51
|
Protection against multiple subtypes of influenza viruses by virus-like particle vaccines based on a hemagglutinin conserved epitope. BIOMED RESEARCH INTERNATIONAL 2015; 2015:901817. [PMID: 25767809 PMCID: PMC4341857 DOI: 10.1155/2015/901817] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/31/2014] [Indexed: 11/17/2022]
Abstract
We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA) trimmer, the long alpha helix (LAH), as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR) of hepatitis B virus core protein (HBc), and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP). Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB*) adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8) (H1N1)). In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB* adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.
Collapse
|
52
|
Roos A, Roozendaal R, Theeuwsen J, Riahi S, Vaneman J, Tolboom J, Dekking L, Koudstaal W, Goudsmit J, Radošević K. Protection against H5N1 by multiple immunizations with seasonal influenza vaccine in mice is correlated with H5 cross-reactive antibodies. Vaccine 2015; 33:1739-47. [PMID: 25659276 DOI: 10.1016/j.vaccine.2015.01.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/03/2014] [Accepted: 01/27/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Current seasonal influenza vaccines are believed to confer protection against a narrow range of virus strains. However, their protective ability is commonly estimated based on an in vitro correlate of protection that only considers a subset of anti-influenza antibodies that are typically strain specific, i.e., hemagglutination inhibiting antibodies. Here, we evaluate the breadth of protection induced with a seasonal trivalent influenza vaccine (composition H1N1 A/California/07/09, H3N2 A/Victoria/210/08, B/Brisbane/60/08) against influenza challenge in mice. METHODS Balb/c mice were immunized once, twice, or three times with seasonal influenza vaccine to assess protection against heterosubtypic H5N1 influenza challenge, or homologous H1N1 influenza virus as a control. Passive transfer of immune serum was used to determine the contribution of humoral immunity to protection. RESULTS Multiple immunizations with seasonal influenza vaccine induced up to 80% protection against heterosubtypic H5N1 influenza challenge in mice without eliciting detectable H5N1 neutralizing antibodies. Comparable levels of protection were reached by passive transfer of immune serum, and protection was correlated with the titer of vaccine-induced, H5 cross-reactive, non-neutralizing antibodies that are at least in part directed against conserved HA epitopes. CONCLUSIONS Here, we demonstrate that seasonal vaccine has the ability to induce broad serum-mediated protection, and that the mechanism of this protection is different from the vaccine-induced homologous protection.
Collapse
Affiliation(s)
- Anna Roos
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Ramon Roozendaal
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands.
| | - Jessica Theeuwsen
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Sarra Riahi
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Joost Vaneman
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Jeroen Tolboom
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Liesbeth Dekking
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Infectious Diseases and Vaccines Therapeutic area, Janssen Research and Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Wouter Koudstaal
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Janssen Prevention Center, Center of Excellence within Janssen Research & Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Jaap Goudsmit
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Janssen Prevention Center, Center of Excellence within Janssen Research & Development, A Division of Janssen Pharmaceutica, Leiden, The Netherlands
| | - Katarina Radošević
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland B.V., Leiden, The Netherlands; Sanofi, Global Biotherapeutics, Vitry-sur-Seine, France
| |
Collapse
|
53
|
Heterosubtypic antibodies to influenza A virus have limited activity against cell-bound virus but are not impaired by strain-specific serum antibodies. J Virol 2014; 89:3136-44. [PMID: 25552718 DOI: 10.1128/jvi.03069-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The majority of influenza virus-specific antibodies elicited by vaccination or natural infection are effective only against the eliciting or closely related viruses. Rare stem-specific heterosubtypic monoclonal antibodies (hMAbs) can neutralize multiple strains and subtypes by preventing hemagglutinin (HA)-mediated fusion of the viral membrane with the endosomal membrane. The epitopes recognized by these hMAbs are therefore considered promising targets for the development of pan-influenza virus