinson; Oxoid; and Sigma-Aldrich) were utilized. Zinc-limited media were prepared by the addition of EDTA at concentrations ranging from 3 to 300 μg/ml. Meropenem MICs were determined in triplicate for each lot of conventional caMHB and zinc-limited media by broth microdilution. The zinc concentration in each lot of conventional caMHB was determined by inductively coupled plasma mass spectrometry. Up to 8-fold differences in meropenem MICs were observed between the commercial lots, resulting in different classifications of susceptibility among MBL-harboring isolates. Mean zinc concentrations were highest among conventional Becton, Dickinson caMHB lots relative to those for Oxoid and Sigma-Aldrich broth. Among MBL-harboring isolates, the impact of EDTA on MICs was dependent on the lot, correlating with initial zinc availability (i.e., less MIC reduction with higher initial zinc concentrations), while MICs for KPC-harboring isolates were unchanged. In summary, zinc variability was observed among commercial lots of caMHB, resulting in different classifications of susceptibility among MBL-harboring Enterobacteriaceae The addition of EDTA at concentrations of ≥30 μg/ml was sufficient to provide a zinc-limited medium, resulting in MICs that reflect in vivo meropenem activity.
Collapse
|
60
|
Liu J, Huang Z, Ruan B, Wang H, Chen M, Rehman S, Wu P. Quantitative proteomic analysis reveals the mechanisms of polymyxin B toxicity to Escherichia coli. CHEMOSPHERE 2020; 259:127449. [PMID: 32622246 DOI: 10.1016/j.chemosphere.2020.127449] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/10/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Polymyxin B is increasingly employed all over the world to treat patients who affected by multidrug-resistant Gram-negative bacteria. Although the mechanism of resistance to polymyxin B is well known, the metabolic role of bacteria in stress response to polymyxin B remains an important task and may help to better understand polymyxin B-related stress response. In this study, the proteome changes of Escherichia coli (E. coli) continuously induced in concentrations of 1.0 mg/L and 10.0 mg/L polymyxin B were revealed. Compared to E. coli (PMB0), E. coli exposed to polymyxin B at 1.0 mg/L (PMB1) and 10.0 mg/L (PMB10) resulted in 89 and 314 differentially expressed proteins (DEPs), respectively. Such differences related to fatty acid degradation, quorum sensing and two-component regulatory system pathways. Based on absolute quantitative (iTRAQ) proteomics analysis, this study comprehensively studied the changes of E. coli proteome in culture with concentrations of 1.0 mg/L and 10.0 mg/L polymyxin B through confocal laser scanning microscopy observation, cell viability detection and reactive oxygen species analysis. The results showed that E. coli cultured at concentration of 10.0 mg/L polymyxin B increased the expression levels of multidrug-resistant efflux transporters and efflux pump membrane transporters, which might further improve the pathogens of polymyxin B-resistant bacteria lastingness and evolution. It has emerged globally to resist polymyxin B. The reuse of polymyxin B should be aroused public attention to avoid causing more serious environmental pollution. These findings could provide new insights into polymyxin B-related stress.
Collapse
Affiliation(s)
- Juan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhiyan Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Bo Ruan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Huimin Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China.
| |
Collapse
|
61
|
Is it time to move away from polymyxins?: evidence and alternatives. Eur J Clin Microbiol Infect Dis 2020; 40:461-475. [PMID: 33009595 DOI: 10.1007/s10096-020-04053-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Increasing burden of carbapenem resistance and resultant difficult-to-treat infections are of particular concern due to the lack of effective and safe treatment options. More recently, several new agents with activity against certain multidrug-resistant (MDR) and extensive drug-resistant (XDR) Gram-negative pathogens have been approved for clinical use. These include ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, plazomicin, and cefiderocol. For the management of MBL infections, clinically used triple combination comprising ceftazidime-avibactam and aztreonam is hindered due to non-availability of antimicrobial susceptibility testing methods and lack of information on potential drug-drug interaction leading to PK changes impacting its safety and efficacy. Moreover, in several countries including Indian subcontinent and developing countries, these new agents are yet to be made available. Under these circumstances, polymyxins are the only last resort for the treatment of carbapenem-resistant infections. With the recent evidence of suboptimal PK/PD particularly in lung environment, limited efficacy and increased nephrotoxicity associated with polymyxin use, the Clinical and Laboratory Standards Institute (CLSI) has revised both colistin and polymyxin B breakpoints. Thus, polymyxins 'intermediate' breakpoint for Enterobacterales, P. aeruginosa, and Acinetobacter spp. are now set at ≤ 2 mg/L, implying limited clinical efficacy even for isolates with the MIC value 2 mg/L. This change has questioned the dependency on polymyxins in treating XDR infections. In this context, recently approved cefiderocol and phase 3 stage combination drug cefepime-zidebactam assume greater significance due to their potential to act as polymyxin-supplanting therapies.
