51
|
Fung TS, Liu DX. Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol 2014; 5:296. [PMID: 24987391 PMCID: PMC4060729 DOI: 10.3389/fmicb.2014.00296] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/29/2014] [Indexed: 12/27/2022] Open
Abstract
The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER). Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR), a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However, under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus–host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP) kinase activation, autophagy, apoptosis, and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize the current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling.
Collapse
Affiliation(s)
- To S Fung
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Ding X Liu
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
52
|
Fu Q, Shi H, Shi M, Meng L, Zhang H, Ren Y, Guo F, Jia B, Wang P, Ni W, Chen C. bta-miR-29b attenuates apoptosis by directly targeting caspase-7 and NAIF1 and suppresses bovine viral diarrhea virus replication in MDBK cells. Can J Microbiol 2014; 60:455-60. [PMID: 24965127 DOI: 10.1139/cjm-2014-0277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) are small, endogenous, noncoding RNA molecules that serve as powerful regulators of multiple cellular processes, including apoptosis, differentiation, growth, and proliferation. Bovine viral diarrhea virus (BVDV) contributes significantly to health-related economic losses in the beef and dairy industries. Although BVDV-induced apoptosis correlates with increased intracellular viral RNA accumulation and with bta-miR-29b (miR-29b) expression upregulation in Madin-Darby bovine kidney (MDBK) cells infected with BVDV strain NADL, the role of miR-29b in regulating BVDV-infection-related apoptosis remains unexplored. Here, we report that miR-29b serves as a new miRNA regulating apoptosis. We showed that miR-29b target sequences were present in the 3' untranslated regions of 2 key apoptosis regulators mRNAs, cysteine aspartases-7 (caspase-7) and nuclear apoptosis-inducing factor 1 (NAIF1). Indeed, upon miRNA overexpression, both mRNA and protein levels of caspase-7 and NAIF1 were decreased. We further found that miR-29b attenuated apoptosis by directly regulating intracellular levels of caspase-7 and NAIF1. Moreover, apoptosis blockage by miR-29b was rescued upon co-infection of MDBK cells with lentiviruses expressing caspase-7 and NAIF1. Importantly, miR-29b decreased BVDV NADL envelope glycoprotein E1 mRNA levels and suppressed viral replication. These studies advance our understanding of the mechanisms of miRNAs in mediating the cells combating viral infections.
Collapse
Affiliation(s)
- Qiang Fu
- a College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Blázquez AB, Escribano-Romero E, Merino-Ramos T, Saiz JC, Martín-Acebes MA. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Front Microbiol 2014; 5:266. [PMID: 24917859 PMCID: PMC4042264 DOI: 10.3389/fmicb.2014.00266] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
The Flavivirus is a genus of RNA viruses that includes multiple long known human, animal, and zoonotic pathogens such as Dengue virus, yellow fever virus, West Nile virus, or Japanese encephalitis virus, as well as other less known viruses that represent potential threats for human and animal health such as Usutu or Zika viruses. Flavivirus replication is based on endoplasmic reticulum-derived structures. Membrane remodeling and accumulation of viral factors induce endoplasmic reticulum stress that results in activation of a cellular signaling response termed unfolded protein response (UPR), which can be modulated by the viruses for their own benefit. Concomitant with the activation of the UPR, an upregulation of the autophagic pathway in cells infected with different flaviviruses has also been described. This review addresses the current knowledge of the relationship between endoplasmic reticulum stress, UPR, and autophagy in flavivirus-infected cells and the growing evidences for an involvement of these cellular pathways in the replication and pathogenesis of these viruses.