vaccines. Here, we report the isolation of a novel human HA stem-reactive monoclonal antibody, hMAb 1.12, with exceptionally broad neutralizing activity encompassing viruses from 15 distinct HA subtypes. Using MAb 1.12 and two other monoclonal antibodies, we demonstrate that neutralization by hMAbs is virtually irreversible but becomes severely impaired following virus attachment to cells. In contrast, no interference by human anti-influenza virus serum antibodies was found, indicating that apically binding antibodies do not impair access to the membrane-proximal heterosubtypic epitopes. Our findings therefore encourage development of new vaccine concepts aiming at the induction of stem-specific heterosubtypic antibodies, as we provide support for their effectiveness in individuals previously exposed to influenza virus. IMPORTANCE The influenza A virus hemagglutinin (HA) can easily accommodate changes in its antigenic structures to escape preexisting immunity. This variability restricts the breadth and long-term efficacy of influenza vaccines. Only a few heterosubtypic antibodies (hMAbs), i.e., antibodies that can neutralize more than one subtype of influenza A virus, have been identified. The molecular interactions between these heterosubtypic antibodies and hemagglutinin are well characterized, yet little is known about the functional properties of these antibodies. Using a new, extraordinarily broad hMAb, we show that virus neutralization by hMAbs is virtually irreversible and that efficient neutralization is possible only if stem-specific hMAbs bind to HA before the virus attaches to the cell surface. No interference between strain-specific human serum immunoglobulin and hMAbs was found, indicating that preexisting humoral immunity to influenza virus does not limit the efficacy of stem-reactive heterosubtypic antibodies. This knowledge supports the development of a pan-influenza virus vaccine.
Collapse
|
54
|
Structural basis for the development of avian virus capsids that display influenza virus proteins and induce protective immunity. J Virol 2014; 89:2563-74. [PMID: 25520499 DOI: 10.1128/jvi.03025-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Bioengineering of viruses and virus-like particles (VLPs) is a well-established approach in the development of new and improved vaccines against viral and bacterial pathogens. We report here that the capsid of a major avian pathogen, infectious bursal disease virus (IBDV), can accommodate heterologous proteins to induce protective immunity. The structural units of the ~70-nm-diameter T=13 IBDV capsid are trimers of VP2, which is made as a precursor (pVP2). The pVP2 C-terminal domain has an amphipathic α helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, 466-residue pVP2 intermediates bearing this α helix assemble into genuine VLPs only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for protein insertion, as they are large enough (cargo space, ~78,000 nm(3)) and are assembled from a single protein. We explored HT-VP2-466-based chimeric capsids initially using enhanced green fluorescent protein (EGFP). The VLP assembly yield was efficient when we coexpressed EGFP-HT-VP2-466 and HT-VP2-466 from two recombinant baculoviruses. The native EGFP structure (~240 copies/virion) was successfully inserted in a functional form, as VLPs were fluorescent, and three-dimensional cryo-electron microscopy showed that the EGFP molecules incorporated at the inner capsid surface. Immunization of mice with purified EGFP-VLPs elicited anti-EGFP antibodies. We also inserted hemagglutinin (HA) and matrix (M2) protein epitopes derived from the mouse-adapted A/PR/8/34 influenza virus and engineered several HA- and M2-derived chimeric capsids. Mice immunized with VLPs containing the HA stalk, an M2 fragment, or both antigens developed full protection against viral challenge. IMPORTANCE Virus-like particles (VLPs) are multimeric protein cages that mimic the infectious virus capsid and are potential candidates as nonliving vaccines that induce long-lasting protection. Chimeric VLPs can display or include foreign antigens, which could be a conserved epitope to elicit broadly neutralizing antibodies or several variable epitopes effective against a large number of viral strains. We report the biochemical, structural, and immunological characterization of chimeric VLPs derived from infectious bursal disease virus (IBDV), an important poultry pathogen. To test the potential of IBDV VLPs as a vaccine vehicle, we used the enhanced green fluorescent protein and two fragments derived from the hemagglutinin and the M2 matrix protein of the human murine-adapted influenza virus. The IBDV capsid protein fused to influenza virus peptides formed assemblies able to protect mice against viral challenge. Our studies establish the basis for a new generation of multivalent IBDV-based vaccines.
