51
|
Pooggin MM, Fütterer J, Skryabin KG, Hohn T. A short open reading frame terminating in front of a stable hairpin is the conserved feature in pregenomic RNA leaders of plant pararetroviruses. J Gen Virol 1999; 80 ( Pt 8):2217-2228. [PMID: 10466822 DOI: 10.1099/0022-1317-80-8-2217] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plant pararetroviruses, pregenomic RNA (pgRNA) directs synthesis of circular double-stranded viral DNA and serves as a polycistronic mRNA. By computer-aided analysis, the 14 plant pararetroviruses sequenced so far were compared with respect to structural organization of their pgRNA 5'-leader. The results revealed that the pgRNA of all these viruses carries a long leader sequence containing several short ORFs and having the potential to form a large stem-loop structure; both features are known to be inhibitory for downstream translation. Formation of the structure brings the first long ORF into the close spatial vicinity of a 5'-proximal short ORF that terminates 5 to 10 nt upstream of the stable structural element. The first long ORF on the pgRNA is translated by a ribosome shunt mechanism discovered in cauliflower mosaic (CaMV) and rice tungro bacilliform viruses, representing the two major groups of plant pararetroviruses. Both the short ORF and the structure have been implicated in the shunt process for CaMV pgRNA translation. The conservation of these elements among all plant pararetroviruses suggests conservation of the ribosome shunt mechanism. For some of the less well-studied viruses, the localization of the conserved elements also allowed predictions of the pgRNA promoter region and the translation start site of the first long ORF.
Collapse
Affiliation(s)
- Mikhail M Pooggin
- Centre 'Bioengineering', Russian Academy of Sciences, 117312 Moscow, Russia2
- Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland1
| | - Johannes Fütterer
- Institute for Plant Sciences, ETH Zentrum, CH-8092 Zürich, Switzerland3
| | | | - Thomas Hohn
- Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland1
| |
Collapse
|
52
|
Klöti A, Henrich C, Bieri S, He X, Chen G, Burkhardt PK, Wünn J, Lucca P, Hohn T, Potrykus I, Fütterer J. Upstream and downstream sequence elements determine the specificity of the rice tungro bacilliform virus promoter and influence RNA production after transcription initiation. PLANT MOLECULAR BIOLOGY 1999; 40:249-266. [PMID: 10412904 DOI: 10.1023/a:1006119517262] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The contribution of sequences upstream and downstream of the transcription start site to the strength and specificity of the promoter of rice tungro bacilliform virus was analysed in transgenic rice plants. The promoter is strongly stimulated by downstream sequences which include an intron and is active in all vascular and epidermal cells. Expression in the vascular tissue requires a promoter element located between -100 and -164 to which protein(s) from rice nuclear extracts bind. Elimination of this region leads to specificity for the epidermis. Due to the presence of a polyadenylation signal in the intron, short-stop RNA is produced from the promoter in addition to full-length primary transcript and its spliced derivatives. The ratio between short-stop RNA and full-length or spliced RNA is determined by upstream promoter sequences, suggesting the assembly of RNA polymerase complexes with different processivity on this promoter.
Collapse
Affiliation(s)
- A Klöti
- Institute of Plant Sciences, ETH Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Remm M, Remm A, Ustav M. Human papillomavirus type 18 E1 protein is translated from polycistronic mRNA by a discontinuous scanning mechanism. J Virol 1999; 73:3062-70. [PMID: 10074156 PMCID: PMC104066 DOI: 10.1128/jvi.73.4.3062-3070.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses are small double-stranded DNA viruses that replicate episomally in the nuclei of infected cells. The full-length E1 protein of papillomaviruses is required for the replication of viral DNA. The viral mRNA from which the human papillomavirus type 18 E1 protein is expressed is not known. We demonstrate that in eukaryotic cells, the E1 protein is expressed from polycistronic mRNA containing E6, E7, and E1 open reading frames (ORFs). The translation of adjacent E7 and E1 ORFs is not associated; it is performed by separate populations of ribosomes. The translation of the downstream E1 gene is preceded by ribosome scanning. Scanning happens at least at the 5' end of the polycistronic mRNA and also approximately 100 bp in front of the E1 gene. Long areas in middle of the mRNA are bypassed by ribosomes, possibly by ribosomal "shunting." Inactivation of short minicistrons in the upstream area of the E1 gene did not change the expression level of the E1 gene.
