51
|
Müller M, Prescott EL, Wasson CW, Macdonald A. Human papillomavirus E5 oncoprotein: function and potential target for antiviral therapeutics. Future Virol 2015. [DOI: 10.2217/fvl.14.99] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT Mucosal human papillomaviruses express a small, hydrophobic, protein called E5, which plays an important role in the HPV life cycle by delaying normal epithelial cell differentiation while maintaining cell cycle progression. In addition, E5 exhibits transforming abilities in a number of cell culture systems and transgenic mouse models. Lacking any described enzymatic activity, E5 is thought to function by binding to host proteins and modulating their activities. In particular, members of the growth factor receptor family are known targets for subversion. This review article summarizes our latest understanding of this enigmatic oncoprotein, including its role in the HPV life cycle, interactions with host proteins and contribution toward tumorigenesis.
Collapse
Affiliation(s)
- Marietta Müller
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Emma L Prescott
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Christopher W Wasson
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Andrew Macdonald
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
52
|
|
53
|
Role of Cdk1 in the p53-independent abrogation of the postmitotic checkpoint by human papillomavirus E6. J Virol 2014; 89:2553-62. [PMID: 25520504 DOI: 10.1128/jvi.02269-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Specific types of human papillomavirus (HPV) are strongly associated with the development of cervical carcinoma. The HPV E6 oncoprotein from HPV degrades p53 and abrogates cell cycle checkpoints. Nonetheless, functional p53 has been observed in cervical cancer. We have previously identified a p53-independent function of E6 in attenuating the postmitotic G1-like checkpoint that can lead to polyploidy, an early event during cervical carcinogenesis that predisposes cells to aneuploidy. How E6 promotes cell cycle progression in the presence of p53 and its target, p21, remains a mystery. In this study, we examined the expression of cell cycle-related genes in cells expressing wild-type E6 and the mutant that is defective in p53 degradation but competent in abrogating the postmitotic checkpoint. Our results demonstrated an increase in the steady-state levels of G1- and G2-related cyclins/Cdks in E6-expressing keratinocytes. Interestingly, only Cdk1 remained active in E6 mutant-expressing cells while bypassing the postmitotic checkpoint. Furthermore, the downregulation of Cdk1 impaired the ability of both wild-type and mutant E6 to induce polyploidy. Our study thus demonstrated an important role for Cdk1, which binds p21 with lower affinity than Cdk2, in abrogating the postmitotic checkpoint in E6-expressing cells. We further show that E2F1 is important for E6 to upregulate Cdk1. Moreover, reduced nuclear p21 localization was observed in the E6 mutant-expressing cells. These findings shed light on the mechanisms by which HPV induces genomic instability and hold promise for the identification of drug targets. IMPORTANCE HPV infection is strongly associated with the development of cervical carcinoma. HPV encodes an E6 oncoprotein that degrades the tumor suppressor p53 and abrogates cell cycle checkpoints. Nonetheless, functional p53 has been observed in cervical cancer. We have recently demonstrated a p53-independent abrogation of the postmitotic checkpoint by HPV E6 that induces polyploidy. However, the mechanism is not known. In this study, we provide evidence that Cdk1 plays an important role in this process. Previously, Cdk2 was thought to be essential for the G1/S transition, while Cdk1 only compensated its function in the absence of Cdk2. Our studies have demonstrated a novel role of Cdk1 at the postmitotic G1-like checkpoint in the presence of Cdk2. These findings shed light on the mechanisms by which HPV induces genomic instability and hold promise for the identification of drug targets.
Collapse
|
54
|
Park JW, Nickel KP, Torres AD, Lee D, Lambert PF, Kimple RJ. Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage. Radiother Oncol 2014; 113:337-44. [PMID: 25216575 PMCID: PMC4268372 DOI: 10.1016/j.radonc.2014.08.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 07/19/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND PURPOSE Patients with human papillomavirus related (HPV+) head and neck cancers (HNCs) demonstrate improved clinical outcomes compared to traditional HPV negative (HPV-) HNC patients. We have recently shown that HPV+ HNC cells are more sensitive to radiation than HPV- HNC cells. However, roles of HPV oncogenes in regulating the response of DNA damage repair remain unknown. MATERIAL AND METHODS Using immortalized normal oral epithelial cell lines, HPV+ HNC derived cell lines, and HPV16 E7-transgenic mice we assessed the repair of DNA damage using γ-H2AX foci, single and split dose clonogenic survival assays, and immunoblot. The ability of E7 to modulate expression of proteins associated with DNA repair pathways was assessed by immunoblot. RESULTS HPV16 E7 increased retention of γ-H2AX nuclear foci and significantly decreased sublethal DNA damage repair. While phospho-ATM, phospho-ATR, Ku70, and Ku80 expressions were not altered by E7, Rad51 was induced by E7. Correspondingly, HPV+ HNC cell lines showed retention of Rad51 after γ-radiation. CONCLUSIONS Our findings provide further understanding as to how HPV16 E7 manipulates cellular DNA damage responses that may underlie its oncogenic potential and influence the altered sensitivity to radiation seen in HPV+ HNC as compared to HPV- HNC.
Collapse
Affiliation(s)
- Jung Wook Park
- McArdle Laboratory for Cancer Research and Department of Oncology, University of Wisconsin, Madison, USA
| | - Kwangok P Nickel
- Department of Human Oncology, University of Wisconsin, Madison, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, USA
| | - Alexandra D Torres
- McArdle Laboratory for Cancer Research and Department of Oncology, University of Wisconsin, Madison, USA
| | - Denis Lee
- McArdle Laboratory for Cancer Research and Department of Oncology, University of Wisconsin, Madison, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research and Department of Oncology, University of Wisconsin, Madison, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin, Madison, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, USA.
| |
Collapse
|
55
|
Abstract
UNLABELLED Human papillomaviruses (HPVs) are small DNA viruses causally associated with benign warts and multiple cancers, including cervical and head-and-neck cancers. While the vast majority of people are exposed to HPV, most instances of infection are cleared naturally. However, the intrinsic host defense mechanisms that block the early establishment of HPV infections remain mysterious. Several antiviral cytidine deaminases of the human APOBEC3 (hA3) family have been identified as potent viral DNA mutators. While editing of HPV genomes in benign and premalignant cervical lesions has been demonstrated, it remains unclear whether hA3 proteins can directly inhibit HPV infection. Interestingly, recent studies revealed that HPV-positive cervical and head-and-neck cancers exhibited higher rates of hA3 mutation signatures than most HPV-negative cancers. Here, we report that hA3A and hA3B expression levels are highly upregulated in HPV-positive keratinocytes and cervical tissues in early stages of cancer progression, potentially through a mechanism involving the HPV E7 oncoprotein. HPV16 virions assembled in the presence of hA3A, but not in the presence of hA3B or hA3C, have significantly decreased infectivity compared to HPV virions assembled without hA3A or with a catalytically inactive mutant, hA3A/E72Q. Importantly, hA3A knockdown in human keratinocytes results in a significant increase in HPV infectivity. Collectively, our findings suggest that hA3A acts as a restriction factor against HPV infection, but the induction of this restriction mechanism by HPV may come at a cost to the host by promoting cancer mutagenesis. IMPORTANCE Human papillomaviruses (HPVs) are highly prevalent and potent human pathogens that cause >5% of all human cancers, including cervical and head-and-neck cancers. While the majority of people become infected with HPV, only 10 to 20% of infections are established as persistent infections. This suggests the existence of intrinsic host defense mechanisms that inhibit viral persistence. Using a robust method to produce infectious HPV virions, we demonstrate that hA3A, but not hA3B or hA3C, can significantly inhibit HPV infectivity. Moreover, hA3A and hA3B were coordinately induced in HPV-positive clinical specimens during cancer progression, likely through an HPV E7 oncoprotein-dependent mechanism. Interestingly, HPV-positive cervical and head-and-neck cancer specimens were recently shown to harbor significant amounts of hA3 mutation signatures. Our findings raise the intriguing possibility that the induction of this host restriction mechanism by HPV may also trigger hA3A- and hA3B-induced cancer mutagenesis.
Collapse
|
56
|
Tolstov Y, Hadaschik B, Pahernik S, Hohenfellner M, Duensing S. Human papillomaviruses in urological malignancies: A critical assessment. Urol Oncol 2014; 32:46.e19-27. [DOI: 10.1016/j.urolonc.2013.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 01/18/2023]
|
57
|
The viral E8^E2C repressor limits productive replication of human papillomavirus 16. J Virol 2013; 88:937-47. [PMID: 24198405 DOI: 10.1128/jvi.02296-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Productive replication of human papillomavirus type 16 (HPV16) occurs only in differentiated keratinocyte cells. In addition to the viral E2 activator protein, HPV16 and related HPV types express transcripts coding for an E8^E2C fusion protein, which limits genome replication in undifferentiated keratinocytes. To address E8^E2C's role in productive replication of HPV16, stable keratinocyte cell lines containing wild-type (wt), E8^E2C knockout (E8-), or E8 KWK mutant (mt) genomes, in which conserved E8 residues were inactivated, were established. Copy numbers of E8- and E8 KWK mt genomes and amounts of early and late viral transcripts were greatly increased compared to those for the wt in undifferentiated keratinocytes, suggesting that HPV16 E8^E2C activities are highly dependent upon the E8 part. Upon differentiation in organotypic cultures, E8 mt genomes displayed higher early viral transcript levels, but no changes in cellular differentiation or virus-induced cellular DNA replication in suprabasal cells were observed. E8 mt genomes were amplified to higher copy numbers and showed increased L1 transcripts compared to wt genomes. Furthermore, the number of cells expressing the viral late protein E4 or L1 or amplifying viral genomes was greatly increased in E8 mt cell lines. In wild-type cells, E8^E2C transcript levels did not decrease by differentiation. Our data indicate that the E8^E2C repressor limits viral transcription and replication throughout the complete life cycle of HPV16.