Collapse
|
62
|
Yen NTP, Nhung NT, Van NTB, Cuong NV, Kiet BT, Phu DH, Hien VB, Campbell J, Chansiripornchai N, E. Thwaites G, Carrique-Mas JJ. Characterizing Antimicrobial Resistance in Chicken Pathogens: A Step towards Improved Antimicrobial Stewardship in Poultry Production in Vietnam. Antibiotics (Basel) 2020; 9:antibiotics9080499. [PMID: 32784954 PMCID: PMC7460290 DOI: 10.3390/antibiotics9080499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/19/2022] Open
Abstract
In the Mekong Delta of Vietnam, farmers use large quantities of antimicrobials to raise small-scale chicken flocks, often including active ingredients regarded of “critical importance’” by the World Health Organization. Due to limitations in laboratory capacity, the choice of antimicrobials normally does not follow any empirical criteria of effectiveness. The aim of this study was to highlight non-critically important antimicrobials against which chicken pathogens are likely to be susceptible as a basis for treatment guidelines. Microtiter broth dilution method was performed to determine the minimal inhibitory concentration (MIC) of 12 commonly used antimicrobials for 58 isolates, including Ornithobacterium rhinotracheale (ORT) (n = 22), Gallibacterium anatis (n = 19), and Avibacterium endocarditidis (n = 17). Unfortunately, internationally accepted breakpoints for resistance in these organisms do not exist. We drew tentative epidemiological cut-offs (TECOFFs) for those antimicrobial-pathogen combinations where MIC distributions suggested the presence of a distinct non-wild-type population. Based on the observed results, doxycycline would be the drug of choice for A.endocarditidis (11.8% presumptive non-wild type) and G. anatis infections (5.3% presumptive non-wild type). A total of 13.6% ORT isolates were non-wild type with regards to oxytetracycline, making it the drug of choice against this pathogen. This study illustrates the challenges in interpreting susceptibility testing results and the need to establish internationally accepted breakpoints for veterinary pathogens.
Collapse
Affiliation(s)
- Nguyen Thi Phuong Yen
- Oxford University Clinical Research Unit, Ho Chi Minh 700000, Vietnam; (N.T.P.Y.); (N.T.N.); (N.T.B.V.); (N.V.C.); (D.H.P.); (J.C.); (G.E.T.)
| | - Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh 700000, Vietnam; (N.T.P.Y.); (N.T.N.); (N.T.B.V.); (N.V.C.); (D.H.P.); (J.C.); (G.E.T.)
| | - Nguyen Thi Bich Van
- Oxford University Clinical Research Unit, Ho Chi Minh 700000, Vietnam; (N.T.P.Y.); (N.T.N.); (N.T.B.V.); (N.V.C.); (D.H.P.); (J.C.); (G.E.T.)
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, Ho Chi Minh 700000, Vietnam; (N.T.P.Y.); (N.T.N.); (N.T.B.V.); (N.V.C.); (D.H.P.); (J.C.); (G.E.T.)
| | - Bach Tuan Kiet
- Sub-Department of Animal Health and Production, Dong Thap 81000, Vietnam; (B.T.K.); (V.B.H.)
| | - Doan Hoang Phu
- Oxford University Clinical Research Unit, Ho Chi Minh 700000, Vietnam; (N.T.P.Y.); (N.T.N.); (N.T.B.V.); (N.V.C.); (D.H.P.); (J.C.); (G.E.T.)
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh 700000, Vietnam
| | - Vo Be Hien
- Sub-Department of Animal Health and Production, Dong Thap 81000, Vietnam; (B.T.K.); (V.B.H.)
| | - James Campbell
- Oxford University Clinical Research Unit, Ho Chi Minh 700000, Vietnam; (N.T.P.Y.); (N.T.N.); (N.T.B.V.); (N.V.C.); (D.H.P.); (J.C.); (G.E.T.)
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford OX3 7FZ, UK
| | | | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh 700000, Vietnam; (N.T.P.Y.); (N.T.N.); (N.T.B.V.); (N.V.C.); (D.H.P.); (J.C.); (G.E.T.)
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford OX3 7FZ, UK
| | - Juan J. Carrique-Mas
- Oxford University Clinical Research Unit, Ho Chi Minh 700000, Vietnam; (N.T.P.Y.); (N.T.N.); (N.T.B.V.); (N.V.C.); (D.H.P.); (J.C.); (G.E.T.)