Collapse
Affiliation(s)
- Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| | - Estela Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| | - Teresa Merino-Ramos
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| | - Miguel A Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain ; Departamento de Virología y Microbiología, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
54
|
Chan SW. Unfolded protein response in hepatitis C virus infection. Front Microbiol 2014; 5:233. [PMID: 24904547 PMCID: PMC4033015 DOI: 10.3389/fmicb.2014.00233] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus of clinical importance. The virus establishes a chronic infection and can progress from chronic hepatitis, steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The mechanisms of viral persistence and pathogenesis are poorly understood. Recently the unfolded protein response (UPR), a cellular homeostatic response to endoplasmic reticulum (ER) stress, has emerged to be a major contributing factor in many human diseases. It is also evident that viruses interact with the host UPR in many different ways and the outcome could be pro-viral, anti-viral or pathogenic, depending on the particular type of infection. Here we present evidence for the elicitation of chronic ER stress in HCV infection. We analyze the UPR signaling pathways involved in HCV infection, the various levels of UPR regulation by different viral proteins and finally, we propose several mechanisms by which the virus provokes the UPR.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Life Sciences, The University of Manchester Manchester, UK
| |
Collapse
|
55
|
Jiang Z, Chen W, Yan X, Bi L, Guo S, Zhan Z. Paeoniflorin protects cells from GalN/TNF-α-induced apoptosis via ER stress and mitochondria-dependent pathways in human L02 hepatocytes. Acta Biochim Biophys Sin (Shanghai) 2014; 46:357-67. [PMID: 24777494 DOI: 10.1093/abbs/gmu010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Paeoniflorin (PF) is one of the main effective components extracted from the root of Paeonia lactiflora, which has been used clinically to treat hepatitis in traditional Chinese medicine, but the details of the underlying mechanism remain unknown. The present study was designed to investigate the mechanism of protective effect of PF on d-galactosamine (GalN) and tumor necrosis factor-α (TNF-α)-induced cell apoptosis using human L02 hepatocytes. Our results confirmed that PF could attenuate GalN/TNF-α-induced apoptotic cell death in a dose-dependent manner. The disruption of mitochondrial membrane potential and the disturbance of intracellular Ca(2+) concentration were also recovered by PF. Western blot analysis revealed that GalN/TNF-α induced the activation of a number of signature endoplasmic reticulum (ER) stress and mitochondrial markers, while PF pre-treatment had a marked dose-dependent suppression on them. Additionally, the anti-apoptotic effect of PF was further evidenced by the inhibition of caspase-3/9 activities in L02 cells. These findings suggest that PF can effectively inhibit hepatocyte apoptosis and the underlying mechanism is related to the regulating mediators in ER stress and mitochondria-dependent pathways.
Collapse
Affiliation(s)
- Zequn Jiang
- Department of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | | | | | | | | | | |
Collapse
|
56
|
Morphogenesis of pestiviruses: new insights from ultrastructural studies of strain Giraffe-1. J Virol 2013; 88:2717-24. [PMID: 24352462 DOI: 10.1128/jvi.03237-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge on the morphogenesis of pestiviruses is limited due to low virus production in infected cells. In order to localize virion morphogenesis and replication sites of pestiviruses and to examine intracellular virion transport, a cell culture model was established to facilitate ultrastructural studies. Based on results of virus growth kinetic analysis and quantification of viral RNA, pestivirus strain Giraffe-1 turned out to be a suitable candidate for studies on virion generation and export from culture cells. Using conventional transmission electron microscopy and single-tilt electron tomography, we found virions located predominately in the lumen of the endoplasmic reticulum (ER) in infected cells and were able to depict the budding process of virions at ER membranes. Colocalization of the viral core protein and the envelope glycoprotein E2 with the ER marker protein disulfide isomerase (PDI) was demonstrated by immunogold labeling of cryosections. Moreover, pestivirions could be shown in transport vesicles and the Golgi complex and during exocytosis. Interestingly, viral capsid protein and double-stranded RNA (dsRNA) were detected in multivesicular bodies (MVBs), which implies that the endosomal compartment plays a role in pestiviral replication. Significant cellular membrane alterations such as those described for members of the Flavivirus and Hepacivirus genera were not found. Based on the gained morphological data, we present a consistent model of pestivirus morphogenesis.
Collapse
|
57
|
Zhu G, Zheng Y, Zhang L, Shi Y, Li W, Liu Z, Peng B, Yin J, Liu W, He X. Coxsackievirus A16 infection triggers apoptosis in RD cells by inducing ER stress. Biochem Biophys Res Commun 2013; 441:856-61. [PMID: 24211204 DOI: 10.1016/j.bbrc.2013.10.142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/28/2013] [Indexed: 11/20/2022]
Abstract
Coxsackievirus A16 (CA16) infection, which is responsible for hand, foot and mouth disease (HFMD), has become a common health problem in Asia due to the prevalence of the virus. Thus, it is important to understand the pathogenesis of CA16 infection. Viruses that induce endoplasmic reticulum (ER) stress are confronted with the unfolded protein response (UPR), which may lead to apoptotic cell death and influence viral replication. In this study, we found that CA16 infection could induce apoptosis and ER stress in RD cells. Interestingly, apoptosis via the activation of caspase-3, -8 and -9 in the extrinsic or intrinsic apoptotic pathways in RD cells was inhibited by 4-phenyl butyric acid (4PBA), a chemical chaperone that reduces ER stress. These results suggest that CA16 infection leads to ER stress, which in turn results in prolonged ER stress-induced apoptosis. This study provides a new basis for understanding CA16 infection and host responses.
