51
|
Role of cell-type-specific endoplasmic reticulum-associated degradation in polyomavirus trafficking. J Virol 2013; 87:8843-52. [PMID: 23740996 DOI: 10.1128/jvi.00664-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BK polyomavirus (BKPyV) is a widespread human pathogen that establishes a lifelong persistent infection and can cause severe disease in immunosuppressed patients. BKPyV is a nonenveloped DNA virus that must traffic through the endoplasmic reticulum (ER) for productive infection to occur; however, it is unknown how BKPyV exits the ER before nuclear entry. In this study, we elucidated the role of the ER-associated degradation (ERAD) pathway during BKPyV intracellular trafficking in renal proximal tubule epithelial (RPTE) cells, a natural host cell. Using proteasome and ERAD inhibitors, we showed that ERAD is required for productive entry. Altered trafficking and accumulation of uncoated viral intermediates were detected by fluorescence in situ hybridization and indirect immunofluorescence in the presence of an inhibitor. Additionally, we detected a change in localization of partially uncoated virus within the ER during proteasome inhibition, from a BiP-rich area to a calnexin-rich subregion, indicating that BKPyV accumulated in an ER subcompartment. Furthermore, inhibiting ERAD did not prevent entry of capsid protein VP1 into the cytosol from the ER. By comparing the cytosolic entry of the related polyomavirus simian virus 40 (SV40), we found that dependence on the ERAD pathway for cytosolic entry varied between the polyomaviruses and between different cell types, namely, immortalized CV-1 cells and primary RPTE cells.
Collapse
|
52
|
Role of cell-type-specific endoplasmic reticulum-associated degradation in polyomavirus trafficking. J Virol 2013. [PMID: 23740996 DOI: 10.1028/jvi.00664-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BK polyomavirus (BKPyV) is a widespread human pathogen that establishes a lifelong persistent infection and can cause severe disease in immunosuppressed patients. BKPyV is a nonenveloped DNA virus that must traffic through the endoplasmic reticulum (ER) for productive infection to occur; however, it is unknown how BKPyV exits the ER before nuclear entry. In this study, we elucidated the role of the ER-associated degradation (ERAD) pathway during BKPyV intracellular trafficking in renal proximal tubule epithelial (RPTE) cells, a natural host cell. Using proteasome and ERAD inhibitors, we showed that ERAD is required for productive entry. Altered trafficking and accumulation of uncoated viral intermediates were detected by fluorescence in situ hybridization and indirect immunofluorescence in the presence of an inhibitor. Additionally, we detected a change in localization of partially uncoated virus within the ER during proteasome inhibition, from a BiP-rich area to a calnexin-rich subregion, indicating that BKPyV accumulated in an ER subcompartment. Furthermore, inhibiting ERAD did not prevent entry of capsid protein VP1 into the cytosol from the ER. By comparing the cytosolic entry of the related polyomavirus simian virus 40 (SV40), we found that dependence on the ERAD pathway for cytosolic entry varied between the polyomaviruses and between different cell types, namely, immortalized CV-1 cells and primary RPTE cells.
Collapse
|
53
|
Moens U, Van Ghelue M, Song X, Ehlers B. Serological cross-reactivity between human polyomaviruses. Rev Med Virol 2013; 23:250-64. [DOI: 10.1002/rmv.1747] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Ugo Moens
- University of Tromsø, Faculty of Health Sciences; Department of Medical Biology; Tromsø Norway
| | - Marijke Van Ghelue
- University Hospital of Northern-Norway; Department of Medical Genetics; Tromsø Norway
| | - Xiaobo Song
- University of Tromsø, Faculty of Health Sciences; Department of Medical Biology; Tromsø Norway
| | - Bernhard Ehlers
- Robert Koch Institute; Department of Infectious Diseases; Berlin Germany
| |
Collapse
|
54
|
Ravindran S, Snee PT, Ramachandran A, George A. Acidic domain in dentin phosphophoryn facilitates cellular uptake: implications in targeted protein delivery. J Biol Chem 2013; 288:16098-109. [PMID: 23589294 DOI: 10.1074/jbc.m113.450585] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dentin phosphophoryn is nature's most acidic protein found predominantly in the dentin extracellular matrix. Its unique amino acid composition containing Asp-Ser (DS)-rich repeats makes it highly anionic. It has a low isoelectric point (pI 1.1) and, therefore, tends to be negatively charged at physiological pH. Phosphophoryn is normally associated with matrix mineralization as it can bind avidly to Ca(2+). It is well known that several macromolecules present in the extracellular matrix can be internalized and localized to specific intracellular compartments. In this study we demonstrate that dentin phosphophoryn (DPP) is internalized by several cell types via a non-conventional endocytic process. Utilizing a DSS polypeptide derived from DPP, we demonstrate the repetitive DSS-rich domain facilitates that endocytosis. As a proof-of-concept, we further demonstrate the use of this polypeptide as a protein delivery vehicle by delivering the osteoblast transcription factor Runx2 to the nucleus of mesenchymal cells. The functionality of the endocytosed Runx2 protein was demonstrated by performing gene expression analysis of Runx2 target genes. Nuclear localization was also demonstrated with the fusion protein DSS-Runx2 conjugated to quantum dots in two- and three-dimensional culture models in vitro and in vivo. Overall, we demonstrate that the DSS domain of DPP functions as a novel cell-penetrating peptide, and these findings demonstrate new opportunities for intracellular delivery of therapeutic proteins and cell tracking in vivo.
Collapse
Affiliation(s)
- Sriram Ravindran
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory Department of Oral Biology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
55
|
Bradbury FA. Potential role for the retromer complex in polyomavirus infection. Future Virol 2013. [DOI: 10.2217/fvl.13.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Faye A Bradbury
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, MI 48109, USA
| |
Collapse
|
56
|
Cerqueira C, Schelhaas M. Principles of polyoma- and papillomavirus uncoating. Med Microbiol Immunol 2012; 201:427-36. [PMID: 23001401 DOI: 10.1007/s00430-012-0262-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/23/2012] [Indexed: 01/09/2023]
Abstract
Virus particles are vehicles for transmission of the viral genetic information between infected and uninfected cells and organisms. They have evolved to self-assemble, to serve as a protective shell for the viral genome during transfer, and to disassemble when entering a target cell. Disassembly during entry is a complex, multi-step process typically termed uncoating. Uncoating is triggered by multiple host-cell interactions. During cell entry, these interactions occur sequentially in different cellular compartments that the viruses pass through on their way to the site of replication. Here, we highlight the general principles of uncoating for two structurally related virus families, the polyoma- and papillomaviruses. Recent research indicates the use of different compartments and cellular interactions for uncoating despite their structural similarity.
Collapse
Affiliation(s)
- Carla Cerqueira
- Emmy-Noether Group Virus Endocytosis, Institutes of Molecular Virology and Medical Biochemistry, University of Münster, Münster, Germany
| | | |
Collapse
|
57
|
Kobiler O, Drayman N, Butin-Israeli V, Oppenheim A. Virus strategies for passing the nuclear envelope barrier. Nucleus 2012; 3:526-39. [PMID: 22929056 PMCID: PMC3515536 DOI: 10.4161/nucl.21979] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses that replicate in the nucleus need to pass the nuclear envelope barrier during infection. Research in recent years indicates that the nuclear envelope is a major hurdle for many viruses. This review describes strategies to overcome this obstacle developed by seven virus families: herpesviridae, adenoviridae, orthomyxoviridae, lentiviruses (which are part of retroviridae), Hepadnaviridae, parvoviridae and polyomaviridae. Most viruses use the canonical nuclear pore complex (NPC) in order to get their genome into the nucleus. Viral capsids that are larger than the nuclear pore disassemble before or during passing through the NPC, thus allowing genome nuclear entry. Surprisingly, increasing evidence suggest that parvoviruses and polyomaviruses may bypass the nuclear pore by trafficking directly through the nuclear membrane. Additional studies are required for better understanding these processes. Since nuclear entry emerges as the limiting step in infection for many viruses, it may serve as an ideal target for antiviral drug development.