Collapse
|
58
|
Lorenz LD, Rivera Cardona J, Lambert PF. Inactivation of p53 rescues the maintenance of high risk HPV DNA genomes deficient in expression of E6. PLoS Pathog 2013; 9:e1003717. [PMID: 24204267 PMCID: PMC3812038 DOI: 10.1371/journal.ppat.1003717] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/03/2013] [Indexed: 01/28/2023] Open
Abstract
The human papillomavirus DNA genome undergoes three distinct stages of replication: establishment, maintenance and amplification. We show that the HPV16 E6 protein is required for the maintenance of the HPV16 DNA genome as an extrachromosomal, nuclear plasmid in its natural host cell, the human keratinocyte. Based upon mutational analyses, inactivation of p53 by E6, but not necessarily E6-mediated degradation of p53, was found to correlate with the ability of E6 to support maintenance of the HPV16 genome as a nuclear plasmid. Inactivation of p53 with dominant negative p53 rescued the ability of HPV16 E6STOP and E6SAT mutant genomes to replicate as extrachromosomal genomes, though not to the same degree as observed for the HPV16 E6 wild-type (WT) genome. Inactivation of p53 also rescued the ability of HPV18 and HPV31 E6-deficient genomes to be maintained at copy numbers comparable to that of HPV18 and HPV31 E6WT genomes at early passages, though upon further passaging copy numbers for the HPV18 and 31 E6-deficient genomes lessened compared to that of the WT genomes. We conclude that inactivation of p53 is necessary for maintenance of HPV16 and for HPV18 and 31 to replicate at WT copy number, but that additional functions of E6 independent of inactivating p53 must also contribute to the maintenance of these genomes. Together these results suggest that re-activation of p53 may be a possible means for eradicating extrachromosomal HPV16, 18 or 31 genomes in the context of persistent infections. Human papillomaviruses (HPVs) infect epithelial tissues. HPVs that infect mucosal epithelia cause infectious lesions in the anogenital tract and oral cavity. HPV infections are normally cleared by the immune system; however, in rare cases, infections can persist for years. Persistent infections by certain HPVs place one at a high risk of developing carcinomas of the cervix, other anogenital tissues, and the head/neck region. These HPVs are responsible for over 5% of all human cancers. For an HPV infection to persist, the viral circular genome must be maintained, i.e. replicated and inherited during cell division. In this study we define the mechanism by which the viral gene E6 contributes to the maintenance of the HPV genome. We demonstrate that E6 must inactivate the cellular factor, p53, for the viral genome to be maintained. Significantly, p53, is inactivated in many types of human cancers and because much research has been done on p53, promising new drugs have been identified that can re-activate p53. If such drugs can re-activate the p53 that has been inactivated by E6, then we hypothesize that these drugs could be used to cure patients with persistent HPV infections and thereby reduce their risk of developing HPV associated cancers.
Collapse
Affiliation(s)
- Laurel D. Lorenz
- McArdle Laboratory for Cancer Research, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jessenia Rivera Cardona
- McArdle Laboratory for Cancer Research, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
59
|
Cortés-Malagón EM, Bonilla-Delgado J, Díaz-Chávez J, Hidalgo-Miranda A, Romero-Cordoba S, Uren A, Celik H, McCormick M, Munguía-Moreno JA, Ibarra-Sierra E, Escobar-Herrera J, Lambert PF, Mendoza-Villanueva D, Bermudez-Cruz RM, Gariglio P. Gene expression profile regulated by the HPV16 E7 oncoprotein and estradiol in cervical tissue. Virology 2013; 447:155-65. [PMID: 24210110 DOI: 10.1016/j.virol.2013.08.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/15/2013] [Accepted: 08/30/2013] [Indexed: 12/11/2022]
Abstract
The HPV16 E7 oncoprotein and 17β-estradiol are important factors for the induction of premalignant lesions and cervical cancer. The study of these factors is crucial for a better understanding of cervical tumorigenesis. Here, we assessed the global gene expression profiles induced by the HPV16 E7 oncoprotein and/or 17β-estradiol in cervical tissue of FvB and K14E7 transgenic mice. We found that the most dramatic changes in gene expression occurred in K14E7 and FvB groups treated with 17β-estradiol. A large number of differentially expressed genes involved in the immune response were observed in 17β-estradiol treated groups. The E7 oncoprotein mainly affected the expression of genes involved in cellular metabolism. Our microarray data also identified differentially expressed genes that have not previously been reported in cervical cancer. The identification of genes regulated by E7 and 17β-estradiol, provides the basis for further studies on their role in cervical carcinogenesis.
Collapse
Affiliation(s)
- Enoc M Cortés-Malagón
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City 07360, Mexico; Research Unit, Hospital Juárez de México, Mexico City 07760, Mexico.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
|
61
|
Abstract
E7 is an accessory protein that is not encoded by all papillomaviruses. The E7 amino terminus contains two regions of similarity to conserved regions 1 and 2 of the adenovirus E1A protein, which are also conserved in the simian vacuolating virus 40 large tumor antigen. The E7 carboxyl terminus consists of a zinc-binding motif, which is related to similar motifs in E6 proteins. E7 proteins play a central role in the human papillomavirus life cycle, reprogramming the cellular environment to be conducive to viral replication. E7 proteins encoded by the cancer-associated alpha human papillomaviruses have potent transforming activities, which together with E6, are necessary but not sufficient to render their host squamous epithelial cell tumorigenic. This article strives to provide a comprehensive summary of the published research studies on human papillomavirus E7 proteins.
Collapse
|
62
|
Seedat RY, Combrinck CE, Burt FJ. HPV associated with recurrent respiratory papillomatosis. Future Virol 2013. [DOI: 10.2217/fvl.13.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Papillomaviruses are members of the Papillomaviridae family. Over 150 HPV types have been identified. Recurrent respiratory papillomatosis (RRP) is a chronic condition caused by HPV characterized by recurrent papillomas of the respiratory tract, mainly the larynx. During the early stages, the condition presents with hoarseness, while more advanced disease presents with stridor and respiratory distress. There is no specific cure and treatment consists of repeated surgical procedures to remove the papillomas. Most patients eventually go into remission, but some suffer for many years with this condition, which may be fatal. HPV-6 and HPV-11 are the HPV types most commonly associated with RRP. Although most studies have found RRP due to HPV-11 to be more aggressive than disease due to HPV-6, the variability in disease aggressiveness is probably multifactorial. Information regarding the current epidemiology, molecular diversity and host immune responses is important for strategizing ways to reduce disease. Data on HPV genotypes associated with RRP would provide valuable information for vaccination programs to reduce the incidence of these genotypes in mothers and, in the long term, reduce the incidence of RRP in children. This review focuses on HPV-6 and HPV-11 as the HPV types that cause RRP, and discusses the viral genome and replication, clinical presentation of RRP, current techniques of diagnosis and genotyping, and the molecular diversity of HPV-6 and HPV-11.
Collapse
Affiliation(s)
- Riaz Y Seedat
- Department of Otorhinolaryngology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Otorhinolaryngology, Universitas Academic Hospital, Bloemfontein, South Africa
| | - Catharina E Combrinck
- Department of Medical Microbiology & Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Felicity J Burt
- Department of Medical Microbiology & Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Medical Microbiology & Virology, National Health Laboratory Service Universitas, Bloemfontein, South Africa
| |
Collapse
|
63
|
Sonnylal S, Xu S, Jones H, Tam A, Sreeram VR, Ponticos M, Norman J, Agrawal P, Abraham D, de Crombrugghe B. Connective tissue growth factor causes EMT-like cell fate changes in vivo and in vitro. J Cell Sci 2013; 126:2164-75. [PMID: 23525012 DOI: 10.1242/jcs.111302] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Connective tissue growth factor (CTGF) plays an important role in the pathogenesis of chronic fibrotic diseases. However, the mechanism by which paracrine effects of CTGF control the cell fate of neighboring epithelial cells is not known. In this study, we investigated the paracrine effects of CTGF overexpressed in fibroblasts of Col1a2-CTGF transgenic mice on epithelial cells of skin and lung. The skin and lungs of Col1a2-CTGF transgenic mice were examined for phenotypic markers of epithelial activation and differentiation and stimulation of signal transduction pathways. In addition to an expansion of the dermal compartment in Col1a2-CTGF transgenic mice, the epidermis was characterized by focal hyperplasia, and basal cells stained positive for αSMA, Snail, S100A4 and Sox9, indicating that these cells had undergone a change in their genetic program. Activation of phosphorylated p38 and phosphorylated Erk1/2 was observed in the granular and cornified layers of the skin. Lung fibrosis was associated with a marked increase in cells co-expressing epithelial and mesenchymal markers in the lesional and unaffected lung tissue of Col1a2-CTGF mice. In epithelial cells treated with TGFβ, CTGF-specific siRNA-mediated knockdown suppressed Snail, Sox9, S100A4 protein levels and restored E-cadherin levels. Both adenoviral expression of CTGF in epithelial cells and treatment with recombinant CTGF induced EMT-like morphological changes and expression of α-SMA. Our in vivo and in vitro data supports the notion that CTGF expression in mesenchymal cells in the skin and lungs can cause changes in the differentiation program of adjacent epithelial cells. We speculate that these changes might contribute to fibrogenesis.