Collapse
|
55
|
Fotouhi F, Farahmand B, Heidarchi B, Esghaei M, Rafati S, Tavassoti Kheiri M. In Vitro Evaluation of Influenza M2 and Leishmania major HSP70 (221-604) Chimer Protein. Jundishapur J Microbiol 2014; 7:e11812. [PMID: 25485058 PMCID: PMC4255373 DOI: 10.5812/jjm.11812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 12/25/2022] Open
Abstract
Background: Permanent antigenic variation of influenza viruses causes a major concern to develop an effective human influenza vaccine. Conserved antigens are new vaccine candidates because it is not necessary to match the prepared vaccine with circulating strains. Ion channel M2 protein is conserved among all influenza A viruses, allowing the virus to enter host cells. Objectives: To prepare an effective vaccine against influenza A viruses, a chimerical DNA plasmid encoding Influenza virus M2 protein and Leishmania major HSP70 was constructed. Materials and Methods: Influenza A/New Caledonia/20/99 (H1N1) was inoculated into MDCK cell line and total RNA was extracted. The full length M2 gene was amplified by RT-PCR using designed specific primers, cloned into pGEM-T Easy cloning vector and completely sequenced. The M2 gene was then subcloned into the pcDNA upstream of HSP70 gene. Recombinant plasmids were transfected into COS-7 cells to evaluate protein expression. Results: The recombinant plasmids were confirmed by PCR, restriction enzyme analysis and sequencing. Three dimensional structure of chimer protein was assessed using specific software. Transient protein expression in eukaryotic cells was confirmed by specific mRNA detection, indirect Immunofluorescence test and western blotting. Conclusions: M2-HSP70 chimer protein was successfully expressed in eukaryotic cells. Computational studies of chimer peptide sequence revealed that fusing HSP to the C-terminal of M2 protein does not mask the predominant epitope of M2. HSP70 is a molecular chaperon and immunostimulatory component. Genetically fusing antigens to HSPs leads to the enrichment of DNA vaccine potency. The immunogenicity of this construct with different formulation would be evaluated in further investigations.
Collapse
Affiliation(s)
- Fatemeh Fotouhi
- Influenza Research Lab, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding author: Fatemeh Fotouhi, Influenza Research Lab, Department of Virology, Pasteur Institute of Iran, , Tehran, IR Iran.Tel/ Fax: +98-2166496517, E-mail:
| | - Behrokh Farahmand
- Influenza Research Lab, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Behnaz Heidarchi
- Influenza Research Lab, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Maryam Esghaei
- Virology Department, Iran University of Medical Sciences, Tehran, IR Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Lab, Department of Immunology, Pasteur Institute of Iran, Tehran, IR Iran
| | | |
Collapse
|
56
|
Huber VC. Influenza vaccines: from whole virus preparations to recombinant protein technology. Expert Rev Vaccines 2014; 13:31-42. [PMID: 24192014 DOI: 10.1586/14760584.2014.852476] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.
Collapse
Affiliation(s)
- Victor C Huber
- Division of Basic Biomedical Sciences, University of South Dakota, 414 E Clark Street, Vermillion, SD 57069, USA
| |
Collapse
|
57
|
Magadán JG, Altman MO, Ince WL, Hickman HD, Stevens J, Chevalier A, Baker D, Wilson PC, Ahmed R, Bennink JR, Yewdell JW. Biogenesis of influenza a virus hemagglutinin cross-protective stem epitopes. PLoS Pathog 2014; 10:e1004204. [PMID: 24945804 PMCID: PMC4055778 DOI: 10.1371/journal.ppat.1004204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
Antigenic variation in the globular domain of influenza A virus (IAV) hemagglutinin (HA) precludes effective immunity to this major human pathogen. Although the HA stem is highly conserved between influenza virus strains, HA stem-reactive antibodies (StRAbs) were long considered biologically inert. It is now clear, however, that StRAbs reduce viral replication in animal models and protect against pathogenicity and death, supporting the potential of HA stem-based immunogens as drift-resistant vaccines. Optimally designing StRAb-inducing immunogens and understanding StRAb effector functions require thorough comprehension of HA stem structure and antigenicity. Here, we study the biogenesis of HA stem epitopes recognized in cells infected with various drifted IAV H1N1 strains using mouse and human StRAbs. Using a novel immunofluorescence (IF)-based assay, we find that human StRAbs bind monomeric HA in the endoplasmic reticulum (ER) and trimerized HA in the Golgi complex (GC) with similar high avidity, potentially good news for producing effective monomeric HA stem immunogens. Though HA stem epitopes are nestled among several N-linked oligosaccharides, glycosylation is not required for full antigenicity. Rather, as N-linked glycans increase in size during intracellular transport of HA through the GC, StRAb binding becomes temperature-sensitive, binding poorly to HA at 4°C and well at 37°C. A de novo designed, 65-residue protein binds the mature HA stem independently of temperature, consistent with a lack of N-linked oligosaccharide steric hindrance due to its small size. Likewise, StRAbs bind recombinant HA carrying simple N-linked glycans in a temperature-independent manner. Chemical cross-linking experiments show that N-linked oligosaccharides likely influence StRAb binding by direct local effects rather than by globally modifying the conformational flexibility of HA. Our findings indicate that StRAb binding to HA is precarious, raising the possibility that sufficient immune pressure on the HA stem region could select for viral escape mutants with increased steric hindrance from N-linked glycans.