Collapse
Affiliation(s)
- Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
58
|
Kuksin D, Norkin LC. Disassociation of the SV40 genome from capsid proteins prior to nuclear entry. Virol J 2012; 9:158. [PMID: 22882793 PMCID: PMC3487934 DOI: 10.1186/1743-422x-9-158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 07/09/2012] [Indexed: 11/15/2022] Open
Abstract
Background Previously, we demonstrated that input SV40 particles undergo a partial disassembly in the endoplasmic reticulum, which exposes internal capsid proteins VP2 and VP3 to immunostaining. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection, as well as to detection by an ethynyl-2-deoxyuridine (EdU)-based chemical reaction. The cytoplasmic partially disassembled SV40 particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Findings In the current study, we asked where in the cell the SV40 genome might disassociate from capsid components. We observed partially disassembled input SV40 particles around the nucleus and, beginning at 12 hours post-infection, 5-Bromo-2-deoxyuridine (BrdU)-labeled parental SV40 DNA in the nucleus, as detected using anti-BrdU antibodies. However, among the more than 1500 cells examined, we never detected input VP2/VP3 in the nucleus. Upon translocation of the BrdU-labeled SV40 genomes into nuclei, they were transcribed and, thus, are representative of productive infection. Conclusions Our findings imply that the SV40 genome disassociates from the capsid proteins before or at the point of entry into the nucleus, and then enters the nucleus devoid of VP2/3.
Collapse
Affiliation(s)
- Dmitry Kuksin
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
59
|
Optimum length and flexibility of reovirus attachment protein σ1 are required for efficient viral infection. J Virol 2012; 86:10270-80. [PMID: 22811534 DOI: 10.1128/jvi.01338-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reovirus attachment protein σ1 is an elongated trimer with head-and-tail morphology that engages cell-surface carbohydrate and junctional adhesion molecule A (JAM-A). The σ1 protein is comprised of three domains partitioned by two flexible linkers termed interdomain regions (IDRs). To determine the importance of σ1 length and flexibility at different stages of reovirus infection, we generated viruses with mutant σ1 molecules of altered length and flexibility and tested these viruses for the capacity to bind the cell surface, internalize, uncoat, induce protein synthesis, assemble, and replicate. We reduced the length of the α-helical σ1 tail to engineer mutants L1 and L2 and deleted midpoint and head-proximal σ1 IDRs to generate ΔIDR1 and ΔIDR2 mutant viruses, respectively. Decreasing length or flexibility of σ1 resulted in delayed reovirus infection and reduced viral titers. L1, L2, and ΔIDR1 viruses but not ΔIDR2 virus displayed reduced cell attachment, but altering σ1 length or flexibility did not diminish the efficiency of virion internalization. Replication of ΔIDR2 virus was hindered at a postdisassembly step. Differences between wild-type and σ1 mutant viruses were not attributable to alterations in σ1 folding, as determined by experiments assessing engagement of cell-surface carbohydrate and JAM-A by the length and IDR mutant viruses. However, ΔIDR1 virus harbored substantially less σ1 on the outer capsid. Taken together, these data suggest that σ1 length is required for reovirus binding to cells. In contrast, IDR1 is required for stable σ1 encapsidation, and IDR2 is required for a postuncoating replication step. Thus, the structural architecture of σ1 is required for efficient reovirus infection of host cells.
Collapse
|
60
|
Abstract
Many viruses and toxins disassemble to enter host cells and cause disease. These conformational changes must be orchestrated temporally and spatially during entry to avoid premature disassembly leading to nonproductive pathways. Although viruses and toxins are evolutionarily distinct toxic agents, emerging findings in their respective fields have revealed that the cellular locations supporting disassembly, the host factors co-opted during disassembly, the nature of the conformational changes, and the physiological function served by disassembly are strikingly conserved. Here, we examine some of the shared disassembly principles observed in model viruses and toxins. Where appropriate, we also underscore their differences. Our major intention is to draw together the fields of viral and toxin cell entry by using lessons gleaned from each field to inform and benefit one another.
Collapse
Affiliation(s)
- Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
61
|
Abstract
Coatomer protein I (COPI) is well known as the protein coat surrounding vesicles involved in returning endoplasmic reticulum (ER)-resident proteins to the ER. COPI coats are also found in vesicles involved in other trafficking processes including endocytosis, autophagy and anterograde transport in the secretory pathway. In view of the diverse functions of COPI proteins, it is expected that they will affect virus replication, and many reports of such COPI involvement have now appeared. The experimental approaches most often employ specific siRNA to deplete COPI subunits or brefeldin A to block COPI activation. Here we briefly describe the results obtained with viruses in which COPI is found to have a role in replication. The results demonstrate that COPI affects viruses quite differently with effects observed in processes such as entry, RNA replication, and intracellular transport of viral proteins.
Collapse
Affiliation(s)
- Jennifer A Thompson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Jay C Brown
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
62
|
Machado FS, Rodriguez NE, Adesse D, Garzoni LR, Esper L, Lisanti MP, Burk RD, Albanese C, Van Doorslaer K, Weiss LM, Nagajyothi F, Nosanchuk JD, Wilson ME, Tanowitz HB. Recent developments in the interactions between caveolin and pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 729:65-82. [PMID: 22411314 DOI: 10.1007/978-1-4614-1222-9_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of caveolin and caveolae in the pathogenesis of infection has only recently been appreciated. In this chapter, we have highlighted some important new data on the role of caveolin in infections due to bacteria, viruses and fungi but with particular emphasis on the protozoan parasites Leishmania spp., Trypanosoma cruzi and Toxoplasma gondii. This is a continuing area of research and the final chapter has not been written on this topic.
Collapse
Affiliation(s)
- Fabiana S Machado
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Function of membrane rafts in viral lifecycles and host cellular response. Biochem Res Int 2011; 2011:245090. [PMID: 22191032 PMCID: PMC3235436 DOI: 10.1155/2011/245090] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 12/31/2022] Open
Abstract
Membrane rafts are small (10–200 nm) sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process) and the late stage (assembly, budding, and release processes of virus particles). In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.
Collapse
|
64
|
Disassembly of simian virus 40 during passage through the endoplasmic reticulum and in the cytoplasm. J Virol 2011; 86:1555-62. [PMID: 22090139 DOI: 10.1128/jvi.05753-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nonenveloped polyomavirus simian virus 40 (SV40) is taken up into cells by a caveola-mediated endocytic process that delivers the virus to the endoplasmic reticulum (ER). Within the ER lumen, the capsid undergoes partial disassembly, which exposes its internal capsid proteins VP2 and VP3 to immunostaining with antibodies. We demonstrate here that the SV40 genome does not become accessible to detection while the virus is in the ER. Instead, the genome becomes accessible two distinct detection procedures, one using anti-bromodeoxyuridine antibodies and the other using a 5-ethynyl-2-deoxyuridine-based chemical reaction, only after the emergence of partially disassembled SV40 particles in the cytoplasm. These cytoplasmic particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Thus, SV40 particles undergo discrete disassembly steps during entry that are separated temporally and topologically. First, a partial disassembly of the particles occurs in the ER, which exposes internal capsid proteins VP2 and VP3. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection.