Collapse
Affiliation(s)
- Sonali Sonnylal
- University of Texas M. D. Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Human papillomavirus episome stability is reduced by aphidicolin and controlled by DNA damage response pathways. J Virol 2013; 87:3979-89. [PMID: 23365423 DOI: 10.1128/jvi.03473-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A highly reproducible quantitative PCR (Q-PCR) assay was used to study the stability of human papillomavirus (HPV) in undifferentiated keratinocytes that maintain viral episomes. The term "stability" refers to the ability of episomes to persist with little copy number variation in cells. In investigating the mechanism of action of PA25, a previously published compound that destabilizes HPV episomes, aphidicolin was also found to markedly decrease episome levels, but via a different pathway from that of PA25. Since aphidicolin is known to activate DNA damage response (DDR) pathways, effects of inhibitors and small interfering RNAs (siRNAs) acting within DDR pathways were investigated. Inhibitors of Chk1 and siRNA directed against ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia Rad3-related (ATR) pathways significantly reduced viral episomes, suggesting that these pathways play a role in maintaining HPV episome stability. Inhibitors of Chk2 and DNA-PK had no effect on episome levels. Pharmacological inhibition of ATM proteins had no effect on episome levels, but ATM knockdown by siRNA significantly reduced episome levels, suggesting that ATM proteins are playing an important role in HPV episome stability that does not require kinase activity. These results outline two pathways that trigger episome loss from cells and suggest the existence of a little-understood mechanism that mediates viral DNA elimination. Together, our results also indicate that HPV episomes have a stability profile that is remarkably similar to that of fragile sites; these similarities are outlined and discussed. This close correspondence may influence the preference of HPV for integration into fragile sites.
Collapse
|
65
|
Demirel D, Akyürek N, Ramzy I. Diagnostic and prognostic significance of image cytometric DNA ploidy measurement in cytological samples of cervical squamous intraepithelial lesions. Cytopathology 2013; 24:105-12. [PMID: 23331643 DOI: 10.1111/cyt.12039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To study the DNA ploidy pattern of uterine cervical squamous intraepithelial lesions (SILs) and its diagnostic and prognostic significance. METHODS The study included 31 cases of SIL: 11 low-grade (LSIL) and 20 high-grade (HSIL). Feulgen-pararosaniline staining was performed on previously Papanicolaou-stained smears and a DNA image cytometric study was performed. An internal reference was used to calibrate the samples. RESULTS All 31 cases of SIL, either LSIL or HSIL, were non-diploid. Of the 11 cases of LSIL, four were tetraploid and seven were aneuploid, whereas, of the 20 cases of HSIL, four were tetraploid and 16 were aneuploid. Stemline aneuploidy was not a significant discriminator between LSIL and HSIL (P=0.32). Based on single-cell analysis, HSIL cases had significantly higher DNA content than LSIL cases (P<0.01). When a mean of 30% or more was used for the 6c-exceeding event (6cEE) value, the sensitivity and specificity to indicate HSIL were 83% and 64%, respectively, with a positive predictive value (PPV) of 81% and negative predictive value (NPV) of 65%. All HSIL cases were cervical intraepithelial neoplasia grade 2 or worse (CIN2+) on biopsy. In addition, cases which showed recurrence had more DNA content by single-cell analysis than those with an indolent clinical behaviour: P=0.04 and P=0.03 for LSIL and HSIL, respectively. CONCLUSIONS Image cytometric DNA analysis is a useful technique for diagnostic and prognostic purposes in uterine cervical SIL when appropriate 'c' values are used in single-cell analysis. We propose that a >6c DNA content of 30% is useful as a cut-off level for predicting cases with CIN2+ in DNA image cytometry of cervical smears.
Collapse
Affiliation(s)
- D Demirel
- Department of Pathology, Gulhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey.
| | | | | |
Collapse
|
66
|
HPV-18 E2^E4 chimera: 2 new spliced transcripts and proteins induced by keratinocyte differentiation. Virology 2012; 429:47-56. [PMID: 22541938 DOI: 10.1016/j.virol.2012.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/09/2012] [Accepted: 03/30/2012] [Indexed: 11/20/2022]
Abstract
The Human Papillomavirus (HPV) E4 is known to be synthesized as an E1^E4 fusion resulting from splice donor and acceptor sites conserved across HPV types. Here we demonstrate the existence of 2 HPV-18 E2^E4 transcripts resulting from 2 splice donor sites in the 5' part of E2, while the splice acceptor site is the one used for E1^E4. Both E2^E4 transcripts are up-regulated by keratinocyte differentiation in vitro and can be detected in clinical samples containing low-grade HPV-18-positive cells from Pap smears. They give rise to two fusion proteins in vitro, E2^E4-S and E2^E4-L. Whereas we could not differentiate E2^E4-S from E1^E4 in vivo, E2^E4-L could be formally identified as a 23 kDa protein in raft cultures in which the corresponding transcript was also found, and in a biopsy from a patient with cervical intraepithelial neoplasia stage I-II (CINI-II) associated with HPV-18, demonstrating the physiological relevance of E2^E4 products.
Collapse
|
67
|
Xiao S, Tang YS, Khan RA, Zhang Y, Kusumanchi P, Stabler SP, Jayaram HN, Antony AC. Influence of physiologic folate deficiency on human papillomavirus type 16 (HPV16)-harboring human keratinocytes in vitro and in vivo. J Biol Chem 2012; 287:12559-77. [PMID: 22351779 DOI: 10.1074/jbc.m111.317040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although HPV16 transforms infected epithelial tissues to cancer in the presence of several co-factors, there is insufficient molecular evidence that poor nutrition has any such role. Because physiological folate deficiency led to the intracellular homocysteinylation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) and activated a nutrition-sensitive (homocysteine-responsive) posttranscriptional RNA operon that included interaction with HPV16 L2 mRNA, we investigated the functional consequences of folate deficiency on HPV16 in immortalized HPV16-harboring human (BC-1-Ep/SL) keratinocytes and HPV16-organotypic rafts. Although homocysteinylated hnRNP-E1 interacted with HPV16 L2 mRNA cis-element, it also specifically bound another HPV16 57-nucleotide poly(U)-rich cis-element in the early polyadenylation element (upstream of L2L1 genes) with greater affinity. Together, these interactions led to a profound reduction of both L1 and L2 mRNA and proteins without effects on HPV16 E6 and E7 in vitro, and in cultured keratinocyte monolayers and HPV16-low folate-organotypic rafts developed in physiological low folate medium. In addition, HPV16-low folate-organotypic rafts contained fewer HPV16 viral particles, a similar HPV16 DNA viral load, and a much greater extent of integration of HPV16 DNA into genomic DNA when compared with HPV16-high folate-organotypic rafts. Subcutaneous implantation of 18-day old HPV16-low folate-organotypic rafts into folate-replete immunodeficient mice transformed this benign keratinocyte-derived raft tissue into an aggressive HPV16-induced cancer within 12 weeks. Collectively, these studies establish a likely molecular linkage between poor folate nutrition and HPV16 and predict that nutritional folate and/or vitamin-B(12) deficiency, which are both common worldwide, will alter the natural history of HPV16 infections and also warrant serious consideration as reversible co-factors in oncogenic transformation of HPV16-infected tissues to cancer.
Collapse
Affiliation(s)
- Suhong Xiao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202-5254, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Klingelhutz AJ, Roman A. Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology 2012; 424:77-98. [PMID: 22284986 DOI: 10.1016/j.virol.2011.12.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/17/2011] [Accepted: 12/27/2011] [Indexed: 12/19/2022]
Abstract
The oncogenic potential of papillomaviruses (PVs) has been appreciated since the 1930s yet the mechanisms of virally-mediated cellular transformation are still being revealed. Reasons for this include: a) the oncoproteins are multifunctional, b) there is an ever-growing list of cellular interacting proteins, c) more than one cellular protein may bind to a given region of the oncoprotein, and d) there is only limited information on the proteins encoded by the corresponding non-oncogenic PVs. The perspective of this review will be to contrast the activities of the viral E6 and E7 proteins encoded by the oncogenic human PVs (termed high-risk HPVs) to those encoded by their non-oncogenic counterparts (termed low-risk HPVs) in an attempt to sort out viral life cycle-related functions from oncogenic functions. The review will emphasize lessons learned from the cell culture studies of the HPVs causing mucosal/genital tract cancers.