Collapse
Affiliation(s)
- Guoguo Zhu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Ambrose RL, Mackenzie JM. Flaviviral regulation of the unfolded protein response: can stress be beneficial? Future Virol 2013. [DOI: 10.2217/fvl.13.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Members of the Flaviviridae family remain some of the most significant human viral pathogens, with few vaccines or antivirals commercially available for therapeutic use. Thus, understanding the intracellular events of replication and how these viruses modulate signaling within an infected cell is of great importance. The ER is central to replication within the Flaviviridae family, as the site of viral protein translation and processing, as a source of membranes for replication complex formation and as a site of virus assembly. This places a large burden upon the organelle, resulting in the induction of ER stress responses, in particular the unfolded protein response. In turn, unfolded protein response signaling induced in infected cells is tightly modulated by the virus in order to maintain an optimal environment for replication. The loss of various components of the stress response can have either beneficial or detrimental effects, presenting intriguing targets for antiviral discovery.
Collapse
Affiliation(s)
- Rebecca L Ambrose
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Jason M Mackenzie
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| |
Collapse
|
59
|
Stahl S, Burkhart JM, Hinte F, Tirosh B, Mohr H, Zahedi RP, Sickmann A, Ruzsics Z, Budt M, Brune W. Cytomegalovirus downregulates IRE1 to repress the unfolded protein response. PLoS Pathog 2013; 9:e1003544. [PMID: 23950715 PMCID: PMC3738497 DOI: 10.1371/journal.ppat.1003544] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/21/2013] [Indexed: 02/07/2023] Open
Abstract
During viral infection, a massive demand for viral glycoproteins can overwhelm the capacity of the protein folding and quality control machinery, leading to an accumulation of unfolded proteins in the endoplasmic reticulum (ER). To restore ER homeostasis, cells initiate the unfolded protein response (UPR) by activating three ER-to-nucleus signaling pathways, of which the inositol-requiring enzyme 1 (IRE1)-dependent pathway is the most conserved. To reduce ER stress, the UPR decreases protein synthesis, increases degradation of unfolded proteins, and upregulates chaperone expression to enhance protein folding. Cytomegaloviruses, as other viral pathogens, modulate the UPR to their own advantage. However, the molecular mechanisms and the viral proteins responsible for UPR modulation remained to be identified. In this study, we investigated the modulation of IRE1 signaling by murine cytomegalovirus (MCMV) and found that IRE1-mediated mRNA splicing and expression of the X-box binding protein 1 (XBP1) is repressed in infected cells. By affinity purification, we identified the viral M50 protein as an IRE1-interacting protein. M50 expression in transfected or MCMV-infected cells induced a substantial downregulation of IRE1 protein levels. The N-terminal conserved region of M50 was found to be required for interaction with and downregulation of IRE1. Moreover, UL50, the human cytomegalovirus (HCMV) homolog of M50, affected IRE1 in the same way. Thus we concluded that IRE1 downregulation represents a previously undescribed viral strategy to curb the UPR. Viruses abuse the cell's protein synthesis and folding machinery to produce large amounts of viral proteins. This enforced synthesis overloads the cell's capacity and leads to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) resulting in ER stress, which can compromise cell viability. To restore ER homeostasis, cells initiate the unfolded protein response (UPR) to reduce protein synthesis, increase degradation of unfolded proteins, and upregulate chaperone expression for enhanced protein folding. The most conserved branch of the UPR is the signaling pathway activated by the ER stress sensor IRE1. It upregulates ER-associated degradation (ERAD), thereby antagonizing ER stress. Some of the counter-regulatory mechanisms of the UPR are detrimental for viral replication and are, therefore, moderated by viruses. In this study we identified the first viral IRE1 inhibitor: The murine cytomegalovirus M50 protein, which interacts with IRE1 and induces its degradation. By this means, M50 inhibits IRE1 signaling and prevents ERAD upregulation. Interestingly, the M50 homolog in human cytomegalovirus, UL50, also downregulated IRE1 revealing a previously unknown mechanism of viral host cell manipulation.
