51
|
Rivals JP, Plattet P, Currat-Zweifel C, Zurbriggen A, Wittek R. Adaptation of canine distemper virus to canine footpad keratinocytes modifies polymerase activity and fusogenicity through amino acid substitutions in the P/V/C and H proteins. Virology 2006; 359:6-18. [PMID: 17046044 DOI: 10.1016/j.virol.2006.07.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/27/2006] [Accepted: 07/17/2006] [Indexed: 11/16/2022]
Abstract
The wild-type canine distemper virus (CDV) strain A75/17 induces a non-cytocidal infection in cultures of canine footpad keratinocytes (CFKs) but produces very little progeny virus. After only three passages in CFKs, the virus produced 100-fold more progeny and induced a limited cytopathic effect. Sequence analysis of the CFK-adapted virus revealed only three amino acid differences, of which one was located in each the P/V/C, M and H proteins. In order to assess which amino acid changes were responsible for the increase of infectious virus production and altered phenotype of infection, we generated a series of recombinant viruses. Their analysis showed that the altered P/V/C proteins were responsible for the higher levels of virus progeny formation and that the amino acid change in the cytoplasmic tail of the H protein was the major determinant of cytopathogenicity.
Collapse
Affiliation(s)
- Jean-Paul Rivals
- Institut de Biotechnologie, Bâtiment de Biologie, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
52
|
Castilla V, Contigiani M, Mersich SE. Inhibition of cell fusion in Junin virus-infected cells by sera from Argentine hemorrhagic fever patients. J Clin Virol 2005; 32:286-8. [PMID: 15780806 DOI: 10.1016/j.jcv.2004.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 08/12/2004] [Indexed: 11/25/2022]
Abstract
BACKGROUND Junin virus (JV), a member of the Arenaviridae family, is the etiological agent of Argentine hemorrhagic fever (AHF). A low pH-pulse, induces fusion of Vero cells infected with JV to form syncytia, whose production can be inhibited by neutralizing antibodies against the JV major glycoprotein. OBJECTIVES To characterize the existence of an antifusogenic activity present in sera obtained from natural infections of AHF over a 20-year period and to study both the fusogenic activity of one pathogenic and two attenuated strains of JV in Vero cells, at different pH. The study sample consisted of sera obtained from two provinces in the Argentine Republic. Vero cells grown in monolayers, were infected with different strains of JV and a 2 h pulse, at different pH, was performed. Syncytium production was evaluated 12 h later, after staining with Giemsa. Neutralization tests against the attenuated strain XJCl3 were carried out and the antifusogenic activity of immunosera was studied by incubating serum with JV-infected Vero cells. Also the fusion activity in Vero cells infected with three JV strains was assayed. RESULTS AND CONCLUSIONS A pathogenic strain XJ exhibited the highest fusogenic activity at pH 5. Syncytium formation was prevented by patients' sera obtained from different geographical locations, independently of time of infection. However, when Vero cells were infected with XJ, a significant reduction of syncytium production was observed, though the level of inhibition was lower than that detected in other JV strains-infected cells. These results could be explained by the existence of a conserved domain on JV proteins and also antigenic heterogeneity among strains.
Collapse
Affiliation(s)
- V Castilla
- Laboratory of Virology, Department of Biochemistry, School of Science, University of Buenos AiresPab2 P4, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| | | | | |
Collapse
|
53
|
Plattet P, Rivals JP, Zuber B, Brunner JM, Zurbriggen A, Wittek R. The fusion protein of wild-type canine distemper virus is a major determinant of persistent infection. Virology 2005; 337:312-26. [PMID: 15893783 DOI: 10.1016/j.virol.2005.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 02/10/2005] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
The wild-type A75/17 canine distemper virus (CDV) strain induces a persistent infection in the central nervous system but infects cell lines very inefficiently. In contrast, the genetically more distant Onderstepoort CDV vaccine strain (OP-CDV) induces extensive syncytia formation. Here, we investigated the roles of wild-type fusion (F(WT)) and attachment (H(WT)) proteins in Vero cells expressing, or not, the canine SLAM receptor by transfection experiments and by studying recombinants viruses expressing different combinations of wild-type and OP-CDV glycoproteins. We show that low fusogenicity is not due to a defect of the envelope proteins to reach the cell surface and that H(WT) determines persistent infection in a receptor-dependent manner, emphasizing the role of SLAM as a potent enhancer of fusogenicity. However, importantly, F(WT) reduced cell-to-cell fusion independently of the cell surface receptor, thus demonstrating that the fusion protein of the neurovirulent A75/17-CDV strain plays a key role in determining persistent infection.