Collapse
|
69
|
Abstract
Head and neck squamous cell carcinomas (HNSCC) is a common cancer in humans long known to be caused by tobacco and alcohol use, but now an increasing percentage of HNSCC is recognized to be caused by the same human papillomaviruses (HPV) that cause cervical and other anogenital cancers. HPV-positive HNSCCs differ remarkably from HPV-negative HNSCCs in their clinical response and molecular properties. From studies in mice, we know that E7 is the dominant HPV oncoprotein in head and neck cancer. E7 is best known for its ability to inactivate pRb, the product of the retinoblastoma tumor susceptibility gene. However, loss of pRb function does not fully account for potency of E7 in causing head and neck cancer. In this study, we characterized the cancer susceptibility of mice deficient in the expression of pRb and either of two related "pocket" proteins, p107 and p130, that are also inactivated by E7. pRb/p107-deficient mice developed head and neck cancer as frequently as do HPV-16 E7 transgenic mice. The head and neck epithelia of the pRb/p107-deficient mice also displayed the same acute phenotypes and biomarker readouts as observed in the epithelia of E7 transgenic mice. Mice deficient for pRb and p130 in their head and neck epithelia showed intermediate acute and tumor phenotypes. We conclude that pRb and p107 act together to efficiently suppress head and neck cancer and are, therefore, highly relevant targets of HPV-16 E7 in its contribution to HPV-positive HNSCC.
Collapse
Affiliation(s)
- Myeong-Kyun Shin
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
70
|
Bowser BS, Chen HS, Conway MJ, Christensen ND, Meyers C. Human papillomavirus type 18 chimeras containing the L2/L1 capsid genes from evolutionarily diverse papillomavirus types generate infectious virus. Virus Res 2011; 160:246-55. [PMID: 21762735 DOI: 10.1016/j.virusres.2011.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/28/2011] [Accepted: 06/28/2011] [Indexed: 01/04/2023]
Abstract
Papillomaviruses (PVs) comprise a large family of viruses infecting nearly all vertebrate species, with more than 100 human PVs identified. Our previous studies showed that a mutant chimera HPV18/16 genome, consisting of the upper regulatory region and early ORFs of HPV18 and the late ORFs of HPV16, was capable of producing infectious virus in organotypic raft cultures. We were interested in determining whether the ability of this chimeric genome to produce infectious virus was the result of HPV18 and HPV16 being similarly oncogenic, anogenital types and whether more disparate PV types could also interact functionally. To test this we created a series of HPV18 chimeric genomes where the ORFs for the HPV18 capsid genes were replaced with the capsid genes of HPV45, HPV39, HPV33, HPV31, HPV11, HPV6b, HPV1a, CRPV, and BPV1. All chimeras were able to produce infectious chimeric viral particles, although with lower infectivity than wild-type HPV18. Steps in the viral life cycle and characteristics of the viral particles were examined to identify potential causes for the decrease in infectivity.
Collapse
Affiliation(s)
- Brian S Bowser
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
71
|
p63 is necessary for the activation of human papillomavirus late viral functions upon epithelial differentiation. J Virol 2011; 85:8863-9. [PMID: 21715473 DOI: 10.1128/jvi.00750-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The late phase of the human papillomavirus (HPV) life cycle is linked to epithelial differentiation, and we investigated the factors that regulate this process. One potential regulator is p63, a member of the p53 family of proteins, which modulates epithelial development, as well as proliferation capability, in stem cells. In this study, we examined the role of p63 in the HPV life cycle using a lentiviral knockdown system for p63. In epithelial cells, the ΔN truncated isoforms of p63 predominate, while the full-length TA isoforms are present at very low levels. Upon the differentiation of normal keratinocytes, p63 levels rapidly decreased while higher levels were retained in HPV-positive cells. Our studies indicate that reducing p63 levels in differentiated HPV-positive cells resulted in the loss of viral genome amplification and late gene expression. p63 regulates the expression of cell cycle regulators, and we determined that cyclin A, cyclin B1, cdk1, and cdc25c were reduced in p63-deficient, HPV-positive keratinocytes, which suggests a possible mechanism of action. In addition, activation of the DNA repair pathway is necessary for genome amplification, and the expression of two members, BRCA2 and RAD51, was altered in the absence of p63 in HPV-positive cells. Our studies indicate that p63 is necessary for the activation of differentiation-dependent HPV late viral functions and provide insights into relevant cellular targets.
Collapse
|
72
|
The E7 open reading frame acts in cis and in trans to mediate differentiation-dependent activities in the human papillomavirus type 16 life cycle. J Virol 2011; 85:8852-62. [PMID: 21697473 DOI: 10.1128/jvi.00664-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human papillomaviruses (HPVs) are the causative agents of several important genital and other mucosal cancers. The HPV16 E7 gene encodes a viral oncogene that is necessary for the continued growth of cancer cells, but its role in the normal, differentiation-dependent life cycle of the virus is not fully understood. The function of E7 in the viral life cycle was examined using a series of mutations of E7 created in the context of the complete HPV16 genome. The effect of these E7 mutations on key events of the viral life cycle, including immortalization, episomal maintenance, late promoter activation, and infectious virion synthesis, was examined. Our studies show that the pRb binding domain is indispensable for early viral activities, whereas the C-terminal zinc finger domain contributed primarily to very late events. Mutations of the casein kinase II phosphorylation site caused a complex phenotype involving both the function of E7 protein and a cis element necessary for the activation of the late promoter, identifying for the first time a promoter element important for late promoter function in the context of the viral genome. All mutant genomes tested showed reduced viral titers following growth in organotypic raft cultures. These studies clarify the role of E7 as a regulator of late events in the differentiation-dependent HPV life cycle.
Collapse
|
73
|
Edwards TG, Koeller KJ, Slomczynska U, Fok K, Helmus M, Bashkin JK, Fisher C. HPV episome levels are potently decreased by pyrrole-imidazole polyamides. Antiviral Res 2011; 91:177-86. [PMID: 21669229 DOI: 10.1016/j.antiviral.2011.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/19/2011] [Accepted: 05/29/2011] [Indexed: 12/17/2022]
Abstract
Human papillomavirus (HPV) causes cervical cancer and other hyperproliferative diseases. There currently are no approved antiviral drugs for HPV that directly decrease viral DNA load and that have low toxicity. We report the potent anti-HPV activity of two N-methylpyrrole-imidazole polyamides of the hairpin type, polyamide 1 (PA1) and polyamide 25 (PA25). Both polyamides have potent anti-HPV activity against three different genotypes when tested on cells maintaining HPV episomes. The compounds were tested against HPV16 (in W12 cells), HPV18 (in Ker4-18 cells), and HPV31 (in HPV31 maintaining cells). From a library of polyamides designed to recognize AT-rich DNA sequences such as those in or near E1 or E2 binding sites of the HPV16 origin of replication (ori), four polyamides were identified that possessed apparent IC(50)s≤150nM with no evidence of cytotoxicity. We report two highly-active compounds here. Treatment of epithelia engineered in organotypic cultures with these compounds also causes a dose-dependent loss of HPV episomal DNA that correlates with accumulation of compounds in the nucleus. Bromodeoxyuridine (BrdU) incorporation demonstrates that DNA synthesis in organotypic cultures is suppressed upon compound treatment, correlating with a loss of HPV16 and HPV18 episomes. PA1 and PA25 are currently in preclinical development as antiviral compounds for treatment of HPV-related disease, including cervical dysplasia. PA1, PA25, and related polyamides offer promise as antiviral agents and as tools to regulate HPV episomal levels in cells for the study of HPV biology. We also report that anti-HPV16 activity for Distamycin A, a natural product related to our polyamides, is accompanied by significant cellular toxicity.
Collapse
|
74
|
Development of a cellular assay system to study the genome replication of high- and low-risk mucosal and cutaneous human papillomaviruses. J Virol 2011; 85:3315-29. [PMID: 21248030 DOI: 10.1128/jvi.01985-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We found that recircularized high-risk (type 16 and 18) and low-risk mucosal (type 6b and 11) and cutaneous (type 5 and 8) human papillomavirus (HPV) genomes replicate readily when delivered into U2OS cells by electroporation. The replication efficiency is dependent on the amount of input HPV DNA and can be followed for more than 3 weeks in proliferating cell culture without selection. Cotransfection of recircularized HPV genomes with a linear G418 resistance marker plasmid has allowed subcloning of cell lines, which, in a majority of cases, carry multicopy episomal HPV DNA. Analysis of the HPV DNA status in these established cell lines showed that HPV genomes exist in these cells as stable extrachromosomal oligomers. When the cell lines were cultivated as confluent cultures, a 3- to 10-fold amplification of the HPV genomes per cell was induced. Two-dimensional (2D) agarose gel electrophoresis confirmed amplification of mono- and oligomeric HPV genomes in these confluent cell cultures. Amplification occurred as a result of the initiation of semiconservative two-dimensional replication from one active origin in the HPV oligomer. Our data suggest that the system described here might be a valuable, cost-effective, and efficient tool for use in HPV DNA replication studies, as well as for the design of cell-based assays to identify potential inhibitors of all stages of HPV genome replication.