Collapse
Affiliation(s)
- Sebastian Stahl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Julia M. Burkhart
- Department of Bioanalytics, ISAS – Leibniz Institute for Analytical Sciences, Dortmund, Germany
| | - Florian Hinte
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Boaz Tirosh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Hermine Mohr
- Max von Pettenkofer Institute, Ludwig-Maximilians-Universität München, Munich, Germany
| | - René P. Zahedi
- Department of Bioanalytics, ISAS – Leibniz Institute for Analytical Sciences, Dortmund, Germany
| | - Albert Sickmann
- Department of Bioanalytics, ISAS – Leibniz Institute for Analytical Sciences, Dortmund, Germany
- Medical Proteome Center (MPC), Ruhr-Universität, Bochum, Germany
| | - Zsolt Ruzsics
- Max von Pettenkofer Institute, Ludwig-Maximilians-Universität München, Munich, Germany
- DZIF German Center for Infection Research, Munich, Germany
| | - Matthias Budt
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
- DZIF German Center for Infection Research, Hamburg, Germany
- * E-mail:
| |
Collapse
|
60
|
Expression of type I interferon-induced antiviral state and pro-apoptosis markers during experimental infection with low or high virulence bovine viral diarrhea virus in beef calves. Virus Res 2013; 173:260-9. [PMID: 23458997 DOI: 10.1016/j.virusres.2013.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/01/2013] [Accepted: 02/20/2013] [Indexed: 12/23/2022]
Abstract
The objective of this study was to compare the mRNA expression of host genes involved in type-I interferon-induced antiviral state (IFN-α, IFN-β, Mx-1, PKR, OAS-1 and ISG-15), and apoptosis (caspase-3, -8, and -9), after experimental infection of beef calves with low or high virulence noncytopathic (ncp) bovine viral diarrhea virus (BVDV) strains. Thirty BVDV-naïve, clinically normal calves were randomly assigned to three groups. Calves were intranasally inoculated with low (LV; n=10, strain SD-1) or high (HV; n=10, strain 1373) virulence ncp BVDV or BVDV-free cell culture medium (Control, n=10). Quantitative RT-PCR was used to determine the target gene expression in tracheo-bronchial lymph nodes and spleen 5 days after infection. Interferon-α and -β mRNA levels were up-regulated in tracheo-bronchial lymph nodes (P<0.05) in the HV group, but not in the LV group, compared with the control group. There was an up-regulation of type I interferon-induced genes in spleen and tracheo-bronchial lymph nodes of HV and LV groups, compared with the control group (P<0.01). mRNA levels of OAS-1 and ISG-15 were significantly higher in LV than HV calves (P<0.05). A significant up-regulation of caspase-8 and -9 was observed in tracheo-bronchial lymph nodes in the LV group (P=0.01), but not in the HV group. In conclusion, experimental infection with either high or low virulence BVDV strains induced a significant expression of the type I interferon-induced genes in beef calves. There was a differential expression of some interferon-induced genes (OAS-1 and ISG-15) and pro-apoptosis markers based on BVDV virulence and genotype.
Collapse
|
61
|
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013; 5:a012351. [PMID: 23209131 DOI: 10.1101/cshperspect.a012351] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
62
|
Lu MW, Ngou FH, Chao YM, Lai YS, Chen NY, Lee FY, Chiou PP. Transcriptome characterization and gene expression of Epinephelus spp in endoplasmic reticulum stress-related pathway during betanodavirus infection in vitro. BMC Genomics 2012; 13:651. [PMID: 23170826 PMCID: PMC3560219 DOI: 10.1186/1471-2164-13-651] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 10/18/2012] [Indexed: 12/14/2022] Open
Abstract
Background Grouper (Epinephelus spp) is an economically important fish species worldwide. However, viral pathogens such as nervous necrosis virus (NNV) have been causing severe infections in the fish, resulting in great loss in the grouper aquaculture industry. Yet, the understanding of the molecular mechanisms underlying the pathogenicity of NNV is still inadequate, mainly due to insufficient genomic information of the host. Results De novo assembly of grouper transcriptome in the grouper kidney (GK) cells was conducted by using short read sequencing technology of Solexa/Illumina. A sum of 66,582 unigenes with mean length of 603 bp were obtained, and were annotated according to Gene Ontology (GO) and Clusters of Orthologous Groups (COG). In addition, the tag-based digital gene expression (DGE) system was used to investigate the gene expression and pathways associated with NNV infection in GK cells. The analysis revealed endoplasmic reticulum (ER) stress response was prominently affected in NNV-infected GK cells. A further analysis revealed an interaction between the NNV capsid protein and the ER chaperone immunoglobulin heavy-chain binding protein (BiP). Furthermore, exogenous expression of NNV capsid protein was able to induce XBP-1 mRNA splicing in vivo, suggesting a role of the capsid protein in the NNV-induced ER stress. Conclusions Our data presents valuable genetic information for Epinephelus spp., which will benefit future study in this non-model but economically important species. The DGE profile of ER stress response in NNV-infected cells provides information of many important components associated with the protein processing in ER. Specifically, we showed that the viral capsid protein might play an important role in the ER stress response.