Collapse
|
65
|
In vitro reconstitution of SV40 particles that are composed of VP1/2/3 capsid proteins and nucleosomal DNA and direct efficient gene transfer. Virology 2011; 420:1-9. [DOI: 10.1016/j.virol.2011.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/13/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022]
|
66
|
Geiger R, Andritschke D, Friebe S, Herzog F, Luisoni S, Heger T, Helenius A. BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol. Nat Cell Biol 2011; 13:1305-14. [PMID: 21947079 DOI: 10.1038/ncb2339] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/05/2011] [Indexed: 02/04/2023]
Abstract
How non-enveloped viruses overcome host cell membranes is poorly understood. Here, we show that after endocytosis and transport to the endoplasmic reticulum (ER), but before crossing the ER membrane to the cytosol, incoming simian virus 40 particles are structurally remodelled leading to exposure of the amino-terminal sequence of the minor viral protein VP2. These hydrophobic sequences anchor the virus to membranes. A negatively charged residue, Glu 17, in the α-helical, membrane-embedded peptide is essential for infection, most likely by introducing an 'irregularity' recognized by the ER-associated degradation (ERAD) system for membrane proteins. Using a siRNA-mediated screen, the lumenal chaperone BiP and the ER-membrane protein BAP31 (both involved in ERAD) were identified as being essential for infection. They co-localized with the virus in discrete foci and promoted its ER-to-cytosol dislocation. Virus-like particles devoid of VP2 failed to cross the membrane. The results demonstrated that ERAD-factors assist virus transport across the ER membrane.
Collapse
Affiliation(s)
- Roger Geiger
- Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
67
|
Butin-Israeli V, Ben-nun-Shaul O, Kopatz I, Adam SA, Shimi T, Goldman RD, Oppenheim A. Simian virus 40 induces lamin A/C fluctuations and nuclear envelope deformation during cell entry. Nucleus 2011; 2:320-30. [PMID: 21941111 PMCID: PMC3260569 DOI: 10.4161/nucl.2.4.16371] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/27/2011] [Accepted: 07/02/2011] [Indexed: 12/25/2022] Open
Abstract
The canonical gate of viruses and viral genomes into the nucleus in non-dividing cells is the nuclear pore, embedded within the nuclear envelope. However, we found that for SV40, the nuclear envelope poses a major hurdle to infection: FISH analysis revealed that the majority of viral DNA remains trapped in the ER; silencing of Lamin A/C rendered the cells more susceptible to infection; and proliferating cells are more susceptible to infection than quiescent cells. Surprisingly, we observed that following SV40 infection the nuclear envelope, including lamins A/C, B1, B2 and the nuclear pore complex, was dramatically deformed, as seen by immunohistochemistry. The infection induced fluctuations in the level of lamin A/C, dephosphorylation of an unknown epitope and leakage to the cytoplasm just prior to and during nuclear entry. Deformations were transient, and the spherical structure of the nuclear envelope was restored subsequent to nuclear entry. Nuclear envelope deformations and lamin A/C dephosphorylation depended on caspase-6 cleavage of lamin A/C. Notably, we have previously reported that inhibition of caspase-6 abolishes SV40 infection. Taken together the results suggest that alterations of the nuclear lamina, induced by the infecting virus, are involved in the nuclear entry of the SV40 genome. We propose that SV40 utilize this unique, previously unknown mechanism for direct trafficking of its genome from the ER to the nucleus. As SV40 serves as a paradigm for the pathogenic human BK, JC and Merkel cell polyomavirus, this study suggests nuclear entry as a novel drug target for these infections.
Collapse
Affiliation(s)
- Veronika Butin-Israeli
- Department of Hematology; Hebrew University-Hadassah Medical School; Jerusalem, Israel
- Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Orly Ben-nun-Shaul
- Department of Hematology; Hebrew University-Hadassah Medical School; Jerusalem, Israel
| | - Idit Kopatz
- Department of Hematology; Hebrew University-Hadassah Medical School; Jerusalem, Israel
| | - Stephen A Adam
- Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | - Ariella Oppenheim
- Department of Hematology; Hebrew University-Hadassah Medical School; Jerusalem, Israel
| |
Collapse
|
68
|
The SV40 late protein VP4 is a viroporin that forms pores to disrupt membranes for viral release. PLoS Pathog 2011; 7:e1002116. [PMID: 21738474 PMCID: PMC3128117 DOI: 10.1371/journal.ppat.1002116] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/26/2011] [Indexed: 11/19/2022] Open
Abstract
Nonenveloped viruses are generally released by the timely lysis of the host cell by a poorly understood process. For the nonenveloped virus SV40, virions assemble in the nucleus and then must be released from the host cell without being encapsulated by cellular membranes. This process appears to involve the well-controlled insertion of viral proteins into host cellular membranes rendering them permeable to large molecules. VP4 is a newly identified SV40 gene product that is expressed at late times during the viral life cycle that corresponds to the time of cell lysis. To investigate the role of this late expressed protein in viral release, water-soluble VP4 was expressed and purified as a GST fusion protein from bacteria. Purified VP4 was found to efficiently bind biological membranes and support their disruption. VP4 perforated membranes by directly interacting with the membrane bilayer as demonstrated by flotation assays and the release of fluorescent markers encapsulated into large unilamellar vesicles or liposomes. The central hydrophobic domain of VP4 was essential for membrane binding and disruption. VP4 displayed a preference for membranes comprised of lipids that replicated the composition of the plasma membranes over that of nuclear membranes. Phosphatidylethanolamine, a lipid found at high levels in bacterial membranes, was inhibitory against the membrane perforation activity of VP4. The disruption of membranes by VP4 involved the formation of pores of ∼3 nm inner diameter in mammalian cells including permissive SV40 host cells. Altogether, these results support a central role of VP4 acting as a viroporin in the perforation of cellular membranes to trigger SV40 viral release. Viruses exploit host cells for their propagation. Once an adequate number of viral particles have been assembled within the cell through the aid of cellular machinery of the host cell, the virus must be released from the cell for the virus to spread. For nonenveloped viruses or viruses that are solely encapsulated by a protein shell, this step most commonly involves the perforation of cellular membranes resulting in the lysis or death of the host cell. The mechanism for how this key terminal step in the viral life cycle is performed is poorly understood. We demonstrated that for the model nonenveloped virus SV40, the newly discovered virally encoded protein, termed VP4, perforates membranes by forming pores with a diameter of ∼3 nm in host cell membranes. While these pores are not of a sufficient size to provide a conduit that permits the movement of the virus through the membrane, they support membrane destabilization that leads to the disintegration of the membrane of the host cell and viral release.
Collapse
|
69
|
BiP and multiple DNAJ molecular chaperones in the endoplasmic reticulum are required for efficient simian virus 40 infection. mBio 2011; 2:e00101-11. [PMID: 21673190 PMCID: PMC3111607 DOI: 10.1128/mbio.00101-11] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 (SV40) is a nonenveloped DNA virus that traffics through the endoplasmic reticulum (ER) en route to the nucleus, but the mechanisms of capsid disassembly and ER exit are poorly understood. We conducted an unbiased RNA interference screen to identify cellular genes required for SV40 infection. SV40 infection was specifically inhibited by up to 50-fold by knockdown of four different DNAJ molecular cochaperones or by inhibition of BiP, the Hsp70 partner of DNAJB11. These proteins were not required for the initiation of capsid disassembly, but knockdown markedly inhibited SV40 exit from the ER. In addition, BiP formed a complex with SV40 capsids in the ER in a DNAJB11-dependent fashion. These experiments identify five new cellular proteins required for SV40 infection and suggest that the binding of BiP to the capsid is required for ER exit. Further studies of these proteins will provide insight into the molecular mechanisms of polyomavirus infection and ER function.