Collapse
Affiliation(s)
- Javier G. Magadán
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Meghan O. Altman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William L. Ince
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Aaron Chevalier
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Patrick C. Wilson
- Department of Medicine, Section of Rheumatology, Committee on Immunology, Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, Illinois, United States of America
| | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jack R. Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
58
|
Stabilizing the native trimer of HIV-1 Env by destabilizing the heterodimeric interface of the gp41 postfusion six-helix bundle. J Virol 2014; 88:9590-604. [PMID: 24920800 DOI: 10.1128/jvi.00494-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The HIV-1 envelope glycoprotein (Env) is a trimer of gp120-gp41 heterodimers and is essential for viral entry. The gp41 subunit in native, prefusion trimeric Env exists in a metastable conformation and attains a stable six-helix bundle (6-HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers, that drives the fusion of viral and cellular membranes. We attempted to stabilize native Env trimers by incorporation of mutations at the NHR-CHR interface that disrupt the postfusion 6-HB of gp41. The mutations V570D and I573D stabilize native Env of the HIV-1 JRFL strain and occlude nonneutralizing epitopes to a greater extent than the previously identified I559P mutation that is at the interface of the NHR trimers in the 6-HB. The mutations prevent soluble-CD4 (sCD4)-induced gp120 shedding and 6-HB formation. In the context of cell surface-expressed JRFL Env, introduction of a previously reported additional disulfide between residues A501 and T605 perturbs the native conformation, though this effect is partially alleviated by furin coexpression. The data suggest that positions 570 and 573 are surface proximal in native Env and that the NHR homotrimeric coiled coil in native Env terminates before or close to residue 573. Aspartic acid substitutions at these positions stabilize native trimers through destabilization of the postfusion 6-HB conformation. These mutations can be used to stabilize Env in a DNA vaccine format. IMPORTANCE The major protein on the surface of HIV-1 is the envelope (Env) glycoprotein. Env is a trimer of gp120-gp41 heterodimers. gp120 is involved in receptor/coreceptor binding and gp41 in the fusion of viral and cellular membranes. Like many other viral fusion proteins, the gp41 subunit in native trimeric Env exists in a metastable conformation. gp41 readily forms a stable six-helix bundle (6-HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers that drives fusion of viral and cellular membranes. While it is expected that native Env is a good immunogen, its metastability results in exposure of immunodominant nonneutralizing epitopes. In the present study, we stabilize native Env trimers by incorporation of a number of different mutations at the NHR-CHR interface that disrupt the postfusion 6-HB of gp41. The stabilized constructs described here can be incorporated into DNA vaccine candidates.
Collapse
|
59
|
Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc Natl Acad Sci U S A 2014; 111:E2514-23. [PMID: 24927560 DOI: 10.1073/pnas.1402766111] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. Current influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies (bnAbs), thereby limiting their efficacy. Although several bnAbs bind to the conserved stem domain of HA, focusing the immune response to this conserved stem in the presence of the immunodominant, variable head domain of HA is challenging. We report the design of a thermotolerant, disulfide-free, and trimeric HA stem-fragment immunogen which mimics the native, prefusion conformation of HA and binds conformation specific bnAbs with high affinity. The immunogen elicited bnAbs that neutralized highly divergent group 1 (H1 and H5 subtypes) and 2 (H3 subtype) influenza virus strains in vitro. Stem immunogens designed from unmatched, highly drifted influenza strains conferred robust protection against a lethal heterologous A/Puerto Rico/8/34 virus challenge in vivo. Soluble, bacterial expression of such designed immunogens allows for rapid scale-up during pandemic outbreaks.