Collapse
Affiliation(s)
- Ming-Wei Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
63
|
African swine fever virus controls the host transcription and cellular machinery of protein synthesis. Virus Res 2012; 173:58-75. [PMID: 23154157 DOI: 10.1016/j.virusres.2012.10.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 01/05/2023]
Abstract
Throughout a viral infection, the infected cell reprograms the gene expression pattern in order to establish a satisfactory antiviral response. African swine fever virus (ASFV), like other complex DNA viruses, sets up a number of strategies to evade the host's defense systems, such as apoptosis, inflammation and immune responses. The capability of the virus to persist in its natural hosts and in domestic pigs, which recover from infection with less virulent isolates, suggests that the virus displays effective mechanisms to escape host defense systems. ASFV has been described to regulate the activation of several transcription factors, thus regulating the activation of specific target genes during ASFV infection. Whereas some reports have concerned about anti-apoptotic ASFV genes and the molecular mechanisms by which ASFV interferes with inducible gene transcription and immune evasion, less is yet known regarding how ASFV regulates the translational machinery in infected cells, although a recent report has shown a mechanism for favored expression of viral genes based on compartmentalization of viral mRNA and ribosomes with cellular translation factors within the virus factory. The viral mechanisms involved both in the regulation of host genes transcription and in the control of cellular protein synthesis are summarized in this review.
Collapse
|
64
|
Galindo I, Hernáez B, Muñoz-Moreno R, Cuesta-Geijo MA, Dalmau-Mena I, Alonso C. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death Dis 2012; 3:e341. [PMID: 22764100 PMCID: PMC3406580 DOI: 10.1038/cddis.2012.81] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/10/2012] [Accepted: 05/29/2012] [Indexed: 01/11/2023]
Abstract
African swine fever virus (ASFV) infection induces apoptosis in the infected cell; however, the consequences of this activation on virus replication have not been defined. In order to identify the role of apoptosis in ASFV infection, we analyzed caspase induction during the infection and the impact of caspase inhibition on viral production. Caspases 3, 9 and 12 were activated from 16 h post-infection, but not caspase 8. Indeed, caspase 3 activation during the early stages of the infection appeared to be crucial for efficient virus exit. In addition, the inhibition of membrane blebbing reduced the release of virus particles from the cell. ASFV uses the endoplasmic reticulum (ER) as a site of replication and this process can trigger ER stress and the unfolded protein response (UPR) of the host cell. In addition to caspase 12 activation, indicators of ER stress include the upregulation of the chaperones calnexin and calreticulin upon virus infection. Moreover, ASFV induces transcription factor 6 signaling pathway of the UPR, but not the protein kinase-like ER kinase or the inositol-requiring enzyme 1 pathways. Thus, the capacity of ASFV to regulate the UPR may prevent early apoptosis and ensure viral replication.
Collapse
Affiliation(s)
- I Galindo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - B Hernáez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - R Muñoz-Moreno
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - M A Cuesta-Geijo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - I Dalmau-Mena
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - C Alonso
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
65
|
Burnett HF, Audas TE, Liang G, Lu RR. Herpes simplex virus-1 disarms the unfolded protein response in the early stages of infection. Cell Stress Chaperones 2012; 17:473-83. [PMID: 22270612 PMCID: PMC3368031 DOI: 10.1007/s12192-012-0324-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 01/12/2023] Open
Abstract
Accumulation of mis- and unfolded proteins during viral replication can cause stress in the endoplasmic reticulum (ER) and trigger the unfolded protein response (UPR). If unchecked, this process may induce cellular changes detrimental to viral replication. In the report, we investigated the impact of HSV-1 on the UPR during lytic replication. We found that HSV-1 effectively disarms the UPR in early stages of viral infection. Only ATF6 activation was detected during early infection, but with no upregulation of target chaperone proteins. Activity of the eIF2α/ATF4 signaling arm increased at the final stage of HSV-1 replication, which may indicate completion of virion assembly and egress, thus releasing suppression of the UPR. We also found that the promoter of viral ICP0 was responsive to ER stress, an apparent mimicry of cellular UPR genes. These results suggest that HSV-1 may use ICP0 as a sensor to modulate the cellular stress response.