Collapse
|
70
|
Inoue T, Tsai B. A large and intact viral particle penetrates the endoplasmic reticulum membrane to reach the cytosol. PLoS Pathog 2011; 7:e1002037. [PMID: 21589906 PMCID: PMC3093372 DOI: 10.1371/journal.ppat.1002037] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 03/07/2011] [Indexed: 11/18/2022] Open
Abstract
Non-enveloped viruses penetrate host membranes to infect cells. A cell-based assay was used to probe the endoplasmic reticulum (ER)-to-cytosol membrane transport of the non-enveloped SV40. We found that, upon ER arrival, SV40 is released into the lumen and undergoes sequential disulfide bond disruptions to reach the cytosol. However, despite these ER-dependent conformational changes, SV40 crosses the ER membrane as a large and intact particle consisting of the VP1 coat, the internal components VP2, VP3, and the genome. This large particle subsequently disassembles in the cytosol. Mutant virus and inhibitor studies demonstrate VP3 and likely the viral genome, as well as cellular proteasome, control ER-to-cytosol transport. Our results identify the sequence of events, as well as virus and host components, that regulate ER membrane penetration. They also suggest that the ER membrane supports passage of a large particle, potentially through either a sizeable protein-conducting channel or the lipid bilayer. Biological membranes represent a major barrier during viral infection. While the mechanism by which an enveloped virus breaches the limiting membrane of a host cell is well-characterized, this membrane penetration process is poorly understood for non-enveloped viruses. Indeed, most available insights on membrane transport of non-enveloped viruses are built upon in vitro studies. Here we established a cell-based assay to elucidate the molecular mechanism by which the non-enveloped SV40 penetrates the endoplasmic reticulum (ER) membrane to access the cytosol, a critical step in infection. Strikingly, we uncovered SV40 breaches the ER membrane as a large and intact viral particle, despite the conformational changes it experiences in the ER lumen. This result suggests that the ER membrane can accommodate translocation of a large protein complex, possibly through either a sizeable protein channel or the ER membrane bilayer. In addition to this finding, we also pinpoint viral and host components that control the ER-to-cytosol membrane transport event. Together, our data illuminate the cellular mechanism by which a non-enveloped virus penetrates the limiting membrane of a target cell during infection.
Collapse
Affiliation(s)
- Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
71
|
Abstract
After binding to its cell surface receptor ganglioside GM1, simian virus 40 (SV40) is endocytosed by lipid raft-mediated endocytosis and slowly transported to the endoplasmic reticulum, where partial uncoating occurs. We analyzed the intracellular pathway taken by the virus in HeLa and CV-1 cells by using a targeted small interfering RNA (siRNA) silencing screen, electron microscopy, and live-cell imaging as well as by testing a variety of cellular inhibitors and other perturbants. We found that the virus entered early endosomes, late endosomes, and probably endolysosomes before reaching the endoplasmic reticulum and that this pathway was part of the infectious route. The virus was especially sensitive to a variety of perturbations that inhibited endosome acidification and maturation. Contrary to our previous models, which postulated the passage of the virus through caveolin-rich organelles that we called caveosomes, we conclude that SV40 depends on the classical endocytic pathway for infectious entry.
Collapse
|
72
|
Zaki NM, Tirelli N. Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opin Drug Deliv 2010; 7:895-913. [PMID: 20629604 DOI: 10.1517/17425247.2010.501792] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
IMPORTANCE OF THE FIELD The last 10 years have seen a dramatic growth in understanding and controlling how complex, drug-loaded (nano)structures, as well as pathogens, or biopharmaceuticals can gather access to the cytoplasm, which is a key step to increasing the effectiveness of their action. AREAS COVERED IN THIS REVIEW The review offers an updated overview of the current knowledge of endocytic processes; furthermore, the cell surface receptors most commonly used in drug delivery are here discussed on the basis of their reported internalization mechanisms, with examples of their use as nanocarrier targets taken from the most recent scientific literature. WHAT THE READER WILL GAIN Knowledge of molecular biology details is increasingly necessary for a rational design of drug delivery systems. Here, the aim is to provide the reader with an attempt to link a mechanistic knowledge of endocytic mechanisms with the identification of appropriate targets (internalization receptors) for nanocarriers. TAKE HOME MESSAGE Much advance is still needed to create a complete and coherent biological picture of endocytosis, but current knowledge already allows individuation of a good number of targetable groups for a predetermined intracellular fate of nanocarriers.
Collapse
Affiliation(s)
- Noha M Zaki
- Ain Shams University, Department of Pharmaceutics, Faculty of Pharmacy, Monazamet El Wehda El Afrikia St, El Abbassia, Cairo, Egypt
| | | |
Collapse
|
73
|
Thorley JA, McKeating JA, Rappoport JZ. Mechanisms of viral entry: sneaking in the front door. PROTOPLASMA 2010; 244:15-24. [PMID: 20446005 PMCID: PMC3038234 DOI: 10.1007/s00709-010-0152-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/16/2010] [Indexed: 05/29/2023]
Abstract
Recent developments in methods to study virus internalisation are providing clearer insights into mechanisms used by viruses to enter host cells. The use of dominant negative constructs, specific inhibitory drugs and RNAi to selectively prevent entry through particular pathways has provided evidence for the clathrin-mediated entry of hepatitis C virus (HCV) as well as the caveolar entry of Simian Virus 40. Moreover, the ability to image and track fluorescent-labelled virus particles in real-time has begun to challenge the classical plasma membrane entry mechanisms described for poliovirus and human immunodeficiency virus. This review will cover both well-documented entry mechanisms as well as more recent discoveries in the entry pathways of enveloped and non-enveloped viruses. This will include viruses which enter the cytosol directly at the plasma membrane and those which enter via endocytosis and traversal of internal membrane barrier(s). Recent developments in imaging and inhibition of entry pathways have provided insights into the ill-defined entry mechanism of HCV, bringing it to the forefront of viral entry research. Finally, as high-affinity receptors often define viral internalisation pathways, and tropism in vivo, host membrane proteins to which viral particles specifically bind will be discussed throughout.
Collapse
Affiliation(s)
- Jennifer A. Thorley
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jane A. McKeating
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joshua Zachary Rappoport
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
74
|
Pastrana DV, Pumphrey KA, Cuburu N, Schowalter RM, Buck CB. Characterization of monoclonal antibodies specific for the Merkel cell polyomavirus capsid. Virology 2010; 405:20-5. [PMID: 20598728 DOI: 10.1016/j.virol.2010.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/13/2010] [Accepted: 06/09/2010] [Indexed: 11/17/2022]
Abstract
Merkel cell polyomavirus (MCV) has been implicated as a causative agent in Merkel cell carcinoma. Robust polyclonal antibody responses against MCV have been documented in human subjects, but monoclonal antibodies (mAbs) specific for the VP1 capsid protein have not yet been characterized. We generated 12 mAbs capable of binding recombinant MCV virus-like particles. The use of a short immunogenic priming schedule was important for production of the mAbs. Ten of the 12 mAbs were highly effective for immunofluorescent staining of cells expressing capsid proteins. An overlapping set of 10 mAbs were able to neutralize the infectivity of MCV-based reporter vectors, with 50% effective doses in the low picomolar range. Three mAbs interfered with the binding of MCV virus-like particles to cells. This panel of anti-capsid antibodies should provide a useful set of tools for the study of MCV.