Collapse
|
75
|
DeCarlo CA, Severini A, Edler L, Escott NG, Lambert PF, Ulanova M, Zehbe I. IFN-κ, a novel type I IFN, is undetectable in HPV-positive human cervical keratinocytes. J Transl Med 2010; 90:1482-91. [PMID: 20479716 DOI: 10.1038/labinvest.2010.95] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Interferons (IFNs) are expressed by many cell types and play a pivotal role in the generation of immune responses against viral infections. IFN-κ, a novel type I IFN, displays a tight tropism for keratinocytes and specific lymphoid populations and exhibits functional similarities with other type I IFNs. The human papillomavirus (HPV), the etiological agent for cervical cancer, infects keratinocytes of the uterine cervix and has been shown to directly inhibit the IFN pathway. We evaluated IFN-κ, -β, and -γ gene expression in HPV-negative normal and HPV-positive pre-malignant and malignant ex vivo cervical tissue covering the entire spectrum of cervical disease. Quantitative real-time polymerase chain reaction and methods previously optimized for detecting low-expressing genes in cervical tissue were used. In contrast to IFN-β and -γ, IFN-κ mRNA prevalence and levels were unexpectedly higher in diseased compared with normal whole cervical tissue with highest levels observed in invasive carcinoma tissue. Strikingly, laser capture microdissection revealed an absence of IFN-κ mRNA in diseased epithelium, whereas stromal IFN-κ was found exclusively in diseased tissue. IFN-γ and IFN-β were likewise found to be upregulated in diseased cervical stroma. Immunofluorescence supports the involvement of monocytes and dendritic cells in the stromal induction of IFNs in diseased tissue. Further, using three-dimensional raft cultures in which the viral life cycle can be mimicked, human keratinocytes transfected with full-length HPV16 displayed a significant decrease in IFN-κ mRNA compared with non-transfected human keratinocytes. Altogether, these findings show that IFN-κ is down-regulated in cervical keratinocytes harboring HPV, which may be a contributing factor in the progression of a cervical lesion.
Collapse
Affiliation(s)
- Correne A DeCarlo
- Thunder Bay Regional Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
76
|
The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J Virol 2010; 84:9398-407. [PMID: 20631133 DOI: 10.1128/jvi.00974-10] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase acts as a cellular rheostat that integrates signals from a variety of cellular signal transduction pathways that sense growth factor and nutrient availability as well as intracellular energy status. It was previously reported that the human papillomavirus type 16 (HPV16) E6 oncoprotein may activate the S6 protein kinase (S6K) through binding and E6AP-mediated degradation of the mTOR inhibitor tuberous sclerosis complex 2 (TSC2) (Z. Lu, X. Hu, Y. Li, L. Zheng, Y. Zhou, H. Jiang, T. Ning, Z. Basang, C. Zhang, and Y. Ke, J. Biol. Chem. 279:35664-35670, 2004; L. Zheng, H. Ding, Z. Lu, Y. Li, Y. Pan, T. Ning, and Y. Ke, Genes Cells 13:285-294, 2008). Our results confirmed that HPV16 E6 expression causes an increase in mTORC1 activity through enhanced phosphorylation of mTOR and activation of downstream signaling pathways S6K and eukaryotic initiation factor binding protein 1 (4E-BP1). However, we did not detect a decrease in TSC2 levels in HPV16 E6-expressing cells. We discovered, however, that HPV16 E6 expression causes AKT activation through the upstream kinases PDK1 and mTORC2 under conditions of nutrient deprivation. We show that HPV16 E6 expression causes an increase in protein synthesis by enhancing translation initiation complex assembly at the 5' mRNA cap and an increase in cap-dependent translation. The increase in cap-dependent translation likely results from HPV16 E6-induced AKT/mTORC1 activation, as the assembly of the translation initiation complex and cap-dependent translation are rapamycin sensitive. Lastly, coexpression of the HPV16 E6 and E7 oncoproteins does not affect HPV16 E6-induced activation of mTORC1 and cap-dependent translation. HPV16 E6-mediated activation of mTORC1 signaling and cap-dependent translation may be a mechanism to promote viral replication under conditions of limited nutrient supply in differentiated, HPV oncoprotein-expressing proliferating cells.
Collapse
|
77
|
Abstract
A subset of the mucosotropic human papillomaviruses (HPV), including HPV16, are etiologic agents for the vast majority of cervical cancers, other anogenital cancers, and a subset of head and neck squamous cell carcinomas. HPV16 encodes three oncogenes: E5, E6, and E7. Although E6 and E7 have been well-studied and clearly shown to be important contributors to these cancers, less is known about E5. In this study, we used E5 transgenic mice to investigate the role of E5 in cervical cancer. When treated for 6 months with estrogen, a cofactor for cervical carcinogenesis, E5 transgenic mice developed more severe neoplastic cervical disease than similarly treated nontransgenic mice, although no frank cancers were detected. In addition, E5 when combined with either E6 or E7 induced more severe neoplastic disease than seen in mice expressing only one viral oncogene. Prolonged treatment of E5 transgenic mice with exogenous estrogen uncovered an ability of E5 to cause frank cancer. These data indicate that E5 acts as an oncogene in the reproductive tracts of female mice.
Collapse
Affiliation(s)
- John P Maufort
- Department of Oncology and the McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
78
|
Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol 2010; 84:5212-21. [PMID: 20219920 DOI: 10.1128/jvi.00078-10] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human papillomaviruses (HPV) link their life cycles to epithelial differentiation and induce productive replication of viral DNA in suprabasal cells. Viral-DNA amplification requires cells to remain active in the cell cycle upon differentiation. This is in contrast to normal cells, which lose proliferative capability upon differentiation. One factor that negatively regulates proliferative capability upon differentiation is microRNA 203 (miR-203), which is expressed primarily in suprabasal epithelial cells. Although HPVs do not encode their own microRNAs (miRNAs), they modulate expression of cellular miRNAs to regulate the activities of cellular proteins. We show that the HPV E7 protein downregulates miR-203 expression upon differentiation, which may occur through the mitogen-activated protein (MAP) kinase/protein kinase C (PKC) pathway. One target of miR-203 is the p63 family of transcription factors, and we demonstrate that HPV-positive cells maintain significantly higher levels of these factors upon differentiation than do normal keratinocytes. Several downstream targets of p63, CARM-1, p21, and Bax, were also increased in E7-expressing cells, and their levels were inversely correlated with amounts of miR-203. Introduction of expression vectors for miR-203 into keratinocytes that stably maintain HPV episomes resulted in short-term elevation of HPV genome copy numbers, but these were rapidly lost upon subsequent passage. When HPV-positive cells expressing high levels of miR-203 were induced to differentiate in methylcellulose, impaired genome amplification was observed. We conclude that high levels of miR-203 are inhibitory to HPV amplification and that HPV proteins act to suppress expression of this microRNA to allow productive replication in differentiating cells.
Collapse
|
79
|
Low- and high-risk human papillomavirus E7 proteins regulate p130 differently. Virology 2010; 400:233-9. [PMID: 20189212 DOI: 10.1016/j.virol.2010.01.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/17/2009] [Accepted: 01/27/2010] [Indexed: 11/23/2022]
Abstract
The E7 protein of high-risk human papillomaviruses (HR HPVs) targets pRb family members (pRb, p107 and p130) for degradation; low-risk (LR) HPV E7 only targets p130 for degradation. The effect of HR HPV 16 E7 and LR HPV 6 E7 on p130 intracellular localization and half-life was examined. Nuclear/cytoplasmic fractionation and immunofluorescence showed that, in contrast to control and HPV 6 E7-expressing cells, a greater amount of p130 was present in the cytoplasm in the presence of HPV 16 E7. The half-life of p130, relative to control cells, was decreased in the cytoplasm in the presence of HPV 6 E7 or HPV 16 E7, but only decreased by HPV 6 E7 in the nucleus. Inhibition of proteasomal degradation extended the half-life of p130, regardless of intracellular localization. These results suggest that there may be divergent mechanisms by which LR and HR HPV E7 target p130 for degradation.
Collapse
|
80
|
Satsuka A, Yoshida S, Kajitani N, Nakamura H, Sakai H. Novel human papillomavirus type 18 replicon and its application in screening the antiviral effects of cytokines. Cancer Sci 2010; 101:536-42. [PMID: 19917059 PMCID: PMC11158604 DOI: 10.1111/j.1349-7006.2009.01411.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human papillomaviruses (HPVs) infect the stratified epithelial organ. The infection induces benign tumors, which occasionally progress into malignant tumors. To elucidate the virus-induced tumorigenesis, an understanding of the lifecycle of HPV is crucial. In this report, we developed a new system for the analysis of the HPV lifecycle. The new system consists of a novel HPV replicon and an organotypic "raft" culture, by which the HPV-DNA is maintained stably in normal human keratinocytes for a long period and the viral vegetative replication is reproduced. This system will benefit biochemical and genetic studies on the lifecycle of HPV and tumorigenesis. This system is also valuable in screening for antiviral compounds. We confirmed its usefulness by evaluating the antivirus effect of cytokines.
