51
|
The glycosylated Gag protein of a murine leukemia virus inhibits the antiretroviral function of APOBEC3. J Virol 2010; 84:10933-6. [PMID: 20702647 DOI: 10.1128/jvi.01023-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APOBEC proteins have evolved as innate defenses against retroviral infections. Human immunodeficiency virus (HIV) encodes the Vif protein to evade human APOBEC3G; however, mouse retroviruses do not encode a Vif homologue, and it has not been understood how they evade mouse APOBEC3. We report here a murine leukemia virus (MuLV) that utilizes its glycosylated Gag protein (gGag) to evade APOBEC3. gGag is critical for infection of in vitro cell lines in the presence of APOBEC3. Furthermore, a gGag-deficient virus restricted for replication in wild-type mice replicates efficiently in APOBEC3 knockout mice, implying a novel role of gGag in circumventing the action of APOBEC3 in vivo.
Collapse
|
52
|
Sanville B, Dolan MA, Wollenberg K, Yan Y, Martin C, Yeung ML, Strebel K, Buckler-White A, Kozak CA. Adaptive evolution of Mus Apobec3 includes retroviral insertion and positive selection at two clusters of residues flanking the substrate groove. PLoS Pathog 2010; 6:e1000974. [PMID: 20617165 PMCID: PMC2895647 DOI: 10.1371/journal.ppat.1000974] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 05/28/2010] [Indexed: 11/23/2022] Open
Abstract
Mouse APOBEC3 (mA3) is a cytidine deaminase with antiviral activity. mA3 is linked to the Rfv3 virus resistance factor, a gene responsible for recovery from infection by Friend murine leukemia virus, and mA3 allelic variants differ in their ability to restrict mouse mammary tumor virus. We sequenced mA3 genes from 38 inbred strains and wild mouse species, and compared the mouse sequence and predicted structure with human APOBEC3G (hA3G). An inserted sequence was identified in the virus restrictive C57BL strain allele that disrupts a splice donor site. This insertion represents the long terminal repeat of the xenotropic mouse gammaretrovirus, and was acquired in Eurasian mice that harbor xenotropic retrovirus. This viral regulatory sequence does not alter splicing but is associated with elevated mA3 expression levels in spleens of laboratory and wild-derived mice. Analysis of Mus mA3 coding sequences produced evidence of positive selection and identified 10 codons with very high posterior probabilities of having evolved under positive selection. Six of these codons lie in two clusters in the N-terminal catalytically active cytidine deaminase domain (CDA), and 5 of those 6 codons are polymorphic in Rfv3 virus restrictive and nonrestrictive mice and align with hA3G CDA codons that are critical for deaminase activity. Homology models of mA3 indicate that the two selected codon clusters specify residues that are opposite each other along the predicted CDA active site groove, and that one cluster corresponds to an hAPOBEC substrate recognition loop. Substitutions at these clustered mA3 codons alter antiviral activity. This analysis suggests that mA3 has been under positive selection throughout Mus evolution, and identified an inserted retroviral regulatory sequence associated with enhanced expression in virus resistant mice and specific residues that modulate antiviral activity. APOBEC3 (mA3) is a cytidine deaminase with antiretroviral activity. Genetic variants of mA3 are associated with the restriction factor Rfv3 (recovery from Friend leukemia virus) and with resistance to mouse mammary tumor virus. We sequenced mA3 from laboratory strains and wild mouse species to examine its evolution. We discovered that the mA3 allele in virus resistant mice is disrupted by insertion of the regulatory sequences of a mouse leukemia virus, and this insertion is associated with enhanced mA3 expression. We also subjected the Mus mA3 protein coding sequences to statistical analysis to determine if specific sites are subject to strong positive selection, that is, show an increased number of amino acid replacement mutations. We identified 10 such sites, most of which distinguish the mA3 genes of Rfv3 virus restrictive and nonrestrictive mice. Six of these sites are in two clusters that, in human APOBEC3G, are important for function. We generated a structural model of mA3, positioned these clusters opposite each other along the putative mA3 active site groove, and demonstrated that substitutions at these sites alter antiviral activity. Thus, mA3 has been involved in genetic conflicts throughout mouse evolution, and we identify an inserted regulatory sequence and two codon clusters that contribute to mA3 antiviral function.