Collapse
Affiliation(s)
- Diana V Pastrana
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | | | | | | | | |
Collapse
|
75
|
Prosser S, Hariharan S. Pathogenesis of BK virus infection after renal transplantation. Expert Rev Clin Immunol 2010; 2:833-7. [PMID: 20476968 DOI: 10.1586/1744666x.2.6.833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
76
|
Glycosphingolipids as receptors for non-enveloped viruses. Viruses 2010; 2:1011-1049. [PMID: 21994669 PMCID: PMC3185660 DOI: 10.3390/v2041011] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 11/23/2022] Open
Abstract
Glycosphingolipids are ubiquitous molecules composed of a lipid and a carbohydrate moiety. Their main functions are as antigen/toxin receptors, in cell adhesion/recognition processes, or initiation/modulation of signal transduction pathways. Microbes take advantage of the different carbohydrate structures displayed on a specific cell surface for attachment during infection. For some viruses, such as the polyomaviruses, binding to gangliosides determines the internalization pathway into cells. For others, the interaction between microbe and carbohydrate can be a critical determinant for host susceptibility. In this review, we summarize the role of glycosphingolipids as receptors for members of the non-enveloped calici-, rota-, polyoma- and parvovirus families.
Collapse
|
77
|
Endocytosis of murine norovirus 1 into murine macrophages is dependent on dynamin II and cholesterol. J Virol 2010; 84:6163-76. [PMID: 20375172 DOI: 10.1128/jvi.00331-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although noroviruses cause the vast majority of nonbacterial gastroenteritis in humans, little is known about their life cycle, including viral entry. Murine norovirus (MNV) is the only norovirus to date that efficiently infects cells in culture. To elucidate the productive route of infection for MNV-1 into murine macrophages, we used a neutral red (NR) infectious center assay and pharmacological inhibitors in combination with dominant-negative (DN) and small interfering RNA (siRNA) constructs to show that clathrin- and caveolin-mediated endocytosis did not play a role in entry. In addition, we showed that phagocytosis or macropinocytosis, flotillin-1, and GRAF1 are not required for the major route of MNV-1 uptake. However, MNV-1 genome release occurred within 1 h, and endocytosis was significantly inhibited by the cholesterol-sequestering drugs nystatin and methyl-beta-cyclodextrin, the dynamin-specific inhibitor dynasore, and the dominant-negative dynamin II mutant K44A. Therefore, we conclude that the productive route of MNV-1 entry into murine macrophages is rapid and requires host cholesterol and dynamin II.
Collapse
|
78
|
Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R. Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 2010; 102:391-407. [PMID: 20377525 PMCID: PMC7161784 DOI: 10.1042/bc20090138] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
Abstract
The lipid raft hypothesis proposed that these microdomains are small (10-200 nM), highly dynamic and enriched in cholesterol, glycosphingolipids and signalling phospholipids, which compartmentalize cellular processes. These membrane regions play crucial roles in signal transduction, phagocytosis and secretion, as well as pathogen adhesion/interaction. Throughout evolution, many pathogens have developed mechanisms to escape from the host immune system, some of which are based on the host membrane microdomain machinery. Thus lipid rafts might be exploited by pathogens as signalling and entry platforms. In this review, we summarize the role of lipid rafts as players in the overall invasion process used by different pathogens to escape from the host immune system.
Collapse
Affiliation(s)
- Flávia Sarmento Vieira
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, CCS, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
79
|
Abstract
Although viruses are simple in structure and composition, their interactions with host cells are complex. Merely to gain entry, animal viruses make use of a repertoire of cellular processes that involve hundreds of cellular proteins. Although some viruses have the capacity to penetrate into the cytosol directly through the plasma membrane, most depend on endocytic uptake, vesicular transport through the cytoplasm, and delivery to endosomes and other intracellular organelles. The internalization may involve clathrin-mediated endocytosis (CME), macropinocytosis, caveolar/lipid raft-mediated endocytosis, or a variety of other still poorly characterized mechanisms. This review focuses on the cell biology of virus entry and the different strategies and endocytic mechanisms used by animal viruses.
Collapse
Affiliation(s)
- Jason Mercer
- ETH Zurich, Institute of Biochemistry, CH-8093 Zurich, Switzerland.
| | | | | |
Collapse
|
80
|
Simian virus 40 infection triggers a balanced network that includes apoptotic, survival, and stress pathways. J Virol 2010; 84:3431-42. [PMID: 20089643 DOI: 10.1128/jvi.01735-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The infection process by simian virus 40 (SV40) and entry of its genome into nondividing cells are only partly understood. Infection begins by binding to GM1 receptors at the cell surface, cellular entry via caveolar invaginations, and trafficking to the endoplasmic reticulum, where the virus disassembles. To gain a deeper insight into the contribution of host functions to this process, we studied cellular signaling elicited by the infecting virus. Signaling proteins were detected by Western blotting and immunofluorescence staining. The study was assisted by a preliminary proteomic screen. The contribution of signaling proteins to the infection process was evaluated using specific inhibitors. We found that CV-1 cells respond to SV40 infection by activating poly(ADP-ribose) polymerase 1 (PARP-1)-mediated apoptotic signaling, which is arrested by the Akt-1 survival pathway and stress response. A single key regulator orchestrating the three pathways is phospholipase C-gamma (PLCgamma). The counteracting apoptotic and survival pathways are robustly balanced as the infected cells neither undergo apoptosis nor proliferate. Surprisingly, we have found that the apoptotic pathway, including activation of PARP-1 and caspases, is absolutely required for the infection to proceed. Thus, SV40 hijacks the host defense to promote its infection. Activities of PLCgamma and Akt-1 are also required, and their inhibition abrogates the infection. Notably, this signaling network is activated hours before T antigen is expressed. Experiments with recombinant empty capsids, devoid of DNA, indicated that the major capsid protein VP1 alone triggers this early signaling network. The emerging robust signaling network reflects a delicate evolutionary balance between attack and defense in the host-virus relationship.
Collapse
|
81
|
Abstract
Polyomaviruses (Pys) are nonenveloped DNA tumor viruses that include the murine polyomavirus (mPy), simian virus 40 (SV40), and the human BK, JC, KI, WU, and Merkel Cell viruses. To cause infection, Pys must enter host cells and navigate through various intracellular compartments, where they undergo sequential conformational changes enabling them to uncoat and deliver the DNA genome into the nucleus. The ensuing transcription and replication of the genome leads to lytic infection or cell transformation. In recent years, a more coherent understanding of how Pys are transported from the plasma membrane to the nucleus is starting to emerge. This review will focus on the decisive steps of Py entry, including engagement of the host cell receptor, targeting to the endoplasmic reticulum (ER), penetration across the ER membrane, nuclear entry, and genome release. Strikingly, a number of these steps resemble the intoxication pathway of the AB(5) bacterial toxins. Thus, as Pys and bacterial toxins hijack similar cellular machineries during infection, a general principle appears to guide their entry into host cells.
Collapse
Affiliation(s)
- Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | | |
Collapse
|
82
|
Kawano MA, Xing L, Tsukamoto H, Inoue T, Handa H, Cheng RH. Calcium bridge triggers capsid disassembly in the cell entry process of simian virus 40. J Biol Chem 2009; 284:34703-12. [PMID: 19822519 DOI: 10.1074/jbc.m109.015107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium bridge between the pentamers of polyoma viruses maintains capsid metastability. It has been shown that viral infection is profoundly inhibited by the substitution of lysine for glutamate in one calcium-binding residue of the SV40 capsid protein, VP1. However, it is unclear how the calcium bridge affects SV40 infectivity. In this in vitro study, we analyzed the influence of host cell components on SV40 capsid stability. We used an SV40 mutant capsid (E330K) in which lysine had been substituted for glutamate 330 in protein VP1. The mutant capsid retained the ability to interact with the SV40 cellular receptor GM1, and the internalized mutant capsid accumulated in caveolin-1-mediated endocytic vesicles and was then translocated to the endoplasmic reticulum (ER) region. However, when placed in ER-rich microsome, the mutant capsid retained its spherical structure in contrast to the wild type, which disassembled. Structural analysis of the mutant capsid with cryo-electron microscopy and image reconstruction revealed altered pentamer coordination, possibly as a result of electrostatic interaction, although its overall structure resembled that of the wild type. These results indicate that the calcium ion serves as a trigger at the pentamer interface, which switches on capsid disassembly, and that the failure of the E330K mutant capsid to disassemble is attributable to an inadequate triggering system. Our data also indicate that calcium depletion-induced SV40 capsid disassembly may occur in the ER region and that this is essential for successful SV40 infection.