Collapse
Affiliation(s)
- Ayano Satsuka
- Laboratory of Gene Analysis, Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
81
|
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. Human papillomavirus (HPV) infection is necessary but not sufficient for the development of cervical cancer. Genomic instability caused by HPV allows cells to acquire additional mutations required for malignant transformation. Genomic instability in the form of polyploidy has been implicated in a causal role in cervical carcinogenesis. Polyploidy not only occurs as an early event during cervical carcinogenesis but also predisposes cervical cells to aneuploidy, an important hallmark of human cancers. Cell cycle progression is regulated at several checkpoints whose defects contribute to genomic instability.The high-risk HPVs encode two oncogenes, E6 and E7, which are essential for cellular transformation in HPV-positive cells. The ability of high-risk HPV E6 and E7 protein to promote the degradation of p53 and pRb, respectively, has been suggested as a mechanism by which HPV oncogenes induce cellular transformation. E6 and E7 abrogate cell cycle checkpoints and induce genomic instability that leads to malignant conversion.Although the prophylactic HPV vaccine has recently become available, it will not be effective for immunosuppressed individuals or those who are already infected. Therefore, understanding the molecular basis for HPV-associated cancers is still clinically relevant. Studies on genomic instability will shed light on mechanisms by which HPV induces cancer and hold promise for the identification of targets for drug development.
Collapse
Affiliation(s)
- Jason J Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
82
|
Boccardo E, Manzini Baldi CV, Carvalho AF, Rabachini T, Torres C, Barreta LA, Brentani H, Villa LL. Expression of human papillomavirus type 16 E7 oncoprotein alters keratinocytes expression profile in response to tumor necrosis factor-alpha. Carcinogenesis 2009; 31:521-31. [PMID: 20042637 DOI: 10.1093/carcin/bgp333] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute expression of E7 oncogene from human papillomavirus (HPV) 16 or HPV18 is sufficient to overcome tumor necrosis factor (TNF)-alpha cytostatic effect on primary human keratinocytes. In the present study, we investigated the molecular basis of E7-induced TNF resistance through a comparative analysis of the effect of this cytokine on the proliferation and global gene expression of normal and E7-expressing keratinocytes. Using E7 functional mutants, we show that E7-induced TNF resistance correlates with its ability to mediate pRb degradation and cell transformation. On the other hand, this effect does not depend on E7 sequences required to override DNA damage-induced cell cycle arrest or extend keratinocyte life span. Furthermore, we identified a group of 66 genes whose expression pattern differs between normal and E7-expressing cells upon cytokine treatment. These genes are mainly involved in cell cycle regulation suggesting that their altered expression may contribute to sustained cell proliferation even in the presence of a cytostatic stimulus. Differential expression of TCN1 (transcobalamin I), IFI44 (Interferon-induced protein 44), HMGB2 (high-mobility group box 2) and FUS [Fusion (involved in t(12;16) in malignant liposarcoma)] among other genes were further confirmed by western-blot and/or real-time polymerase chain reaction. Moreover, FUS upregulation was detected in HPV-positive cervical high-grade squamous intraepithelial lesions when compared with normal cervical tissue. Further evaluation of the role of such genes in TNF resistance and HPV-associated disease development is warranted.
Collapse
Affiliation(s)
- Enrique Boccardo
- Virology Group, Ludwig Institute for Cancer Research, São Paulo 01323-903, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Zhang W, Li J, Kanginakudru S, Zhao W, Yu X, Chen JJ. The human papillomavirus type 58 E7 oncoprotein modulates cell cycle regulatory proteins and abrogates cell cycle checkpoints. Virology 2009; 397:139-44. [PMID: 19945133 DOI: 10.1016/j.virol.2009.10.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 09/29/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
HPV type 58 (HPV-58) is the third most common HPV type in cervical cancer from Eastern Asia, yet little is known about how it promotes carcinogenesis. In this study, we demonstrate that HPV-58 E7 significantly promoted the proliferation and extended the lifespan of primary human keratinocytes (PHKs). HPV-58 E7 abrogated the G1 and the postmitotic checkpoints, although less efficiently than HPV-16 E7. Consistent with these observations, HPV-58 E7 down-regulated the cellular tumor suppressor pRb to a lesser extent than HPV-16 E7. Similar to HPV-16 E7 expressing PHKs, Cdk2 remained active in HPV-58 E7 expressing PHKs despite the presence of elevated levels of p53 and p21. Interestingly, HPV-58 E7 down-regulated p130 more efficiently than HPV-16 E7. Our study demonstrates a correlation between the ability of down-regulating pRb/p130 and abrogating cell cycle checkpoints by HPV-58 E7, which also correlates with the biological risks of cervical cancer progression associated with HPV-58 infection.
Collapse
Affiliation(s)
- Weifang Zhang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | |
Collapse
|
84
|
Oh KJ, Kalinina A, Bagchi S. Destabilization of Rb by human papillomavirus E7 is cell cycle dependent: E2-25K is involved in the proteolysis. Virology 2009; 396:118-24. [PMID: 19906396 DOI: 10.1016/j.virol.2009.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/16/2009] [Accepted: 10/13/2009] [Indexed: 01/12/2023]
Abstract
The HPV oncoprotein E7 promotes proteasomal degradation of the tumor suppressor protein Rb. In this study, we analyzed the regulation of E7-induced Rb proteolysis in HPV-containing Caski cervical cancer cells. We show that the Rb proteolysis is cell cycle dependent; in S phase Rb is stable while in post-mitotic early G1 phase cells and in differentiated cells, Rb is unstable. Similarly, the in vivo Rb/E7 interaction is not detected in S-phase cells, but is readily detected in differentiating Caski cells. The ubiquitinating enzymes involved in Rb proteolysis have not been identified. We find that the E3 ligase MDM2 is not involved in the Rb proteolysis in Caski cells. An in vivo analysis using multiple catalytic site mutant dominant negative E2 enzymes show that the C92A E2-25K most effectively blocks E7-induced Rb proteolysis. Taken together, these results show that E7 induces Rb proteolysis in growth-arrested cells and E2-25K is involved in the proteolysis.
Collapse
Affiliation(s)
- Kwang-Jin Oh
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
85
|
Guanine Exchange Factor Vav2: A Novel Potential Target for the Development of Drugs Effective in the Prevention of Papillomavirus Infection and Disease. Am J Ther 2009; 16:496-507. [DOI: 10.1097/mjt.0b013e31819be0a5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
86
|
Gao G, Peng M, Zhu L, Wei Y, Wu X. Human papillomavirus 16 variant E7 gene induces transformation of NIH 3T3 cells via up-regulation of cdc25A and cyclin A. Int J Gynecol Cancer 2009; 19:494-9. [PMID: 19509542 DOI: 10.1111/igc.0b013e3181a39c45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In previous studies, we firstly isolated a new human papillomavirus type 16 E7 variant (HBE7.16) from cervical cancer biopsies of patients from Wufeng County of Hubei Province, China, where the mortality rate of cervical cancer ranks the highest in China. We identified 2 mutations in HBE7.16 compared with the prototype E7 gene (E7.16). The more relevant mutation produces a termination codon, resulting in a truncated E7 protein containing 43 amino acids, making it about half the size of the wild-type. In this study, we investigated the biological function of this HBE7.16 protein. We compared the transforming potential of HBE7.16 to E7.16 in National Institute of Health (NIH) 3T3 cells using cell proliferation and anchorage-independent growth assays. We also examined the expression level of cdc25A, cyclin A, and cyclin E in transformed cells using semi-quantitative reverse transcription-polymerase chain reaction. The results showed that E7.16 and HBE7.16 significantly transform NIH3T3 cells, and HBE7.16 holds greater transforming activity than E7.16. Cells expressing HBE7.16 can more easily transit from G1 into S phase and express higher levels of cdc25A and cyclin A compared with E7.16. No significant difference in the expression level of cyclin E was seen. We propose that up-regulation of cdc25A and cyclin A contributes, at least partially, to E7.16- or HBE7.16-induced transformation of NIH 3T3 cells. In addition, higher transforming ability of HBE7.16 may be responsible for the increased mortality of cervical cancer in Wufeng County.
Collapse
Affiliation(s)
- Guifang Gao
- Institution of Virology, School of Medicine, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
87
|
Beglin M, Melar-New M, Laimins L. Human papillomaviruses and the interferon response. J Interferon Cytokine Res 2009; 29:629-35. [PMID: 19715460 PMCID: PMC2956683 DOI: 10.1089/jir.2009.0075] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human papillomaviruses (HPV) are small DNA viruses that target stratified keratinocytes for infection. A subset of HPV types infect epithelia in the genital tract and are the causative agents of cervical as well as other anogenital cancers. Interferon treatment of existing genital HPV lesions has had mixed results. While HPV proteins down-regulate the expression of interferon-inducible genes, interferon treatment ultimately induces their high-level transcription after a delay. Cells containing complete HPV genomes that are able to undergo productive replication upon differentiation are sensitive to interferon-induced growth arrest, while cells from high-grade cancers that only express E6 and E7 are resistant. Recent studies indicate this sensitivity is dependent upon the binding of the interferon-inducible factor, p56, to the E1 replication protein. The response to interferon by HPV proteins is complex and results from the action of multiple viral proteins.