Collapse
Affiliation(s)
- M Remm
- Department of Microbiology and Virology, University of Tartu, and Estonian Biocentre, Tartu 51010, Estonia.
| | | | | |
Collapse
|
54
|
Abstract
Banana streak virus (BSV), a member of the Badnavirus group of plant viruses, causes severe problems in banana cultivation, reducing fruit yield and restricting plant breeding and the movement of germplasm. Current detection methods are relatively insensitive. In order to develop a PCR-based diagnostic method that is both reliable and sensitive, the genome of a Nigerian isolate of BSV has been sequenced and shown to comprise 7389 bp and to be organized in a manner characteristic of badnaviruses. Comparison of this sequence with those of other badnaviruses showed that BSV is a distinct virus. PCR with primers based on sequence data indicated that BSV sequences are present in the banana genome.
Collapse
Affiliation(s)
- G Harper
- Virus Research Department, John Innes Centre, Norfoll, UK. and
| | | |
Collapse
|
55
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
56
|
Latorre P, Kolakofsky D, Curran J. Sendai virus Y proteins are initiated by a ribosomal shunt. Mol Cell Biol 1998; 18:5021-31. [PMID: 9710586 PMCID: PMC109087 DOI: 10.1128/mcb.18.9.5021] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sendai virus P/C mRNA expresses eight primary translation products by using a combination of ribosomal choice and cotranscriptional mRNA editing. The longest open reading frame (ORF) of the mRNA starts at AUG104 (the second initiation site) and encodes the 568-amino-acid P protein, an essential subunit of the viral polymerase. The first (ACG81), third (ATG114), fourth (ATG183), and fifth (ATG201) initiation sites are used to express a C-terminal nested set of polypeptides (collectively named the C proteins) in the +1 ORF relative to P, namely, C', C, Y1, and Y2, respectively. Leaky scanning accounts for translational initiation at the first three start sites (a non-ATG followed by ATGs in progressively stronger contexts). Consistent with this, changing ACG81/C' to ATG (GCCATG81G) abrogates expression from the downstream ATG104/P and ATG114/C initiation codons. However, expression of the Y1 and Y2 proteins remains normal in this background. We now have evidence that initiation from ATG183/Y1 and ATG201/Y2 takes place via a ribosomal shunt or discontinuous scanning. Scanning complexes appear to assemble at the 5' cap and then scan ca. 50 nucleotides (nt) of the 5' untranslated region before being translocated to an acceptor site at or close to the Y initiation codons. No specific donor site sequences are required, and translation of the Y proteins continues even when their start codons are changed to ACG. Curiously, ATG codons (in good contexts) in the P ORF, placed either 16 nt upstream of Y1, 29 nt downstream of Y2, or between the Y1 and Y2 codons, are not expressed even in the ACGY1/ACGY2 background. This indicates that ATG183/Y1 and ATG201/Y2 are privileged start sites within the acceptor site. Our observations suggest that the shunt delivers the scanning complex directly to the Y start codons.
Collapse
Affiliation(s)
- P Latorre
- Department of Genetics and Microbiology, University of Geneva Medical School (CMU), CH1211 Geneva, Switzerland
| | | | | |
Collapse
|
57
|
Pooggin MM, Hohn T, Fütterer J. Forced evolution reveals the importance of short open reading frame A and secondary structure in the cauliflower mosaic virus 35S RNA leader. J Virol 1998; 72:4157-69. [PMID: 9557705 PMCID: PMC109645 DOI: 10.1128/jvi.72.5.4157-4169.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/1997] [Accepted: 02/04/1998] [Indexed: 02/07/2023] Open
Abstract
Cauliflower mosaic virus pregenomic 35S RNA begins with a long leader sequence containing an extensive secondary structure and up to nine short open reading frames (sORFs), 2 to 35 codons in length. To test whether any of these sORFs are required for virus viability, their start codons were mutated either individually or in various combinations. The resulting viral mutants were tested for infectivity on mechanically inoculated turnip plants. Viable mutants were passaged several times, and the stability of the introduced mutations was analyzed by PCR amplification and sequencing. Mutations at the 5'-proximal sORF A and in the center of the leader resulted in delayed symptom development and in the appearance of revertants. In the central leader region, the predicted secondary structure, rather than the sORF organization, was restored, while true reversions or second-site substitutions in response to mutations of sORF A restored this sORF. Involvement of sORF A and secondary structure of the leader in the virus replication cycle, and especially in translation of the 35S RNA via ribosome shunting, is discussed.