Collapse
Affiliation(s)
- Bradley Sanville
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Michael A. Dolan
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Kurt Wollenberg
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Yuhe Yan
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Carrie Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Man Lung Yeung
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
53
|
Santiago ML, Benitez RL, Montano M, Hasenkrug KJ, Greene WC. Innate retroviral restriction by Apobec3 promotes antibody affinity maturation in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 185:1114-23. [PMID: 20566830 DOI: 10.4049/jimmunol.1001143] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apobec3/Rfv3 is an innate immune factor that promotes the neutralizing Ab response against Friend retrovirus (FV) in infected mice. Based on its evolutionary relationship to activation-induced deaminase, Apobec3 might directly influence Ab class switching and affinity maturation independently of viral infection. Alternatively, the antiviral activity of Apobec3 may indirectly influence neutralizing Ab responses by reducing early FV-induced pathology in critical immune compartments. To distinguish between these possibilities, we immunized wild-type and Apobec3-deficient C57BL/6 (B6) mice with (4-hydroxy-3-nitrophenyl) acetyl (NP) hapten and evaluated the binding affinity of the resultant NP-specific Abs. These studies revealed similar affinity maturation of NP-specific IgG1 Abs between wild-type and Apobec3-deficient mice in the absence of FV infection. In contrast, hapten-specific Ab affinity maturation was significantly compromised in Apobec3-deficient mice infected with FV. In highly susceptible (B6 x A.BY)F(1) mice, the B6 Apobec3 gene protected multiple cell types in the bone marrow and spleen from acute FV infection, including erythroid, B, T, and myeloid cells. In addition, B6 Apobec3 deficiency was associated with elevated Ig levels, but decreased induction of splenic germinal center B cells and plasmablasts during acute FV infection. These data suggest that Apobec3 indirectly influences FV-specific neutralizing Ab responses by reducing virus-induced immune dysfunction. These findings raise the possibility that enabling Apobec3 activity during acute infection with human pathogenic retroviruses, such as HIV-1, may similarly facilitate stronger virus-specific neutralizing Ab responses.
Collapse
Affiliation(s)
- Mario L Santiago
- Division of Infectious Diseases, University of Colorado Denver, Mail Stop B168, 12700 East 19th Avenue, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
54
|
Tsuji-Kawahara S, Chikaishi T, Takeda E, Kato M, Kinoshita S, Kajiwara E, Takamura S, Miyazawa M. Persistence of viremia and production of neutralizing antibodies differentially regulated by polymorphic APOBEC3 and BAFF-R loci in friend virus-infected mice. J Virol 2010; 84:6082-95. [PMID: 20375169 PMCID: PMC2876660 DOI: 10.1128/jvi.02516-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/26/2010] [Indexed: 02/03/2023] Open
Abstract
Several host genes control retroviral replication and pathogenesis through the regulation of immune responses to viral antigens. The Rfv3 gene influences the persistence of viremia and production of virus-neutralizing antibodies in mice infected with Friend mouse retrovirus complex (FV). This locus has been mapped within a narrow segment of mouse chromosome 15 harboring the APOBEC3 and BAFF-R loci, both of which show functional polymorphisms among different strains of mice. The exon 5-lacking product of the APOBEC3 allele expressed in FV-resistant C57BL/6 (B6) mice directly restricts viral replication, and mice lacking the B6-derived APOBEC3 exhibit exaggerated pathology and reduced production of neutralizing antibodies. However, the mechanisms by which the polymorphisms at the APOBEC3 locus affect the production of neutralizing antibodies remain unclear. Here we show that the APOBEC3 genotypes do not directly affect the B-cell repertoire, and mice lacking B6-derived APOBEC3 still produce FV-neutralizing antibodies in the presence of primed T helper cells. Instead, higher viral loads at a very early stage of FV infection caused by either a lack of the B6-derived APOBEC3 or a lack of the wild-type BAFF-R resulted in slower production of neutralizing antibodies. Indeed, B cells were hyperactivated soon after infection in the APOBEC3- or BAFF-R-deficient mice. In contrast to mice deficient in the B6-derived APOBEC3, which cleared viremia by 4 weeks after FV infection, mice lacking the functional BAFF-R allele exhibited sustained viremia, indicating that the polymorphisms at the BAFF-R locus may better explain the Rfv3-defining phenotype of persistent viremia.