Collapse
Affiliation(s)
- Masa-Aki Kawano
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
Rafts are domains of the plasma membrane, enriched in cholesterol and sphingolipids; they form a platform for signaling proteins and receptors. The lipid rafts are utilized in the replication cycle of numerous viruses. Internalization receptors of many viruses localize to rafts or are recruited there after virus binding. Arrays of signal transduction proteins found in rafts contribute to efficient trafficking and productive infection. Some viruses are dependent on raft domains for the biogenesis of their membranous replication structures. Finally, rafts are often important in virus assembly and budding. Subsequently, raft components in the viral envelope may be vital for the entry to a new host cell. Here, we summarize the current knowledge of the involvement of rafts in virus infection.
Collapse
Affiliation(s)
- Paula Upla
- Department of Biological & Environmental Science/Nanoscience Center, University of Jyväskylä, FI-40351 Jyväskylä, Finland
| | - Timo Hyypiä
- Department of Virology, University of Turku, FI-20520 Turku, Finland
| | - Varpu Marjomäki
- Department of Biological & Environmental Science/Nanoscience Center, University of Jyväskylä, FI-40351 Jyväskylä, Finland
| |
Collapse
|
84
|
Oba M, Aoyagi K, Miyata K, Matsumoto Y, Itaka K, Nishiyama N, Yamasaki Y, Koyama H, Kataoka K. Polyplex micelles with cyclic RGD peptide ligands and disulfide cross-links directing to the enhanced transfection via controlled intracellular trafficking. Mol Pharm 2009; 5:1080-92. [PMID: 19434856 DOI: 10.1021/mp800070s] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thiolated c(RGDfK)-poly(ethylene glycol)-block-poly(lysine) (PEG-PLys), a novel block polymer that has a cyclic RGD peptide in the PEG terminus and thiol groups in the PLys side chain, was prepared and applied to the preparation of targetable disulfide cross-linked polyplex micelles through ion complexation with plasmid DNA (pDNA). The obtained polyplex micelles achieved remarkably enhanced transfection efficiency against cultured HeLa cells possessing alpha(v)beta(3) integrin receptors, which are selectively recognized by cyclic RGD peptides, demonstrating the synergistic effect of cyclic RGD peptide ligands on the micelle surface and disulfide cross-links in the core to exert the smooth release of pDNA in the intracellular environment via reductive cleavage. This enhancement was not due to an increase in the uptake amount of polyplex micelles but to a change in their intracellular trafficking route. Detailed confocal laser scanning microscopic observation revealed that polyplex micelles with cyclic RGD peptide ligands were distributed in the perinuclear region in the early stages preferentially through caveolae-mediated endocytosis, which may be a desirable pathway for avoiding the lysosomal degradation of delivered genes. Hence, this approach to introducing ligands and cross-links into the polyplex micelles is promising for the construction of nonviral gene vectors that enhance transfection by controlling intracellular distribution.
Collapse
Affiliation(s)
- Makoto Oba
- Department of Clinical Vascular Regeneration, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Human papillomavirus type 16 infection of human keratinocytes requires clathrin and caveolin-1 and is brefeldin a sensitive. J Virol 2009; 83:8221-32. [PMID: 19494002 DOI: 10.1128/jvi.00576-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus type 16 (HPV16) has been identified as being the most common etiological agent leading to cervical cancer. Despite having a clear understanding of the role of HPV16 in oncogenesis, details of how HPV16 traffics during infection are poorly understood. HPV16 has been determined to enter via clathrin-mediated endocytosis, but the subsequent steps of HPV16 infection remain unclear. There is emerging evidence that several viruses take advantage of cross talk between routes of endocytosis. Specifically, JCV and bovine papillomavirus type 1 have been shown to enter cells by clathrin-dependent endocytosis and then require caveolin-1-mediated trafficking for infection. In this paper, we show that HPV16 is dependent on caveolin-1 after clathrin-mediated endocytosis. We provide evidence for the first time that HPV16 infection is dependent on trafficking to the endoplasmic reticulum (ER). This novel trafficking may explain the requirement for the caveolar pathway in HPV16 infection because clathrin-mediated endocytosis typically does not lead to the ER. Our data indicate that the infectious route for HPV16 following clathrin-mediated entry is caveolin-1 and COPI dependent. An understanding of the steps involved in HPV16 sorting and trafficking opens up the possibility of developing novel approaches to interfere with HPV16 infection and reduce the burden of papillomavirus diseases including cervical cancer.
Collapse
|
86
|
Li F, Zhang ZP, Peng J, Cui ZQ, Pang DW, Li K, Wei HP, Zhou YF, Wen JK, Zhang XE. Imaging viral behavior in Mammalian cells with self-assembled capsid-quantum-dot hybrid particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:718-726. [PMID: 19242943 DOI: 10.1002/smll.200801303] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Unique spectral properties of quantum dots (QDs) enable ultrasensitive and long-term biolabeling. Aiming to trace the infection, movement, and localization of viruses in living cells, QD-containing virus-like particles (VLPs) of simian virus 40 (SV40), termed SVLP-QDs, are constructed by in vitro self-assembly of the major capsid protein of SV40. SVLP-QDs show homogeneity in size ( approximately 24 nm), similarity in spectral properties to unencapsidated QDs, and considerable stability. When incubated with living cells, SVLP-QDs are shown to enter the cells by caveolar endocytosis, travel along the microtubules, and accumulate in the endoplasmic reticulum. This process mimics the early infection steps of SV40. This is the first paradigm of imaging viral behaviors with encapsidated QDs in living cells. The method may provide a new alternative for various purposes, such as tracing viruses or viral components, targeted nanoparticle delivery, and probing of drug delivery.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology Chinese Academy of Sciences No.44, Xiaohongshan, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Internalization of swine vesicular disease virus into cultured cells: a comparative study with foot-and-mouth disease virus. J Virol 2009; 83:4216-26. [PMID: 19225001 DOI: 10.1128/jvi.02436-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We performed a comparative analysis of the internalization mechanisms used by three viruses causing important vesicular diseases in animals. Swine vesicular disease virus (SVDV) internalization was inhibited by treatments that affected clathrin-mediated endocytosis and required traffic through an endosomal compartment. SVDV particles were found in clathrin-coated pits by electron microscopy and colocalized with markers of early endosomes by confocal microscopy. SVDV infectivity was significantly inhibited by drugs that raised endosomal pH. When compared to foot-and-mouth disease virus (FMDV), which uses clathrin-mediated endocytosis, the early step of SVDV was dependent on the integrity of microtubules. SVDV-productive endocytosis was more sensitive to plasma membrane cholesterol extraction than that of FMDV, and differential cell signaling requirements for virus infection were also found. Vesicular stomatitis virus, a model virus internalized by clathrin-mediated endocytosis, was included as a control of drug treatments. These results suggest that different clathrin-mediated routes are responsible for the internalization of these viruses.