Collapse
|
60
|
Immunogen design for HIV-1 and influenza. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1891-1906. [PMID: 24892211 DOI: 10.1016/j.bbapap.2014.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 12/12/2022]
Abstract
Vaccines provide the most cost effective defense against pathogens. Although vaccines have been designed for a number of viral diseases, a vaccine against HIV-1 still remains elusive. In contrast, while there are excellent influenza vaccines, these need to be changed every few years because of antigenic drift and shift. The recent discovery of a large number of broadly neutralizing antibodies (bNAbs) and structural characterization of the conserved epitopes targeted by them presents an opportunity for structure based HIV-1 and influenza A vaccine design. We discuss strategies to design immunogens either targeting a particular antigenic region or focusing on native structure stabilization. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
|
61
|
Avnir Y, Tallarico AS, Zhu Q, Bennett AS, Connelly G, Sheehan J, Sui J, Fahmy A, Huang CY, Cadwell G, Bankston LA, McGuire AT, Stamatatos L, Wagner G, Liddington RC, Marasco WA. Molecular signatures of hemagglutinin stem-directed heterosubtypic human neutralizing antibodies against influenza A viruses. PLoS Pathog 2014; 10:e1004103. [PMID: 24788925 PMCID: PMC4006906 DOI: 10.1371/journal.ppat.1004103] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/15/2014] [Indexed: 12/28/2022] Open
Abstract
Recent studies have shown high usage of the IGHV1-69 germline immunoglobulin gene for influenza hemagglutinin stem-directed broadly-neutralizing antibodies (HV1-69-sBnAbs). Here we show that a major structural solution for these HV1-69-sBnAbs is achieved through a critical triad comprising two CDR-H2 loop anchor residues (a hydrophobic residue at position 53 (Ile or Met) and Phe54), and CDR-H3-Tyr at positions 98±1; together with distinctive V-segment CDR amino acid substitutions that occur in positions sparse in AID/polymerase-η recognition motifs. A semi-synthetic IGHV1-69 phage-display library screen designed to investigate AID/polη restrictions resulted in the isolation of HV1-69-sBnAbs that featured a distinctive Ile52Ser mutation in the CDR-H2 loop, a universal CDR-H3 Tyr at position 98 or 99, and required as little as two additional substitutions for heterosubtypic neutralizing activity. The functional importance of the Ile52Ser mutation was confirmed by mutagenesis and by BCR studies. Structural modeling suggests that substitution of a small amino acid at position 52 (or 52a) facilitates the insertion of CDR-H2 Phe54 and CDR-H3-Tyr into adjacent pockets on the stem. These results support the concept that activation and expansion of a defined subset of IGHV1-69-encoded B cells to produce potent HV1-69-sBnAbs does not necessarily require a heavily diversified V-segment acquired through recycling/reentry into the germinal center; rather, the incorporation of distinctive amino acid substitutions by Phase 2 long-patch error-prone repair of AID-induced mutations or by random non-AID SHM events may be sufficient. We propose that these routes of B cell maturation should be further investigated and exploited as a pathway for HV1-69-sBnAb elicitation by vaccination. The quest for universal influenza vaccine has gained wide interest with the discovery of human neutralizing antibodies that are able to variably cross neutralize and protect against different influenza strains, subtypes, groups and lineages. These antibodies, which bind to a highly conserved epitope in the hemagglutinin stem, are often encoded by rearranged IGHV1-69 germline genes that alone make contact with HA and prevent virus entry and emergence of escape mutants. Our study was undertaken to gain an understanding of what structural requirements enable a rearranged IGHV1-69 Ab to become a potent cross-neutralizing antibody. We found that in addition to a critical amino acid triad consisting of a pair of anchor residues in CDR-H2 and a properly positioned CDR-H3 Tyr, distinctive V-segment substitutions that arise in positions that are distinct from phase I AID somatic hypermutation (SHM) hotspot motifs are often required. As few as two V-segment SHM can fulfill this role which appears to facilitate the optimal binding of CDR-H2 Phe54 and CHR-H3-Tyr into adjacent hydrophobic pockets in the HA stem. These studies provide new information on the SHM requirements for IGHV1-69-encoded B cells to produce HV1-69-sBnAbs and suggest that there may exist alternative routes to their elicitation by vaccination.