Collapse
Affiliation(s)
- Philippe Plattet
- Institut de Biotechnologie, University of Lausanne, Bâtiment de Biologie, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
54
|
Diederich S, Moll M, Klenk HD, Maisner A. The nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem 2005; 280:29899-903. [PMID: 15961384 DOI: 10.1074/jbc.m504598200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nipah virus (NiV) is a recently emerged and highly pathogenic paramyxovirus that causes a systemic infection in animals and humans and can infect a wide range of cultured cells. Interestingly, the NiV fusion (F) protein has a single arginine at the cleavage site similar to paramyxoviruses that are activated by exogenous trypsin-like enzymes only present in specific cells and tissues and therefore only cause localized infections. We show here that NiV F activation is not mediated by an exogenous serum protease but by an endogenous ubiquitous cellular protease after endocytosis of the protein. In addition to endocytosis, acidification of the endosome is a prerequisite for F cleavage. These results show that activation of the NiV F protein depends on a type of proteolytic cleavage that is clearly different from what is known for other paramyxoviral and orthomyxoviral fusion proteins. To our knowledge, this is the first example of a viral class I fusion protein whose activation depends on clathrin-mediated constitutive endocytosis.
Collapse
|
55
|
Moll M, Diederich S, Klenk HD, Czub M, Maisner A. Ubiquitous activation of the Nipah virus fusion protein does not require a basic amino acid at the cleavage site. J Virol 2004; 78:9705-12. [PMID: 15331703 PMCID: PMC514977 DOI: 10.1128/jvi.78.18.9705-9712.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nipah virus (NiV), a highly pathogenic paramyxovirus, causes a systemic infection in vivo and is able to replicate in cultured cells of many species and organs. Such pantropic paramyxoviruses generally encode fusion (F) proteins with multibasic cleavage sites activated by furin or other ubiquitous intracellular host cell proteases. In contrast, NiV has an F protein with a single arginine (R109) at the cleavage site, as is the case with paramyxoviruses that are activated by trypsin-like proteases only present in specific cells or tissues and therefore only cause localized infections. Unlike these viruses, cleavage of the NiV F protein is ubiquitous and does not require the addition of exogenous proteases in cell culture. To determine the importance of the amino acid sequence at the NiV F protein cleavage site for ubiquitous activation, we generated NiV F proteins with mutations around R109. Surprisingly, neither the exchange of amino acids upstream of R109 nor replacement of the basic residue itself interfered with F cleavage. Thus, R109 is not essential for F cleavage and activation. Our data demonstrate that NiV F-protein activation depends on a novel type of proteolytic cleavage that has not yet been described for any other paramyxovirus F protein. NiV F activation is mediated by a ubiquitous protease that requires neither a monobasic nor a multibasic cleavage site and therefore differs from the furin- or trypsin-like proteases known to activate other ortho- and paramyxovirus fusion proteins.
Collapse
Affiliation(s)
- Markus Moll
- Institut für Virologie, Robert-Koch-Str. 17, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
56
|
von Messling V, Milosevic D, Devaux P, Cattaneo R. Canine distemper virus and measles virus fusion glycoprotein trimers: partial membrane-proximal ectodomain cleavage enhances function. J Virol 2004; 78:7894-903. [PMID: 15254162 PMCID: PMC446110 DOI: 10.1128/jvi.78.15.7894-7903.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trimeric fusion (F) glycoproteins of morbilliviruses are activated by furin cleavage of the precursor F(0) into the F(1) and F(2) subunits. Here we show that an additional membrane-proximal cleavage occurs and modulates F protein function. We initially observed that the ectodomain of approximately one in three measles virus (MV) F proteins is cleaved proximal to the membrane. Processing occurs after cleavage activation of the precursor F(0) into the F(1) and F(2) subunits, producing F(1a) and F(1b) fragments that are incorporated in viral particles. We also detected the F(1b) fragment, including the transmembrane domain and cytoplasmic tail, in cells expressing the canine distemper virus (CDV) or mumps virus F protein. Six membrane-proximal amino acids are necessary for efficient CDV F(1a/b) cleavage. These six amino acids can be exchanged with the corresponding MV F protein residues of different sequence without compromising function. Thus, structural elements of different sequence are functionally exchangeable. Finally, we showed that the alteration of a block of membrane-proximal amino acids results in diminished fusion activity in the context of a recombinant CDV. We envisage that selective loss of the membrane anchor in the external subunits of circularly arranged F protein trimers may disengage them from pulling the membrane centrifugally, thereby facilitating fusion pore formation.