Collapse
Affiliation(s)
- Melanie Beglin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
88
|
Bourgo RJ, Braden WA, Wells SI, Knudsen ES. Activation of the retinoblastoma tumor suppressor mediates cell cycle inhibition and cell death in specific cervical cancer cell lines. Mol Carcinog 2009; 48:45-55. [PMID: 18506774 DOI: 10.1002/mc.20456] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-risk human papilloma virus (HPV) encodes two oncoproteins, E6 and E7, which are vital to viral replication and contribute to the development of cervical cancer. HPV16 E7 can target over 20 cellular proteins, but is best known for inactivating the retinoblastoma (RB) tumor suppressor. RB functions by restraining cells from entering S-phase of the cell cycle, thus preventing aberrant proliferation. While it is well established that HPV16 E7 facilitates the degradation of the RB protein, the ability of the RB pathway to overcome E7 action is less well understood. In this study the RB-pathway was activated via the overexpression of the p16ink4a tumor suppressor or ectopic expression of an active allele of RB (PSM-RB). While p16ink4a had no influence on cell cycle progression, PSM-RB expression was sufficient to induce a cell cycle arrest in both SiHa and HeLa cells, HPV positive cervical cancer cell lines. Strikingly, this arrest led to the downregulation of E2F target gene expression, which was antagonized via enhanced HPV-E7 expression. Since downmodulation of E7 function is associated with chronic growth arrest and senescence, the effect of PSM-RB on proliferation and survival was evaluated. Surprisingly, sustained PSM-RB expression impeded the proliferation of SiHa cells, resulting in both cell cycle inhibition and cell death. From these studies we conclude that active RB expression can sensitize specific cervical cancer cells to cell cycle inhibition and cell death. Thus, targeted therapies involving activation of RB function may be effective in inducing cell death in cervical cancer.
Collapse
Affiliation(s)
- Ryan J Bourgo
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
89
|
Shin MK, Balsitis S, Brake T, Lambert PF. Human papillomavirus E7 oncoprotein overrides the tumor suppressor activity of p21Cip1 in cervical carcinogenesis. Cancer Res 2009; 69:5656-63. [PMID: 19584294 DOI: 10.1158/0008-5472.can-08-3711] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The E7 oncoprotein of the high-risk human papillomaviruses (HPV) is thought to contribute to cervical carcinogenesis at least in part by abrogating cell cycle regulation. E7 can dysregulate the cell cycle through its interaction with several cellular proteins including the retinoblastoma suppressor protein pRb, as well as the cyclin-dependent kinase inhibitor p21(Cip1). Inactivation of pRb in cervical epithelia is not sufficient to explain the ability of E7 to cause cervical cancers in transgenic mice. In the current study, we focused on the role of p21(Cip1) in cervical cancer. Cervical disease was significantly increased in p21(-/-) mice compared with p21(+/+) mice, showing that p21(Cip1) can function as a tumor suppressor in this tissue. Importantly, the ability of E7 to induce cervical cancers was not significantly enhanced on the p21-null background, consistent with the hypothesis that the ability of E7 to inhibit p21(Cip1) contributes to its carcinogenic properties. Further supportive of this hypothesis, cervical carcinogenesis in mice expressing a mutant form of HPV-16 E7, E7(CVQ), which fails to inactivate p21(Cip1), was significantly reduced compared with that in K14E7(WT) mice expressing wild-type HPV-16 E7. However, K14E7(CVQ) mice still displayed heightened levels of cervical carcinogenesis compared with that in nontransgenic mice, indicating that activities of E7 besides its capacity to inactivate p21(Cip1) also contribute to cervical carcinogenesis. Taken together, we conclude that p21(Cip1) functions as a tumor suppressor in cervical carcinogenesis and that p21(Cip1) inactivation by HPV-16 E7 partially contributes to the contribution of E7 to cervical carcinogenesis.
Collapse
Affiliation(s)
- Myeong-Kyun Shin
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
90
|
Rescue of key features of the p63-null epithelial phenotype by inactivation of Ink4a and Arf. EMBO J 2009; 28:1904-15. [PMID: 19494829 DOI: 10.1038/emboj.2009.151] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 05/12/2009] [Indexed: 12/22/2022] Open
Abstract
Mice lacking p63 cannot form skin, exhibit craniofacial and skeletal defects, and die soon after birth. The p63 gene regulates a complex network of target genes, and disruption of p63 has been shown to affect the maintenance of epithelial stem cells, the differentiation of keratinocytes, and the preservation of the adhesive properties of stratified epithelium. Here, we show that inactivation of p63 in mice is accompanied by aberrantly increased expression of the Ink4a and Arf tumour suppressor genes. In turn, anomalies of the p63-null mouse affecting the skin and skeleton are partially ameliorated in mice lacking either Ink4a or Arf. Rescue of epithelialization is accompanied by restoration of keratinocyte proliferative capacity both in vivo and in vitro and by expression of markers of squamous differentiation. Thus, in the absence of p63, abnormal upregulation of Ink4a and Arf is incompatible with skin development.
Collapse
|
91
|
Abstract
A combination of functional studies on human papillomavirus (HPV) oncoproteins and epidemiological studies on persistence of HPV infection firmly established a role for HPV in the etiology of cervical cancers. Understanding the viral life cycle of HPVs has been more difficult. In this issue of Genes & Development, Wang et al. (pp. 181 - 194) describe an efficient method to propagate infectious HPV in differentiating epithelium, providing clear evidence for temporal separation of viral and cellular replication.
Collapse
|
92
|
E7 oncoprotein of novel human papillomavirus type 108 lacking the E6 gene induces dysplasia in organotypic keratinocyte cultures. J Virol 2009; 83:2907-16. [PMID: 19153227 DOI: 10.1128/jvi.02490-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genome organization of the novel human papillomavirus type 108 (HPV108), isolated from a low-grade cervical lesion, deviates from those of other HPVs in lacking an E6 gene. The three related HPV types HPV103, HPV108, and HPV101 were isolated from cervicovaginal cells taken from normal genital mucosa (HPV103) and low-grade (HPV108) and high-grade cervical (HPV101) intraepithelial neoplasia (Z. Chen, M. Schiffman, R. Herrero, R. DeSalle, and R. D. Burk, Virology 360:447-453, 2007, and this report). Their unusual genome organization, against the background of considerable phylogenetic distance from the other HPV types usually associated with lesions of the genital tract, prompted us to investigate whether HPV108 E7 per se is sufficient to induce the above-mentioned clinical lesions. Expression of HPV108 E7 in organotypic keratinocyte cultures increases proliferation and apoptosis, focal nuclear polymorphism, and polychromasia. This is associated with irregular intra- and extracellular lipid accumulation and loss of the epithelial barrier. These alterations are linked to HPV108 E7 binding to pRb and inducing its decrease, an increase in PCNA expression, and BrdU incorporation, as well as increased p53 and p21(CIP1) protein levels. A delay in keratin K10 expression, increased expression of keratins K14 and K16, and loss of the corneal proteins involucrin and loricrin have also been noted. These modifications are suggestive of infection by a high-risk papillomavirus.
Collapse
|
93
|
Abrogation of the postmitotic checkpoint contributes to polyploidization in human papillomavirus E7-expressing cells. J Virol 2009; 83:2756-64. [PMID: 19129456 DOI: 10.1128/jvi.02149-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-risk types of human papillomavirus (HPV) are considered the major causative agents of cervical carcinoma. The transforming ability of HPV resides in the E6 and E7 oncogenes, yet the pathway to transformation is not well understood. Cells expressing the oncogene E7 from high-risk HPVs have a high incidence of polyploidy, which has been shown to occur as an early event in cervical carcinogenesis and predisposes the cells to aneuploidy. The mechanism through which E7 contributes to polyploidy is not known. It has been hypothesized that E7 induces polyploidy in response to mitotic stress by abrogating the mitotic spindle assembly checkpoint. It was also proposed that E7 may stimulate rereplication to induce polyploidy. We have tested these hypotheses by using human epithelial cells in which E7 expression induces a significant amount of polyploidy. We find that E7-expressing cells undergo normal mitoses with an intact spindle assembly checkpoint and that they are able to complete cytokinesis. Our results also exclude DNA rereplication as a major mechanism of polyploidization in E7-expressing cells upon microtubule disruption. Instead, we have shown that while normal cells arrest at the postmitotic checkpoint after adaptation to the spindle assembly checkpoint, E7-expressing cells replicate their DNA and propagate as polyploid cells. Thus, abrogation of the postmitotic checkpoint leads to polyploidy formation in E7-expressing human epithelial cells. Our results suggest that downregulation of pRb is important for E7 to induce polyploidy and abrogation of the postmitotic checkpoint.