Collapse
Affiliation(s)
- Yuval Avnir
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aimee S Tallarico
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Quan Zhu
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew S Bennett
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gene Connelly
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jared Sheehan
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jianhua Sui
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amr Fahmy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chiung-yu Huang
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Greg Cadwell
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Laurie A Bankston
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Andrew T McGuire
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Leonidas Stamatatos
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert C Liddington
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Wayne A Marasco
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
62
|
Lin SC, Liu WC, Jan JT, Wu SC. Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses. PLoS One 2014; 9:e92822. [PMID: 24671139 PMCID: PMC3966833 DOI: 10.1371/journal.pone.0092822] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus, a known trigger of diseases in poultry and humans, is perceived as a serious threat to public health. There is a clear need for a broadly protective H5N1 vaccine or vaccines for inducing neutralizing antibodies against multiple clades/subclades. We constructed single, double, and triple mutants of glycan-masked hemagglutiinin (HA) antigens at residues 83, 127 and 138 (i.e., g83, g127, g138, g83+g127, g127+g138, g83+g138 and g83+g127+g138), and then obtained their corresponding HA-expressing adenovirus vectors and recombinant HA proteins using a prime-boost immunization strategy. Our results indicate that the glycan-masked g127+g138 double mutant induced more potent HA-inhibition, virus neutralization antibodies, cross-clade protection against heterologous H5N1 clades, correlated with the enhanced bindings to the receptor binding sites and the highly conserved stem region of HA. The immune refocusing stem-specific antibodies elicited by the glycan-masked H5HA g127+g138 and g83+g127+g138 mutants overlapped with broadly neutralizing epitopes of the CR6261 monoclonal antibody that neutralizes most group 1 subtypes. These findings may provide useful information in the development of a broadly protective H5N1 influenza vaccine.
Collapse
Affiliation(s)
- Shih-Chang Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Chun Liu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
63
|
Advances in universal influenza virus vaccine design and antibody mediated therapies based on conserved regions of the hemagglutinin. Curr Top Microbiol Immunol 2014; 386:301-21. [PMID: 25007847 DOI: 10.1007/82_2014_408] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The threat of novel influenza viruses emerging into the human population from animal reservoirs, as well as the short duration of protection conferred by licensed vaccines against human seasonal strains has spurred research efforts to improve upon current vaccines and develop novel therapeutics against influenza viruses. In recent years these efforts have resulted in the identification of novel, highly conserved epitopes for neutralizing antibodies on the influenza virus hemagglutinin protein, which are present in both the stalk and globular head domains of the molecule. The existence of such epitopes may allow for generation of novel therapeutic antibodies, in addition to serving as attractive targets of novel vaccine design. The aims of developing improved vaccines include eliciting broader protection from drifted strains, inducing long-lived immunity against seasonal strains, and allowing for the rational design of vaccines that can be stockpiled for use as pre-pandemic vaccines. In addition, an increased focus on influenza virus vaccine research has prompted an improved understanding of how the immune system responds to influenza virus infection.
Collapse
|
64
|
van Els C, Mjaaland S, Næss L, Sarkadi J, Gonczol E, Smith Korsholm K, Hansen J, de Jonge J, Kersten G, Warner J, Semper A, Kruiswijk C, Oftung F. Fast vaccine design and development based on correlates of protection (COPs). Hum Vaccin Immunother 2014; 10:1935-48. [PMID: 25424803 PMCID: PMC4186026 DOI: 10.4161/hv.28639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/14/2014] [Accepted: 03/24/2014] [Indexed: 01/02/2023] Open
Abstract
New and reemerging infectious diseases call for innovative and efficient control strategies of which fast vaccine design and development represent an important element. In emergency situations, when time is limited, identification and use of correlates of protection (COPs) may play a key role as a strategic tool for accelerated vaccine design, testing, and licensure. We propose that general rules for COP-based vaccine design can be extracted from the existing knowledge of protective immune responses against a large spectrum of relevant viral and bacterial pathogens. Herein, we focus on the applicability of this approach by reviewing the established and up-coming COPs for influenza in the context of traditional and a wide array of new vaccine concepts. The lessons learnt from this field may be applied more generally to COP-based accelerated vaccine design for emerging infections.