Collapse
Affiliation(s)
- Veronika von Messling
- Molecular Medicine Program, Mayo Clinic, College of Medicine, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
57
|
Moll M, Kaufmann A, Maisner A. Influence of N-glycans on processing and biological activity of the nipah virus fusion protein. J Virol 2004; 78:7274-8. [PMID: 15194804 PMCID: PMC421684 DOI: 10.1128/jvi.78.13.7274-7278.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nipah virus (NiV), a new member of the Paramyxoviridae, codes for a fusion (F) protein with five potential N-glycosylation sites. Because glycans are known to be important structural components affecting the conformation and function of viral glycoproteins, we analyzed the effect of the deletion of N-linked oligosaccharides on cell surface transport, proteolytic cleavage, and the biological activity of the NiV F protein. Each of the five potential glycosylation sites was removed either individually or in combination, revealing that four sites are actually utilized (g2 and g3 in the F(2) subunit and g4 and g5 in the F(1) subunit). While the removal of g2 and/or g3 had no or little effect on cleavage, surface transport, and fusion activity, the elimination of g4 or g5 reduced the surface expression by more than 80%. Similar to a mutant lacking all N-glycans, g4 deletion mutants in which the potential glycosylation site was destroyed by introducing a glycine residue were neither cleaved nor transported to the cell surface and consequently were not able to mediate cell-to-cell fusion. This finding indicates that in the absence of g4, the amino acid sequence around position 414 is important for folding and transport.
Collapse
Affiliation(s)
- Markus Moll
- Institut fur Virologie, Philipps University of Marburg, Germany
| | | | | |
Collapse
|
58
|
Moll M, Pfeuffer J, Klenk HD, Niewiesk S, Maisner A. Polarized glycoprotein targeting affects the spread of measles virus in vitro and in vivo. J Gen Virol 2004; 85:1019-1027. [PMID: 15039544 DOI: 10.1099/vir.0.19663-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have shown previously that basolateral targeting of plasmid-encoded measles virus (MV) F and H protein is dependent on single tyrosine residues in the cytoplasmic tails of the glycoproteins and is essential for fusion activity in polarized epithelial cells. Here, we present data on the functional importance of polarized glycoprotein expression for the cytopathic properties of infectious MV in culture and for pathogenesis in vivo. By the introduction of single point mutations, we generated recombinant viruses in which the basolateral targeting signal of either one or both glycoproteins was destroyed (tyrosine mutants). As a consequence, the mutated glycoproteins were predominantly expressed on the apical membrane of polarized Madin-Darby canine kidney cells. In contrast to parental MV, none of these virus mutants was able to spread by syncytia formation in polarized cells showing that the presence of both MV glycoproteins at the basolateral cell surface is required for cell-to-cell fusion in vitro. Using cotton rats as an animal model that allows MV replication in the respiratory tract, we showed that basolateral glycoprotein targeting is also of importance for the spread of infection in vivo. Whereas parental MV was able to spread laterally within the respiratory epithelium and from there to cells in the underlying tissue, tyrosine mutants infected only single epithelial and very few subepithelial cells. These data strongly suggest that basolateral targeting of MV glycoproteins helps to overcome the epithelial barrier and thereby facilitates the systemic spread of MV infection in vivo.