Collapse
|
94
|
Human papillomavirus E7 protein deregulates mitosis via an association with nuclear mitotic apparatus protein 1. J Virol 2008; 83:1700-7. [PMID: 19052088 DOI: 10.1128/jvi.01971-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously observed that high-risk human papillomavirus type 16 (HPV16) E7 expression leads to the delocalization of dynein from mitotic spindles (C. L. Nguyen, M. E. McLaughlin-Drubin, and K. Munger, Cancer Res. 68:8715-8722, 2008). Here, we show that HPV16 E7 associates with nuclear mitotic apparatus protein 1 (NuMA) and that NuMA binding and the ability to induce dynein delocalization map to similar carboxyl-terminal sequences of E7. Additionally, we show that the delocalization of dynein from mitotic spindles by HPV16 E7 and the interaction between HPV16 E7 and NuMA correlate with the induction of defects in chromosome alignment during prometaphase even in cells with normal centrosome numbers. Furthermore, low-risk HPV6b and HPV11 E7s also associate with NuMA and also induce a similar mitotic defect. It is possible that the disruption of mitotic events by HPV E7, via targeting of the NuMA/dynein complex and potentially other NuMA-containing complexes, contributes to viral maintenance and propagation potentially through abrogating the differentiation program of the infected epithelium. Furthermore, in concert with activities specific to high-risk HPV E6 and E7, such as the inactivation of the p53 and pRB tumor suppressors, respectively, the disruption of the NuMA/dynein network may result in mitotic errors that would make an infected cell more prone to the accumulation of aneuploidy even in the absence of supernumerary centrosomes.
Collapse
|
95
|
McLaughlin-Drubin ME, Münger K. The human papillomavirus E7 oncoprotein. Virology 2008; 384:335-44. [PMID: 19007963 DOI: 10.1016/j.virol.2008.10.006] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 10/03/2008] [Indexed: 01/01/2023]
Abstract
The human papillomavirus (HPV) E7 oncoprotein shares functional similarities with such proteins as adenovirus E1A and SV40 large tumor antigen. As one of only two viral proteins always expressed in HPV-associated cancers, E7 plays a central role in both the viral life cycle and carcinogenic transformation. In the HPV viral life cycle, E7 disrupts the intimate association between cellular differentiation and proliferation in normal epithelium, allowing for viral replication in cells that would no longer be in the dividing population. This function is directly reflected in the transforming activities of E7, including tumor initiation and induction of genomic instability.
Collapse
|
96
|
Zehbe I, Richard C, DeCarlo CA, Shai A, Lambert PF, Lichtig H, Tommasino M, Sherman L. Human papillomavirus 16 E6 variants differ in their dysregulation of human keratinocyte differentiation and apoptosis. Virology 2008; 383:69-77. [PMID: 18986660 DOI: 10.1016/j.virol.2008.09.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/25/2008] [Accepted: 09/23/2008] [Indexed: 11/15/2022]
Abstract
L83V-related variants of human papillomavirus (HPV) 16 E6, exemplified by the Asian-American variant Q14H/H78Y/L83V, were shown to be more prevalent than E6 prototype in progressing lesions and cervical cancer. We evaluated functions relevant to carcinogenesis for the E6 variants L83V, R10/L83V and Q14H/H78Y/L83V as well as the prototype in a model of human normal immortalized keratinocytes (NIKS). All E6 expressing NIKS equally abrogated growth arrest and DNA damage responses. Organotypic cultures derived from these keratinocytes demonstrated hyperplasia and aberrantly expressed keratin 5 in the suprabasal compartment. In contrast, differentiation and induction of apoptosis varied. The E6 variant rafts expressed keratin 10 in nearly all suprabasal cells while the prototype raft showed keratin 10 staining in a subset of suprabasal cells only. In addition, E6 variant NIKS expressing R10G/L83V and Q14H/H78Y/L83V were more prone to undergo cell-detachment-induced apoptosis (anoikis) than NIKS expressing E6 prototype. The combined differentiation and apoptosis pattern of high-risk E6 variants, especially of Q14H/H78Y/L83V, may reflect a phenotype beneficial to carcinogenesis and viral life cycle.
Collapse
Affiliation(s)
- Ingeborg Zehbe
- Thunder Bay Regional Health Sciences Centre, Regional Cancer Care, Thunder Bay, Ontario, Canada P7B 6V4.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Human papillomavirus type 16 mutant E7 protein induces oncogenic transformation via up-regulation of cyclin A and cdc25A. Virol Sin 2008. [PMCID: PMC7091053 DOI: 10.1007/s12250-008-2966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A new mutant human papillomavirus type 16 E7 gene, termed HPV16 HBE7, was isolated from cervical carcinoma biopsy samples from patients in an area with high incidence of cervical cancer (Hubei province, China). A previous study showed that the HPV16 HBE7 protein was primarily cytoplasmic while wild-type HPV16 E7 protein, termed HPV16 WE7, was concentrated in the nucleus. With the aim of studying the biological functions of HPV16 HBE7, the transforming potential of HPV16 HBE7 in NIH/3T3 cells was detected through observation of cell morphology, cell prolieration assay and anchorage-independent growth assay. The effect of HPV16 HBE7 on cell cycle was examined by flow cytometry. Dual-luciferase reporter assay and RT-PCR were used to investigate the influence of HPV16 HBE7 protein on the expression of regulation factors associated with G1/S checkpoint. The results showed that HPV16 HBE7 protein, as well as HPV16 WE7 protein, held transformation activity. NIH/3T3 cells expressing HPV16 HBE7 could easily transition from G1 phase into S phase and expressed high level of cyclin A and cdc25A. These results indicated HPV16 mutant E7 protein, located in the cytoplasm, induces oncogenic transformation of NIH/3T3 cells via up-regulation of cyclin A and cdc25A
Collapse
|
98
|
Lorenzato M, Caudroy S, Nou JM, Dalstein V, Joseph K, Bellefqih S, Durlach A, Thil C, Dez F, Bouttens D, Clavel C, Birembaut P. Contribution of DNA ploidy image cytometry to the management of ASC cervical lesions. Cancer 2008; 114:263-9. [PMID: 18618504 DOI: 10.1002/cncr.23638] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The Bethesda system classifies smears that suggest an underlying cervical intraepithelial neoplasia (CIN) as ASC (atypical squamous cell) smears. ASC smears are subdivided into ASCUS (of undetermined significance) and ASCH (cannot exclude a high-grade lesion). Today the management of ASCUS is a triage with HR-HPV testing and colposcopy is recommended for ASCH. The aim was to conduct a study on ASC smears to determine DNA ploidy measurement for the detection of CIN2+. METHODS The link between a suspect DNA ploidy assessed by image cytometry and/or a positive HR-HPV testing was analyzed on 69 ASCUS and 82 ASCH smears, and the presence of CIN2+ within 12 months after ASC diagnosis. The ploidy was suspect in case of aneuploidy, multiploidy, or in the presence of cells with a DNA content >5c or >9c. RESULTS Every woman who had a CIN2+ had a suspect DNA profile in the ASCUS smears and every woman except 1 was HR-HPV-positive. The link between a positive HR-HPV test or a suspect DNA profile or both and a CIN2+ was high (P = .019, .023, and .008, respectively). The presence of >9c cells was particularly linked to CIN2+ (P = .0031). In all, 90.9% and 87.9% of the ASCH smears with CIN2+ were, respectively, HR-HPV positive or had a suspect ploidy (P = .0000 and P = .0043), and the presence of >9c cells was also linked to CIN2+ (P = .003). CONCLUSIONS HR-HPV testing and determination of the ploidy profile with special attention to 9c-exceeding cells could be accurate for a better management of ASC smears.
Collapse
Affiliation(s)
- Marianne Lorenzato
- CHU Reims, Hôpital Maison Blanche, Laboratoire Pol Bouin, Reims F-51092, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Cell-Cycle Control Protein Expression Is Disrupted in Anogenital Condylomata Infected With Low-Risk Human Papillomavirus Types. J Low Genit Tract Dis 2008; 12:224-31. [DOI: 10.1097/lgt.0b013e318166eff2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
100
|
Casein kinase II motif-dependent phosphorylation of human papillomavirus E7 protein promotes p130 degradation and S-phase induction in differentiated human keratinocytes. J Virol 2008; 82:4862-73. [PMID: 18321970 DOI: 10.1128/jvi.01202-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The E7 proteins of human papillomaviruses (HPVs) promote S-phase reentry in differentiated keratinocytes of the squamous epithelia to support viral DNA amplification. In this study, we showed that nuclear p130 was present in the differentiated strata of several native squamous epithelia susceptible to HPV infection. In contrast, p130 was below the level of detection in HPV-infected patient specimens. In submerged and organotypic cultures of primary human keratinocytes, the E7 proteins of the high-risk mucosotrophic HPV-18, the benign cutaneous HPV-1, and, to a lesser extent, the low-risk mucosotropic HPV-11 destabilized p130. This E7 activity depends on an intact pocket protein binding domain and a casein kinase II (CKII) phosphorylation motif. Coimmunoprecipitation experiments showed that both E7 domains were important for binding to p130 in extracts of organotypic cultures. Metabolic labeling in vivo demonstrated that E7 proteins were indeed phosphorylated in a CKII motif-dependent manner. Moreover, the efficiencies of the E7 proteins of various HPV types or mutations to induce S-phase reentry in spinous cells correlated with their relative abilities to bind and to destabilize p130. Collectively, these data support the notion that p130 controls the homeostasis of the differentiated keratinocytes and is therefore targeted by E7 for degradation to establish conditions permissive for viral DNA amplification.
Collapse
|