Collapse
|
88
|
Mudhakir D, Harashima H. Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS JOURNAL 2009; 11:65-77. [PMID: 19194803 DOI: 10.1208/s12248-009-9080-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 12/24/2008] [Indexed: 02/06/2023]
Abstract
Viruses deliver their genome into host cells where they subsequently replicate and multiply. A variety of relevant strategies have evolved by which viruses gain intracellular access and utilize cellular machinery for the synthesis of their genome. Therefore, the viral journey provides insight into the cell's trafficking machinery and how it can be best exploited to improve nonviral gene delivery systems. This review summarizes viral internalization pathways and intracellular trafficking of viruses, with an emphasis on the endosomal escape processes of nonenveloped viruses. Intracellular events from viral entry through nuclear delivery of the viral complementary DNA are also discussed.
Collapse
Affiliation(s)
- Diky Mudhakir
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | | |
Collapse
|
89
|
Sapp M, Day PM. Structure, attachment and entry of polyoma- and papillomaviruses. Virology 2009; 384:400-9. [PMID: 19157477 DOI: 10.1016/j.virol.2008.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
Polyoma- (PY) and Papillomavirus (PV) virions have remarkable structural equivalence although no discernable sequence similarities among the capsid proteins can be detected. Their similarities include the overall surface organization, the presence of 72 capsomeres composed of five molecules of the major capsid proteins, VP1 and L1, respectively, the structure of the core segment of capsomeres with classical antiparallel "jelly roll" beta strands as the major feature, and the linkage of neighboring capsomeres by invading C-terminal arms. Differences include the size of surface exposed loops that contain the dominant neutralizing epitopes, the details of the intercapsomeric interactions, and the presence of 2 or 1 minor capsid proteins, respectively. These differences may affect the dramatic differences observed in receptor binding and internalization pathways utilized by these viruses, but as detailed later even structural differences cannot completely explain receptor and pathway usage. In recent years, technical advances aiding the study of entry processes have allowed the identification of novel endocytic compartments and an appreciation of the links between endocytic pathways that were previously thought to be completely separable. This review is intended to highlight recent advances in our understanding of virus receptor interactions and their consequences for endocytosis and intracellular trafficking.
Collapse
Affiliation(s)
- Martin Sapp
- Department of Microbiology and Immunology, Feist Weiller-Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, 71130-3932, USA.
| | | |
Collapse
|
90
|
Rafts, anchors and viruses — A role for glycosylphosphatidylinositol anchored proteins in the modification of enveloped viruses and viral vectors. Virology 2008; 382:125-31. [DOI: 10.1016/j.virol.2008.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 12/18/2022]
|
91
|
Abstract
BK virus (BKV) is a nonenveloped, ubiquitous human polyomavirus that establishes a persistent infection in healthy individuals. It can be reactivated, however, in immunosuppressed patients and cause severe diseases, including polyomavirus nephropathy. The entry and disassembly mechanisms of BKV are not well defined. In this report, we characterized several early events during BKV infection in primary human renal proximal tubule epithelial (RPTE) cells, which are natural host cells for BKV. Our results demonstrate that BKV infection in RPTE cells involves an acidic environment relatively early during entry, followed by transport along the microtubule network to reach the endoplasmic reticulum (ER). A distinct disulfide bond isomerization and cleavage pattern of the major capsid protein VP1 was observed, which was also influenced by alterations in pH and disruption of trafficking to the ER. A dominant negative form of Derlin-1, an ER protein required for retro-translocation of certain misfolded proteins, inhibited BKV infection. Consistent with this, we detected an interaction between Derlin-1 and VP1. Finally, we show that proteasome function is also linked to BKV infection and capsid rearrangement. These results indicate that BKV early entry and disassembly are highly regulated processes involving multiple cellular components.
Collapse
|
92
|
Candela P, Gosselet F, Miller F, Buee-Scherrer V, Torpier G, Cecchelli R, Fenart L. Physiological pathway for low-density lipoproteins across the blood-brain barrier: transcytosis through brain capillary endothelial cells in vitro. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2008; 15:254-64. [PMID: 19065317 DOI: 10.1080/10623320802487759] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although an immense knowledge has accumulated concerning regulation of cholesterol homeostasis in the body, this does not include the brain, where details are just emerging. Using an in vitro blood-brain barrier model, the authors have demonstrated that low-density lipoprotein (LDL) underwent transcytosis through the endothelial cells (ECs) by a receptor-mediated process, bypassing the lysosomal compartment. Moreover, caveolae might be involved in these blood-borne molecule transports from the blood to the brain. Although several ligands are known to be internalized through cell surface caveolae, the subsequent intracellular pathways have remained elusive. By cell fractionation experiment and Western blot, the authors have demonstrated that the LDL receptor is located in the caveolae membrane fraction. Then, LDLs internalized were detected by electron microscopy in multivesicular bodies. The authors identified in brain capillary ECs a novel endosomal compartment, mildly acidic, positive for marker Lamp-1 but devoid of any degradative capability. From the point of view of pH, cellular location, and caveolae-derived formation, the multivesicular organelles described here can be related to the caveosome structure. These results could provide clues to physiological functions of caveolae-caveosome transcellular pathway in brain capillary ECs and may help in the rational design of more effective therapeutic drugs to the brain.
Collapse
Affiliation(s)
- Pietra Candela
- Faculté des Sciences Jean Perrin, Laboratoire de Physiopathologie de la BHE, Lens Cedex, France
| | | | | | | | | | | | | |
Collapse
|
93
|
Butin-Israeli V, Uzi D, Abd-El-Latif M, Pizov G, Eden A, Haviv YS, Oppenheim A. DNA-free recombinant SV40 capsids protect mice from acute renal failure by inducing stress response, survival pathway and apoptotic arrest. PLoS One 2008; 3:e2998. [PMID: 18714386 PMCID: PMC2515219 DOI: 10.1371/journal.pone.0002998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/22/2008] [Indexed: 01/17/2023] Open
Abstract
Viruses induce signaling and host defense during infection. Employing these natural trigger mechanisms to combat organ or tissue failure is hampered by harmful effects of most viruses. Here we demonstrate that SV40 empty capsids (Virus Like Particles-VLPs), with no DNA, induce host Hsp/c70 and Akt-1 survival pathways, key players in cellular survival mechanisms. We postulated that this signaling might protect against organ damage in vivo. Acute kidney injury (AKI) was chosen as target. AKI is critical, prevalent disorder in humans, caused by nephrotoxic agents, sepsis or ischemia, via apoptosis/necrosis of renal tubular cells, with high morbidity and mortality. Systemic administration of VLPs activated Akt-1 and upregulated Hsp/c70 in vivo. Experiments in mercury-induced AKI mouse model demonstrated that apoptosis, oxidative stress and toxic renal failure were significantly attenuated by pretreatment with capsids prior to the mercury insult. Survival rate increased from 12% to >60%, with wide dose response. This study demonstrates that SV40 VLPs, devoid of DNA, may potentially be used as prophylactic agent for AKI. We anticipate that these finding may be projected to a wide range of organ failure, using empty capsids of SV40 as well as other viruses.