Collapse
Affiliation(s)
- M M Pooggin
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
58
|
Schärer-Hernández N, Hohn T. Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA in transgenic tobacco plants. Virology 1998; 242:403-13. [PMID: 9514980 DOI: 10.1006/viro.1998.9038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cauliflower mosaic virus (CaMV) uses a specialised translation mechanism to bypass the long leader sequence of the 35S RNA. The effect of the CaMV 35S RNA leader sequence on the expression of a downstream beta-glucuronidase (GUS) reporter gene was studied in transgenic tobacco plants. Enzymatic GUS assays of these transgenic plants show that a shunt mechanism of translation indeed occurs in planta with an average efficiency of 5% compared with the leaderless construct. Histological GUS analyses indicate that the shunt mechanism occurs throughout the whole plant and at all developmental stages.
Collapse
|
59
|
|
60
|
Dominguez DI, Ryabova LA, Pooggin MM, Schmidt-Puchta W, Fütterer J, Hohn T. Ribosome shunting in cauliflower mosaic virus. Identification of an essential and sufficient structural element. J Biol Chem 1998; 273:3669-78. [PMID: 9452497 DOI: 10.1074/jbc.273.6.3669] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A wheat germ cell-free system was used to study details of ribosome shunting promoted by the cauliflower mosaic virus 35 S RNA leader. By testing a dicistronic construct with the leader placed between two coding regions, we confirmed that the 35 S RNA leader does not include an internal ribosome entry site of the type observed with picornavirus RNAs. A reporter gene fused to the leader was shown to be expressed by ribosomes that had followed the bypass route (shunted) and, with lower efficiency, by ribosomes that had scanned through the whole region. Stem section 1, the most stable of the three stem sections of the leader, was shown to be an important structural element for shunting. Mutations that abolished formation of this stem section drastically reduced reporter gene expression, whereas complementary mutations that restored stem section 1 also restored shunting. A micro-leader capable of shunting consisting of stem section 1 and flanking sequences could be defined. A small open reading frame preceding stem section 1 enhances shunting.
Collapse
Affiliation(s)
- D I Dominguez
- Friedrich-Miescher-Institute, CH-4002 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
61
|
Jacquot E, Keller M, Yot P. A short basic domain supports a nucleic acid-binding activity in the rice tungro bacilliform virus open reading frame 2 product. Virology 1997; 239:352-9. [PMID: 9434726 DOI: 10.1006/viro.1997.8859] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Little is known about the features of badnavirus open reading frame 2 products (P2). So far, no consensus functional domain has been found in these proteins. However, they all have in common at their C-terminus amino acids which may have the capacity to bind nucleic acids. Such capacity has already been established for cacao swollen shoot virus protein P2. We have looked for such a binding capacity of rice tungro bacilliform virus (RTBV) ORF 2 product. For this purpose, the protein was expressed as full-length or truncated versions in Escherichia coli. When used in nucleic acid-binding assays, complete RTBV P2 was shown to bind both DNA and RNA. This property may be related to a basic sequence, PPKKGIKRKYPA, localized at its C-terminus. Mutations were introduced into this sequence and revealed that four of the five basic residues, including a crucial lysine, are required for the binding to nucleic acids. Moreover, this sequence can confer binding capacity when it is fused to the N-terminus of nonbinding proteins.
Collapse
Affiliation(s)
- E Jacquot
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
62
|
Fütterer J, Rothnie HM, Hohn T, Potrykus I. Rice tungro bacilliform virus open reading frames II and III are translated from polycistronic pregenomic RNA by leaky scanning. J Virol 1997; 71:7984-9. [PMID: 9311892 PMCID: PMC192159 DOI: 10.1128/jvi.71.10.7984-7989.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Posttranscriptional components of the gene expression mechanism of rice tungro bacilliform virus (RTBV) were studied in transiently transfected protoplasts. RTBV translates several open reading frames from a polycistronic mRNA by leaky scanning. This mechanism is supported by the particular sequence features of the corresponding genome region and does not require a virus-encoded transactivator.