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford OX3 7FZ, UK
- Correspondence:
| |
Collapse
|
63
|
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020; 10:326. [PMID: 32733816 PMCID: PMC7358464 DOI: 10.3389/fcimb.2020.00326] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Collapse
Affiliation(s)
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Searle S. Duay
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, United Kingdom
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Alfredo M. Angeles-Boza
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
64
|
Mesa Varona O, Chaintarli K, Muller-Pebody B, Anjum MF, Eckmanns T, Norström M, Boone I, Tenhagen BA. Monitoring Antimicrobial Resistance and Drug Usage in the Human and Livestock Sector and Foodborne Antimicrobial Resistance in Six European Countries. Infect Drug Resist 2020; 13:957-993. [PMID: 32308439 PMCID: PMC7140725 DOI: 10.2147/idr.s237038] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Antimicrobial resistance (AMR), associated with antimicrobial use (AMU), is a major public concern. Surveillance and monitoring systems are essential to assess and control the trends in AMU and AMR. However, differences in the surveillance and monitoring systems between countries and sectors make comparisons challenging. The purpose of this article is to describe all surveillance and monitoring systems for AMU and AMR in the human and livestock sectors, as well as national surveillance and monitoring systems for AMR in food, in six European countries (Spain, Germany, France, the Netherlands, the United Kingdom and Norway) as a baseline for developing suggestions to overcome current limitations in comparing AMU and AMR data. METHODS A literature search in 2018 was performed to identify relevant peer-reviewed articles and national and European grey reports as well as AMU/AMR databases. RESULTS Comparison of AMU and AMR systems across the six countries showed a lack of standardization and harmonization with different AMU data sources (prescription vs sales data) and units of AMU and AMR being used. The AMR data varied by sample type (clinical/non-clinical), laboratory method (disk diffusion, microdilution, and VITEK, among others), data type, ie quantitative (minimum inhibition concentration (MIC) in mg/L/inhibition zone (IZ) in mm) vs qualitative data (susceptible-intermediate-resistant (SIR)), the standards used (EUCAST/CLSI among others), and/or the evaluation criteria adopted (epidemiological or clinical). DISCUSSION A One Health approach for AMU and AMR requires harmonization in various aspects between human, animal and food systems at national and international levels. Additionally, some overlap between systems of AMU and AMR has been encountered. Efforts should be made to improve standardization and harmonization and allow more meaningful analyses of AMR and AMU surveillance data under a One Health approach.
Collapse
Affiliation(s)
- Octavio Mesa Varona
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katerina Chaintarli
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Addlestone, Surrey, UK
| | - Berit Muller-Pebody
- Healthcare-Associated Infections & Antimicrobial Resistance Division, National Infection Service, Public Health England (PHE), London, UK
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Addlestone, Surrey, UK
| | - Tim Eckmanns
- Department for Infectious Disease Epidemiology, Robert Koch Institute (RKI), Berlin, Germany
| | - Madelaine Norström
- Department of Analysis and Diagnostics, Section of Epidemiology, Norwegian Veterinary Institute (NVI), Oslo, Norway
| | - Ides Boone
- Department for Infectious Disease Epidemiology, Robert Koch Institute (RKI), Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
65
|
Evaluation of the NG-Test MCR-1 Lateral Flow Assay and EDTA-Colistin Broth Disk Elution Methods To Detect Plasmid-Mediated Colistin Resistance among Gram-Negative Bacterial Isolates. J Clin Microbiol 2020; 58:JCM.01823-19. [PMID: 31996440 DOI: 10.1128/jcm.01823-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/18/2020] [Indexed: 11/20/2022] Open
Abstract
Plasmid-mediated colistin resistance (PMCR) is a global public health concern, given its ease of transmissibility. The purpose of this study was to evaluate two methods for the detection of PMCR from bacterial colonies: (i) the NG-Test MCR-1 lateral flow immunoassay (LFA; NG Biotech, Guipry, France) and (ii) the EDTA-colistin broth disk elution (EDTA-CBDE) screening test method. These methods were evaluated using a cohort of contemporary, clinical Gram-negative bacillus isolates from 3 U.S. academic medical centers (126 isolates of the Enterobacterales, 50 Pseudomonas aeruginosa isolates, and 50 Acinetobacter species isolates; 1 isolate was mcr positive) and 12 mcr-positive CDC-FDA Antibiotic Resistance (AR) Isolate Bank isolates for which reference broth microdilution colistin susceptibility results were available. Eleven (4.6%) isolates were strongly positive by the MCR-1 LFA, with an additional 8 (3.4%) isolates yielding faintly positive results. The positive percent agreement (PPA) and negative percent agreement (NPA) for MCR-1 detection were 100% and 96.1%, respectively. Upon repeat testing, only a single false-positive MCR-2 producer remained, as the isolates with initially faintly positive results were negative. The EDTA-CBDE screening method had an overall PPA and NPA of 100% and 94.3%, respectively. The NPA for the EDTA-CBDE method was slightly lower at 94.2% with Enterobacterales, whereas it was 96.0% with P. aeruginosa The MCR-1 LFA and EDTA-CBDE methods are both accurate and user-friendly methods for the detection of PMCR. Despite the rarity of PMCR among clinical isolates in the United States, these methods are valuable tools that may be implemented in public health and clinical microbiology laboratories to further discern the mechanism of resistance among colistin-resistant Gram-negative isolates and to detect PMCR for infection prevention and control purposes.