Collapse
Affiliation(s)
- Sachiyo Tsuji-Kawahara
- Departments of Immunology, Dermatology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan, UMN Pharma Inc., Yokohama 222-0033, Japan
| | - Tomomi Chikaishi
- Departments of Immunology, Dermatology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan, UMN Pharma Inc., Yokohama 222-0033, Japan
| | - Eri Takeda
- Departments of Immunology, Dermatology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan, UMN Pharma Inc., Yokohama 222-0033, Japan
| | - Maiko Kato
- Departments of Immunology, Dermatology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan, UMN Pharma Inc., Yokohama 222-0033, Japan
| | - Saori Kinoshita
- Departments of Immunology, Dermatology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan, UMN Pharma Inc., Yokohama 222-0033, Japan
| | - Eiji Kajiwara
- Departments of Immunology, Dermatology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan, UMN Pharma Inc., Yokohama 222-0033, Japan
| | - Shiki Takamura
- Departments of Immunology, Dermatology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan, UMN Pharma Inc., Yokohama 222-0033, Japan
| | - Masaaki Miyazawa
- Departments of Immunology, Dermatology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan, UMN Pharma Inc., Yokohama 222-0033, Japan
| |
Collapse
|
55
|
Activation of the N-terminally truncated form of the Stk receptor tyrosine kinase Sf-Stk by Friend virus-encoded gp55 is mediated by cysteine residues in the ecotropic domain of gp55 and the extracellular domain of Sf-Stk. J Virol 2009; 84:2223-35. [PMID: 20016000 DOI: 10.1128/jvi.02090-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Friend virus induces an erythroleukemia in susceptible mice that is initiated by the interaction of the Friend virus-encoded glycoprotein gp55 with the erythropoietin (Epo) receptor and the product of the host Fv2 gene, a naturally occurring truncated form of the Stk receptor tyrosine kinase (Sf-Stk). We have previously demonstrated that the activation of Sf-Stk, recruitment of a Grb2/Gab2/Stat3 signaling complex, and induction of Pu.1 expression by Stat3 are required for the development of the early stage of Friend disease both in vitro and in vivo. Here we demonstrate that the interaction of gp55 with Sf-Stk is dependent on cysteine residues in the ecotropic domain of gp55 and the extracellular domain of Sf-Stk. Point mutation of these cysteine residues or deletion of these domains inhibits the ability of gp55 to interact with Sf-Stk, resulting in the inability of these proteins to promote the Epo-independent growth of erythroid progenitor cells. We also demonstrate that the interaction of gp55 with Sf-Stk does not promote dimerization of Sf-Stk but results in enhanced phosphorylation of Sf-Stk and the relocalization of Sf-Stk from the cytosol to the plasma membrane. Finally, we demonstrate that a constitutively active form of Sf-Stk (Sf-StkM330T), as well as its human counterpart, Sf-Ron, promotes Epo-independent colony formation in the absence of gp55 and that this response is also dependent on the cysteines in the extracellular domains of Sf-StkM330T and Sf-Ron. These data suggest that the cysteines in the extracellular domains of Sf-Stk and Sf-Ron may also mediate the interaction of these truncated receptors with other cellular factors that regulate their ability to promote cytokine-independent growth.