Collapse
Affiliation(s)
- J Fütterer
- Institute for Plant Sciences, ETH Zentrum, Zürich, Switzerland.
| | | | | | | |
Collapse
|
63
|
Abstract
It has been proposed that cauliflower mosaic virus 35S RNA with its 600 nt long leader uses an unusual translation process (the translational shunt). A wheat germ in vitro translation assay was used to improve the study of this mechanism. Deletions, the introduction of stable stem-loop structures, and the inhibitory effect of antisense oligonucleotides on gene expression were used to determine the roles of various parts of the leader. It was found that the 5'- and 3'-ends of the leader are absolutely required for translation whereas the middle part is apparently dispensable. These results confirm the data already reported from transient expression experiments with protoplasts. However, the in vitro data suggest in contrast to protoplast experiments that only two relatively short regions at both ends, approximately 100 nt each, are required. The in vitro system provides tools for further studying the shunt model at the molecular level and for examining the involvement of proteins in this mechanism. Shunting was also found to occur with the rice tungro bacilliform virus leader. As wheat is neither a host plant of cauliflower mosaic virus nor rice tungro bacilliform virus, the shunt seems to be host independent, a finding that deviates from earlier studies in protoplasts.
Collapse
Affiliation(s)
- W Schmidt-Puchta
- Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
64
|
Jackson RJ, Wickens M. Translational controls impinging on the 5'-untranslated region and initiation factor proteins. Curr Opin Genet Dev 1997; 7:233-41. [PMID: 9115426 DOI: 10.1016/s0959-437x(97)80133-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Translation of eukaryotic mRNAs is generally initiated by the scanning ribosome mechanism. This can be downregulated by high affinity protein binding to cap-proximal RNA motifs. Translation can also be regulated by short open reading frames within the 5' -untranslated region. A key factor for initiation is elF4F, in which one of the polypeptide chains, elF4G, seems to have a bridging function and binds three other factors at separate sites: elF4E (the cap-binding factor), the helicase elF4A, and elF3, which also interacts with 40S ribosomal subunits. Initiation is regulated by the MAP kinase and rapamycin-sensitive signalling pathways, which control phosphorylation of elF4E and 4E-BP1, a protein which in the dephosphorylated form binds and sequesters elF4E.
Collapse
Affiliation(s)
- R J Jackson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | | |
Collapse
|
65
|
Abstract
Translation processes in plants are very similar to those in other eukaryotic organisms and can in general be explained with the scanning model. Particularly among plant viruses, unconventional mRNAs are frequent, which use modulated translation processes for their expression: leaky scanning, translational stop codon readthrough or frameshifting, and transactivation by virus-encoded proteins are used to translate polycistronic mRNAs; leader and trailer sequences confer (cap-independent) efficient ribosome binding, usually in an end-dependent mechanism, but true internal ribosome entry may occur as well; in a ribosome shunt, sequences within an RNA can be bypassed by scanning ribosomes. Translation in plant cells is regulated under conditions of stress and during development, but the underlying molecular mechanisms have not yet been determined. Only a small number of plant mRNAs, whose structure suggests that they might require some unusual translation mechanisms, have been described.
Collapse
Affiliation(s)
- J Fütterer
- Institute of Plant Sciences, ETHZ, Zürich, Switzerland
| | | |
Collapse
|
66
|
Abstract
Rice tungro, the most important virus disease of rice in South and Southeast Asia, is caused by a complex of two viruses, rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV). RTBV is a plant pararetrovirus with bacilliform particles, the structure of which is based on T = 3 icosahedral symmetry cut across the threefold axis.The particles encapsidate a circular double-stranded DNA of 8 kbp that encodes four proteins. The current information on the properties, functions, and expression of these proteins is discussed, as is the evidence for replication by reverse transcription. Two major strains of RTBV have been recognized, one from the Indian subcontinent and the other from Southeast Asia. RTSV particles contain a single-stranded RNA genome of 12 kb that encodes a large polyprotein and possibly one or two smaller proteins. The properties and processing of the polyprotein are described and the resemblance to picornaviruses noted.
Collapse
Affiliation(s)
- R Hull
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|