Collapse
|
66
|
Is There a Role for the Therapeutic Drug Monitoring of Colistin? An Overview. Pharmaceuticals (Basel) 2020; 13:ph13030042. [PMID: 32155714 PMCID: PMC7151705 DOI: 10.3390/ph13030042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Colistin is used as a last-line antibiotic for the treatment of Gram-negative multiresistant bacteria. Due to its high nephrotoxicity, Therapeutic Drug Monitoring (TDM) is recommended for dose adjustment. We aimed to evaluate the available evidence of TDM in patients given colistin to treat Gram-negative infections. In this paper, we offer an overview, using an electronic search of the literature (published up to June 2019, without language restrictions) that compares the clinical outcomes and measurements of colistin TDM. Ultimately, the Therapeutic Drug Monitoring (TDM) of colistin in Plasma could prevent nephrotoxicity risk.
Collapse
|
67
|
Jia H, Fang R, Lin J, Tian X, Zhao Y, Chen L, Cao J, Zhou T. Evaluation of resazurin-based assay for rapid detection of polymyxin-resistant gram-negative bacteria. BMC Microbiol 2020; 20:7. [PMID: 31914918 PMCID: PMC6950887 DOI: 10.1186/s12866-019-1692-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Background Colistin resistance is considered a serious problem due to a lack of alternative antibiotics. The Rapid ResaPolymyxin Acinetobacter/Pseudomonas NP test is a resazurin reduction-based technique that relies on the visual detection of bacterial growth in the presence of a defined concentration of colistin. The aim of this study was to evaluate the performance of the Rapid ResaPolymyxin Acinetobacter/Pseudomonas NP test in the detection of colistin susceptibility in common clinical Gram-negative bacteria. Results A total of 253 clinical isolates from a teaching hospital, including Acinetobacter baumanii (n = 58, 8 colistin-resistant), Pseudomonas aeruginosa (n = 61, 11 colistin-resistant), Klebsiella pneumoniae (n = 70, 20 colistin-resistant) and Escherichia coli (n = 64, 14 colistin-resistant) were tested in this study. The sensitivity and specificity of the Rapid ResaPolymyxin Acinetobacter/Pseudomonas NP test compared to Broth microdilution method was 100 and 99%, respectively. Conclusions Our results suggest that Rapid ResaPolymyxin Acinetobacter/Pseudomonas NP test could be used as an accurate detection method for colistin resistance.
Collapse
Affiliation(s)
- Huaiyu Jia
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang province, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Renchi Fang
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang province, China
| | - Jie Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang province, China
| | - Xuebin Tian
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yajie Zhao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang province, China.