Collapse
|
56
|
Abstract
APOBEC3 proteins are potent restriction factors against retroviral infection in primates. This restriction is accompanied by hypermutations in the retroviral genome that are attributable to the cytidine deaminase activity of the APOBEC3 proteins. Studies of nucleotide sequence diversity among endogenous gammaretroviruses suggest that the evolution of endogenous retroelements could have been shaped by the mutagenic cytidine deaminase activity of APOBEC3. In mice, however, APOBEC3 appears to restrict exogenous murine retroviruses in the absence of detectable levels of deamination. AKV is an endogenous retrovirus that is involved in causing a high incidence of thymic lymphoma in AKR mice. A comparative analysis of several mouse strains revealed a relatively low level of APOBEC3 expression in AKR mice. Here we show that endogenous mouse APOBEC3 restricts AKV infection and that this restriction likely reflects polymorphisms affecting APOBEC3 abundance rather than differences in the APOBEC3 isoforms expressed. We also observe that restriction of AKV by APOBEC3 is accompanied by G-->A hypermutations in the viral genome. Our findings demonstrate that APOBEC3 acts as a restriction factor in rodents affecting the strain tropism of AKV, and they provide good support for the proposal that APOBEC3-mediated hypermutation contributed to the evolution of endogenous rodent retroviral genomes.
Collapse
|
57
|
Miyazawa M, Tsuji-Kawahara S, Chikaishi T, Kato M, Takamura S. Mouse APOBEC3 affects the production of virus-neutralizing antibodies by restricting early retroviral replication, not by altering the B-cell repertoire. Retrovirology 2009. [PMCID: PMC2766989 DOI: 10.1186/1742-4690-6-s2-o9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
58
|
Zielonka J, Bravo IG, Marino D, Conrad E, Perković M, Battenberg M, Cichutek K, Münk C. Restriction of equine infectious anemia virus by equine APOBEC3 cytidine deaminases. J Virol 2009; 83:7547-59. [PMID: 19458006 PMCID: PMC2708611 DOI: 10.1128/jvi.00015-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 05/11/2009] [Indexed: 11/20/2022] Open
Abstract
The mammalian APOBEC3 (A3) proteins comprise a multigene family of cytidine deaminases that act as potent inhibitors of retroviruses and retrotransposons. The A3 locus on the chromosome 28 of the horse genome contains multiple A3 genes: two copies of A3Z1, five copies of A3Z2, and a single copy of A3Z3, indicating a complex evolution of multiple gene duplications. We have cloned and analyzed for expression the different equine A3 genes and examined as well the subcellular distribution of the corresponding proteins. Additionally, we have tested the functional antiretroviral activity of the equine and of several of the human and nonprimate A3 proteins against the Equine infectious anemia virus (EIAV), the Simian immunodeficiency virus (SIV), and the Adeno-associated virus type 2 (AAV-2). Hematopoietic cells of horses express at least five different A3s: A3Z1b, A3Z2a-Z2b, A3Z2c-Z2d, A3Z2e, and A3Z3, whereas circulating macrophages, the natural target of EIAV, express only part of the A3 repertoire. The five A3Z2 tandem copies arose after three consecutive, recent duplication events in the horse lineage, after the split between Equidae and Carnivora. The duplicated genes show different antiviral activities against different viruses: equine A3Z3 and A3Z2c-Z2d are potent inhibitors of EIAV while equine A3Z1b, A3Z2a-Z2b, A3Z2e showed only weak anti-EIAV activity. Equine A3Z1b and A3Z3 restricted AAV and all equine A3s, except A3Z1b, inhibited SIV. We hypothesize that the horse A3 genes are undergoing a process of subfunctionalization in their respective viral specificities, which might provide the evolutionary advantage for keeping five copies of the original gene.
Collapse
Affiliation(s)
- Jörg Zielonka
- Division of Medical Biotechnology, Paul Ehrlich Institut, Langen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Affiliation(s)
- Susan R Ross
- Department of Microbiology and Abramson Family Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| |
Collapse
|