Collapse
Affiliation(s)
- Cécile van Els
- National Institute for Public Health and the Environment; Bilthoven, the Netherlands
| | | | - Lisbeth Næss
- Norwegian Institute of Public Health; Oslo, Norway
| | - Julia Sarkadi
- National Center for Epidemiology (NCE); Budapest, Hungary
| | - Eva Gonczol
- National Center for Epidemiology (NCE); Budapest, Hungary
| | | | - Jon Hansen
- Statens Serum Institut; Copenhagen, Denmark
| | - Jørgen de Jonge
- National Institute for Public Health and the Environment; Bilthoven, the Netherlands
| | - Gideon Kersten
- Institute for Translational Vaccinology; Bilthoven, the Netherlands
- Leiden Academic Center for Drug Research; University of Leiden; The Netherlands
| | | | | | - Corine Kruiswijk
- Institute for Translational Vaccinology; Bilthoven, the Netherlands
| | | |
Collapse
|
65
|
Wang G, Zhou F, Buchy P, Zuo T, Hu H, Liu J, Song Y, Ding H, Tsai C, Chen Z, Zhang L, Deubel V, Zhou P. DNA Prime and Virus-like Particle Boost From a Single H5N1 Strain Elicits Broadly Neutralizing Antibody Responses Against Head Region of H5 Hemagglutinin. J Infect Dis 2013; 209:676-85. [DOI: 10.1093/infdis/jit414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
66
|
Mallajosyula VVA, Citron M, Lu X, Meulen JT, Varadarajan R, Liang X. In vitro
and in vivo
characterization of designed immunogens derived from the CD-helix of the stem of influenza hemagglutinin. Proteins 2013; 81:1759-75. [PMID: 23625724 DOI: 10.1002/prot.24317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 12/23/2022]
Affiliation(s)
| | - Michael Citron
- Merck Research Laboratories; West Point Pennsylvania 19486
| | - Xianghan Lu
- Merck Research Laboratories; West Point Pennsylvania 19486
| | - Jan ter Meulen
- Merck Research Laboratories; West Point Pennsylvania 19486
| | | | - Xiaoping Liang
- Merck Research Laboratories; West Point Pennsylvania 19486
| |
Collapse
|
67
|
Kulp DW, Schief WR. Advances in structure-based vaccine design. Curr Opin Virol 2013; 3:322-31. [PMID: 23806515 DOI: 10.1016/j.coviro.2013.05.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023]
Abstract
Despite the tremendous successes of current vaccines, infectious diseases still take a heavy toll on the global population, and that provides strong rationale for broadening our vaccine development repertoire. Structural vaccinology, in which protein structure information is utilized to design immunogens, has promise to provide new vaccines against traditionally difficult targets. Crystal structures of antigens containing one or more protection epitopes, especially when in complex with a protective antibody, are the launching point for immunogen design. Integrating structure and sequence information for families of broadly neutralizing antibodies (bNAbs) has recently enabled the creation of germline-targeting immunogens that bind and activate germline B-cells in order to initiate the elicitation of such antibodies. The contacts between antigen and neutralizing antibody define a structural epitope, and methods have been developed to transplant epitopes to scaffold proteins for structural stabilization, and to design minimized antigens that retain one or more key epitopes while eliminating other potentially distracting or unnecessary features. To develop vaccines that protect against antigenically variable pathogens, pioneering structure-based work demonstrated that multiple strain-specific epitopes could be engineered onto a single immunogen. We review these recent structural vaccinology efforts to engineer germline-targeting, epitope-specific, and/or broad coverage immunogens.
Collapse
Affiliation(s)
- Daniel W Kulp
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|