| |
Collapse
|
68
|
Heteroresistance to colistin in oxacillinase-producing carbapenem-resistant Acinetobacter baumannii clinical isolates from Gorgan, Northern Iran. J Glob Antimicrob Resist 2019; 21:380-385. [PMID: 31770604 DOI: 10.1016/j.jgar.2019.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/16/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Colistin resistance rates are rising globally among multidrug-resistant Gram-negative bacilli, including Acinetobacter baumannii (A. baumannii). A new type of resistance - heteroresistance - has also been reported to colistin in clinical A. baumannii isolates. This study investigated the presence of colistin heteroresistance in carbapenem-resistant A. baumannii clinical isolates. METHODS Different clinical specimens from hospitalised patients were investigated for A. baumannii. The MICs to imipenem, meropenem and colistin were determined by broth microdilution. PCR was performed to detect OXA-type carbapenemase genes (blaOXA-23-like, blaOXA-24/40-like, blaOXA-51-like, blaOXA-58-like, and blaOXA-143-like). Heteroresistance to colistin was examined using the population analysis profiles method. Genotypic relatedness of the isolates was analysed by enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). RESULTS Overall, 71 A. baumannii isolates were recovered from clinical specimens. Of these, 27 (38.03%) and 44 (61.97%) isolates were carbapenem-susceptible and carbapenem-resistant, respectively. In addition, 67 (94.36%) isolates were susceptible to colistin, with MICs between 0.25-2 μg/mL. Among the 44 selected carbapenem-resistant colistin-susceptible isolates, the frequency of blaOXA-51-like, blaOXA-23-like and blaOXA-24/40-like genes was 100%, 77.27% and 43.18%, respectively. Nine of 44 (20.45%) isolates were characterised as colistin-heteroresistant with subpopulations growing at 6-8 μg/mL, whereas two of 44 (4.54%) presented heterogeneous subpopulations growing at up to 1 μg/mL of colistin. ERIC‑PCR typing clustered A. baumannii isolates to 10 common types (CT1-CT10) containing isolates from different hospitals and 12 single types (ST1-ST12). CONCLUSIONS A. baumannii with a colistin heteroresistance phenotype was common. This could be of great concern since colistin is often used as a last-resort drug for treating A. baumannii infections, highlighting that care is necessary with colistin monotherapy. In addition, more effective strategies and surveillance are required to confine and prevent the inter-hospital and/or intra-hospital dissemination of A. baumannii between therapeutic centres.
Collapse
|
69
|
Ma X, He Y, Yu X, Cai Y, Zeng J, Cai R, Lu Y, Chen L, Chen C, Huang B. Ceftazidime/avibactam Improves the Antibacterial Efficacy of Polymyxin B Against Polymyxin B Heteroresistant KPC-2-Producing Klebsiella pneumoniae and Hinders Emergence of Resistant Subpopulation in vitro. Front Microbiol 2019; 10:2029. [PMID: 31551966 PMCID: PMC6735287 DOI: 10.3389/fmicb.2019.02029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Due to the increasing multidrug resistance and limited antibiotics, polymyxin B revived as the last resort for the treatment of carbapenemase-producing Klebsiella pneumoniae (CRKP). Unfortunately, the heteroresistance hampers polymyxin B monotherapy treatment via the amplification of resistant subpopulation. Reliable polymyxin B based combinations are demanded. Ceftazidime/avibactam has been regarded as a new salvage therapy against CRKP. The occurrence of heteroresistance was confirmed by population analysis profiling (PAP). Our study demonstrated that polymyxin B and ceftazidime/avibactam combinations improved the in vitro antimicrobial activity of polymyxin B and delayed or suppressed the regrowth of resistant subpopulation by time-kill studies. Ceftazidime/avibactam at around MIC values (0.5–1 × MIC) plus clinically achievable concentrations of polymyxin B (0.5–2 mg/L) resulted in sustained killing against polymyxin B-heteroresistant isolates. Active PmrAB and PhoPQ systems and a pmrA mutation (G53R) in resistant subpopulation might associate with heteroresistance, but further investigation was required. Our findings suggested that the heteroresistance represented barriers to polymyxin B efficacy, and the combination of polymyxin B with ceftazidime/avibactam could be potentially valuable for the treatment of heteroresistant CRKP. Further, in vivo studies need to be performed to evaluate the efficacy of this combination against heteroresistant strains.
Collapse
Affiliation(s)
- Xingyan Ma
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuting He
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuegao Yu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yimei Cai
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Renxin Cai
- Department of Laboratory Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Liang Chen
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
70
|
Mendes Oliveira VR, Paiva MC, Lima WG. Plasmid-mediated colistin resistance in Latin America and Caribbean: A systematic review. Travel Med Infect Dis 2019; 31:101459. [DOI: 10.1016/j.tmaid.2019.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 11/29/2022]
|
71
|
Sharafi T, Ardebili A. Plastic binding feature of polymyxins: the effect on MIC susceptibility measurements. Infect Drug Resist 2019; 12:2649-2653. [PMID: 31695440 PMCID: PMC6717857 DOI: 10.2147/idr.s219130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/23/2019] [Indexed: 02/02/2023] Open
Abstract
The loss of polycationic antimicrobial peptides, polymyxins, due to adhesion to plastics is an important subject matter that influences in vitro susceptibility testing, including minimum inhibitory concentration (MIC) assays. This review reminds us that this issue can serve as a significant source of variation in the MIC values for polymyxins against Gram-negative bacteria.
Collapse
Affiliation(s)
- Toktam Sharafi
- Infectious Disease Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdollah Ardebili
- Infectious Disease Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|