Collapse
Affiliation(s)
- Markus Moll
- Institute of Virology, Philipps University Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany
| | - Joanna Pfeuffer
- Institute of Virology and Immunology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Hans-Dieter Klenk
- Institute of Virology, Philipps University Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany
| | - Stefan Niewiesk
- Institute of Virology and Immunology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany
| |
Collapse
|
59
|
Schmitt AP, Lamb RA. Escaping from the cell: assembly and budding of negative-strand RNA viruses. Curr Top Microbiol Immunol 2004; 283:145-96. [PMID: 15298170 DOI: 10.1007/978-3-662-06099-5_5] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Negative-strand RNA virus particles are formed by a process that includes the assembly of viral components at the plasma membranes of infected cells and the subsequent release of particles by budding. Here, we review recent progress that has been made in understanding the mechanisms of negative-strand RNA virus assembly and bud- ding. Important topics for discussion include the key role played by the viral matrix proteins in assembly of viruses and viruslike particles, as well as roles played by additional viral components such as the viral glycoproteins. Various interactions that contribute to virus assembly are discussed, including interactions between matrix proteins and membranes, interactions between matrix proteins and glycoproteins, interactions between matrix proteins and nucleocapsids, and interactions that lead to matrix protein self-assembly. Selection of specific sites on plasma membranes to be used for virus assembly and budding is described, including the asymmetric budding of some viruses in polarized epithelial cells and assembly of viral components in lipid raft microdomains. Evidence for the involvement of cellular proteins in the late stages of rhabdovirus and filovirus budding is discussed as well as the possible involvement of similar host factors in the late stages of budding of other negative-strand RNA viruses.
Collapse
Affiliation(s)
- A P Schmitt
- Department of Biochemistry, Molecular Biology, and Cell Biology, Howard Hughes Medical Institute, Northwestern University, Evanston, IL, 60208-3500, USA
| | | |
Collapse
|
60
|
Kunz S, Edelmann KH, de la Torre JC, Gorney R, Oldstone MBA. Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology 2003; 314:168-78. [PMID: 14517070 DOI: 10.1016/s0042-6822(03)00421-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV) serves as virus attachment protein to its receptor on host cells and is a key determinant for cell tropism, pathogenesis, and epidemiology of the virus. The GP of LCMV is posttranslationally cleaved by the subtilase SKI-1/S1P into two subunits, the peripheral GP1, which is implicated in receptor binding, and the transmembrane GP2 that is structurally similar to the fusion active membrane proximal portions of the glycoproteins of other enveloped viruses. The present study shows that cleavage by SKI-1/S1P is not required for cell surface expression of LCMVGP on infected cells but is essential for its incorporation into virions and for the production of infectious virus particles. In absence of SKI-1/S1P cleavage, cell-to-cell propagation of the virus was markedly reduced. Further, proteolytic processing of LCMVGP depends on the presence of a cluster of basic amino acids at the C-terminus of the cytoplasmic domain of GP2, a structural motif that is conserved in Old World arenaviruses. The effect of the truncation of the cytoplasmic tail on cleavage suggests a structural interdependence between the cytoplasmic domain and the ectodomains of LCMVGP.
Collapse
Affiliation(s)
- Stefan Kunz
- The Scripps Research Institute, Division of Virology, Department of Neuropharmacology, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
61
|
Morrison TG. Structure and function of a paramyxovirus fusion protein. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:73-84. [PMID: 12873767 DOI: 10.1016/s0005-2736(03)00164-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Paramyxoviruses initiate infection by attaching to cell surface receptors and fusing viral and cell membranes. Viral attachment proteins, hemagglutinin-neuraminidase (HN), hemagglutinin (HA), or glycoprotein (G), bind receptors while fusion (F) proteins direct membrane fusion. Because paramyxovirus fusion is pH independent, virus entry occurs at host cell plasma membranes. Paramyxovirus fusion also usually requires co-expression of both the attachment protein and the fusion (F) protein. Newcastle disease virus (NDV) has assumed increased importance as a prototype paramyxovirus because crystal structures of both the NDV F protein and the attachment protein (HN) have been determined. Furthermore, analysis of structure and function of both viral glycoproteins by mutation, reactivity of antibody, and peptides have defined domains of the NDV F protein important for virus fusion. These domains include the fusion peptide, the cytoplasmic domain, as well as heptad repeat (HR) domains. Peptides with sequences from HR domains inhibit fusion, and characterization of the mechanism of this inhibition provides evidence for conformational changes in the F protein upon activation of fusion. Both proteolytic cleavage of the F protein and interactions with the attachment protein are required for fusion activation in most systems. Subsequent steps in membrane merger directed by F protein are poorly understood.
Collapse
Affiliation(s)
- Trudy G Morrison
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| |
Collapse
|