Collapse
Affiliation(s)
| | - Dotan Uzi
- Department of Hematology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mahmoud Abd-El-Latif
- Department of Hematology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Galina Pizov
- Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Arieh Eden
- Department of Anesthesiology and Critical Care Medicine, Carmel Lady Davis Medical Center, Haifa, Israel
| | - Yosef S. Haviv
- Department of Nephrology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ariella Oppenheim
- Department of Hematology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
94
|
Dorn DC, Lawatscheck R, Zvirbliene A, Aleksaite E, Pecher G, Sasnauskas K, Özel M, Raftery M, Schönrich G, Ulrich RG, Gedvilaite A. Cellular and Humoral Immunogenicity of Hamster Polyomavirus-Derived Virus-Like Particles Harboring a Mucin 1 Cytotoxic T-Cell Epitope. Viral Immunol 2008; 21:12-27. [DOI: 10.1089/vim.2007.0085] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- David C. Dorn
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
- Medical Clinic for Oncology and Hematology, Charité Medical School, Campus Mitte, Berlin, Germany
| | - Robert Lawatscheck
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
| | | | | | - Gabriele Pecher
- Medical Clinic for Oncology and Hematology, Charité Medical School, Campus Mitte, Berlin, Germany
| | | | | | - Martin Raftery
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
| | - Rainer G. Ulrich
- Institute of Virology, Charité Medical School, Campus Mitte, Berlin, Germany
| | | |
Collapse
|
95
|
Abstract
Although the precise mechanism by which nonenveloped viruses penetrate biological membranes is unclear, a more coherent understanding of this process is starting to emerge. To initiate membrane penetration, nonenveloped viruses engage host cell factors that impart conformational changes on the viral particles, resulting in the exposure of a hydrophobic moiety or the release of a lytic factor. The viruses' interactions with the limiting membrane subsequently compromise the bilayer integrity. This reaction presumably perforates the bilayer to enable the virus to cross the membrane and reach the cytosol. Valuable insights into this process can be gleaned from the membrane transport mechanisms of enveloped viruses and bacterial toxins. To identify systematically the cellular components that facilitate nonenveloped virus membrane penetration, sensitive assays that monitor the transport event directly must first be established. Moreover, higher-resolution structures of penetration intermediates, particularly those solved in complex with membranes, would provide important molecular details into this process.
Collapse
Affiliation(s)
- Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
96
|
Simian Virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 2007; 131:516-29. [PMID: 17981119 DOI: 10.1016/j.cell.2007.09.038] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 08/01/2007] [Accepted: 09/28/2007] [Indexed: 11/21/2022]
Abstract
Cell entry of Simian Virus 40 (SV40) involves caveolar/lipid raft-mediated endocytosis, vesicular transport to the endoplasmic reticulum (ER), translocation into the cytosol, and import into the nucleus. We analyzed the effects of ER-associated processes and factors on infection and on isolated viruses and found that SV40 makes use of the thiol-disulfide oxidoreductases, ERp57 and PDI, as well as the retrotranslocation proteins Derlin-1 and Sel1L. ERp57 isomerizes specific interchain disulfides connecting the major capsid protein, VP1, to a crosslinked network of neighbors, thus uncoupling about 12 of 72 VP1 pentamers. Cryo-electron tomography indicated that loss of interchain disulfides coupled with calcium depletion induces selective dissociation of the 12 vertex pentamers, a step likely to mimic uncoating of the virus in the cytosol. Thus, the virus utilizes the protein folding machinery for initial uncoating before exploiting the ER-associated degradation machinery presumably to escape from the ER lumen into the cytosol.
Collapse
|
97
|
Moriyama T, Sorokin A. Intracellular trafficking pathway of BK Virus in human renal proximal tubular epithelial cells. Virology 2007; 371:336-49. [PMID: 17976677 DOI: 10.1016/j.virol.2007.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 07/31/2007] [Accepted: 09/21/2007] [Indexed: 01/04/2023]
Abstract
Intracellular trafficking of BK Virus (BKV) in human renal proximal tubular epithelial cells (HRPTEC) is critical for BKV nephritis. However, the major trafficking components utilized by BKV remain unknown. Coincubation of HRPTEC with BKV and microtubule disrupting agents prevented BKV infection as detected by immunofluorescence and western blot analysis with antibodies which recognize BKV large T antigen. However, inhibition of a dynein, cellular motor protein, did not interfere with BKV infection in HRPTEC. A colocalization study of BKV with the markers of the endoplasmic reticulum (ER) and the Golgi apparatus (GA), indicated that BKV reached the ER from 6 to 10 h, while bypassing the GA or passing through the GA too transiently to be detected. This study contributes to the understanding of mechanisms of intracellular trafficking used by BKV in the infection of HRPTEC.
Collapse
Affiliation(s)
- Takahito Moriyama
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
98
|
Banie H, Sinha A, Thomas RJ, Sircar JC, Richards ML. 2-phenylimidazopyridines, a new series of Golgi compounds with potent antiviral activity. J Med Chem 2007; 50:5984-93. [PMID: 17973358 DOI: 10.1021/jm0704907] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drugs targeted to viral proteins are highly vulnerable to the development of resistant strains. We previously characterized a group of 2-phenylbenzimidazole compounds for their activity against allergy and asthma and more recently established the Golgi as their probable site of action. Herein we describe their activity against the propagation of several virus types through an action on the host cell. The most potent derivatives are the novel 2-phenylimidazopyridines, the lead compound of which is highly effective for blocking the spread of topical herpes infection in an animal model. These agents may provide an alternative antiviral approach, particularly for treating resistant strains.
Collapse
Affiliation(s)
- Homayon Banie
- Avanir Pharmaceuticals, 101 Enterprise, Aliso Viejo, CA 92656, USA
| | | | | | | | | |
Collapse
|
99
|
Mescalchin A, Detzer A, Wecke M, Overhoff M, Wünsche W, Sczakiel G. Cellular uptake and intracellular release are major obstacles to the therapeutic application of siRNA: novel options by phosphorothioate-stimulated delivery. Expert Opin Biol Ther 2007; 7:1531-8. [PMID: 17916045 DOI: 10.1517/14712598.7.10.1531] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cellular uptake of oligomeric nucleic acid-based tools and drugs including small-interfering RNA (siRNA) represents a major technical hurdle for the biologic effectiveness and therapeutic success in vivo. Subsequent to cellular delivery it is crucial to direct siRNA to the cellular location where it enters the RNA interference pathway. Here the authors summarise evidence that functionally active siRNA represents a minor fraction in the order of 1% of total siRNA inside a given target cell. Exploiting possibilities of steering intracellular release or trafficking of siRNA bears the potential of substantially increasing the biological activity of siRNA. The recently described phosphorothioate stimulated cellular delivery of siRNA makes use of the caveolar system ending in the Golgi apparatus, which contrasts all other known delivery systems. Therefore, it represents an attractive alternative to study whether promoted intracellular release is related to increased target suppression and, thus, increased phenotypic biologic effectiveness.
Collapse
Affiliation(s)
- Alessandra Mescalchin
- Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein and Zentrum für medizinische Strukturbiologie ZMSB, Institut für Molekulare Medizin, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
100
|
Rainey-Barger EK, Magnuson B, Tsai B. A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane. J Virol 2007; 81:12996-3004. [PMID: 17881435 PMCID: PMC2169125 DOI: 10.1128/jvi.01037-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The nonenveloped polyomavirus (Py) traffics from the plasma membrane to the endoplasmic reticulum (ER), where it penetrates the ER membrane, allowing the viral genome to reach the nucleus to cause infection. The mechanism of membrane penetration for Py, and for other nonenveloped viruses, remains poorly characterized. We showed previously that the ER chaperone ERp29 alters the conformation of Py coat protein VP1, enabling the virus to interact with membranes. Here, we developed a membrane perforation assay and showed that the ERp29-activated Py perforates the physiologically relevant ER membrane, an event that likely initiates viral penetration. Biochemical analysis revealed that the internal protein VP2 is exposed in the activated viral particle. Accordingly, we demonstrate that VP2 binds to, integrates into, and perforates the ER membrane; the other internal protein, VP3, binds to and integrates into the ER membrane but is not sufficient for perforation. Our data thus link the activity of a cellular factor on a nonenveloped virus to the membrane perforation event and identify a viral component that mediates this process.
Collapse
Affiliation(s)
- Emily K Rainey-Barger
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Rm. 3043, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|