Collapse
Affiliation(s)
- Heather F. Burnett
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada N1G 2W1
| | - Timothy E. Audas
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada N1G 2W1
| | - Genqing Liang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada N1G 2W1
| | - Rui Ray Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada N1G 2W1
| |
Collapse
|
66
|
Hilbe M, Girao V, Bachofen C, Schweizer M, Zlinszky K, Ehrensperger F. Apoptosis in Bovine viral diarrhea virus (BVDV)-induced mucosal disease lesions: a histological, immunohistological, and virological investigation. Vet Pathol 2012; 50:46-55. [PMID: 22700847 DOI: 10.1177/0300985812447826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cattle persistently infected with a noncytopathic Bovine viral diarrhea virus (BVDV) are at risk of developing fatal "mucosal disease" (MD). The authors investigated the role of various apoptosis pathways in the pathogenesis of lesions in animals suffering from MD. Therefore, they compared the expression of caspase-3, caspase-8, caspase-9, and Bcl-2L1 (Bcl-x) in tissues of 6 BVDV-free control animals, 7 persistently infected (PI) animals that showed no signs of MD (non-MD PI animals), and 11 animals with MD and correlated the staining with the localization of mucosal lesions. Caspase-3 and -9 staining were markedly stronger in MD cases and were associated with mucosal lesions, even though non-MD PI animals and negative controls also expressed caspase-9. Conversely, caspase-8 was not elevated in any of the animals analyzed. Interestingly, Bcl-x also colocalized with mucosal lesions in the MD cases. However, Bcl-x was similarly expressed in tissues from all 3 groups, and thus, its role in apoptosis needs to be clarified. This study clearly illustrates ex vivo that the activation of the intrinsic, but not the extrinsic, apoptosis pathway is a key element in the pathogenesis of MD lesions observed in cattle persistently infected with BVDV. However, whether direct induction of apoptosis in infected cells or indirect effects induced by the virus are responsible for the lesions observed remains to be established.
Collapse
Affiliation(s)
- M Hilbe
- Institute of Veterinary Pathology, University of Zürich, Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
67
|
Zhang L, Wang A. Virus-induced ER stress and the unfolded protein response. FRONTIERS IN PLANT SCIENCE 2012; 3:293. [PMID: 23293645 PMCID: PMC3531707 DOI: 10.3389/fpls.2012.00293] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/08/2012] [Indexed: 05/08/2023]
Abstract
The accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER) results in ER stress that triggers cytoprotective signaling pathways, termed the unfolded protein response (UPR), to restore and maintain homeostasis in the ER or to induce apoptosis if ER stress remains unmitigated. The UPR signaling network encompasses three core elements, i.e., PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring protein-1 (IRE1). Activation of these three branch pathways of the UPR leads to the translation arrest and degradation of misfolded proteins, the expression of ER molecular chaperones, and the expansion of the ER membrane to decrease the load of proteins and increase the protein-folding capacity in the ER. Recently, the essential roles of the UPR have been implicated in a number of mammalian diseases, particularly viral diseases. In virus-infected cells, the cellular translation machinery is hijacked by the infecting virus to produce large amounts of viral proteins, which inevitably perturbs ER homeostasis and causes ER stress. This review summarizes current knowledge about the UPR signaling pathways, highlights two identified UPR pathways in plants, and discuss progress in elucidating the UPR in virus-infected cells and its functional roles in viral infection.
Collapse
Affiliation(s)
| | - Aiming Wang
- *Correspondence: Aiming Wang, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada. e-mail:
| |
Collapse
|
68
|
Liu Z, Zhang HM, Yuan J, Ye X, Taylor GA, Yang D. The immunity-related GTPase Irgm3 relieves endoplasmic reticulum stress response during coxsackievirus B3 infection via a PI3K/Akt dependent pathway. Cell Microbiol 2011; 14:133-46. [PMID: 21981022 DOI: 10.1111/j.1462-5822.2011.01708.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The IRG protein Irgm3 preserves cell survival during coxsackievirus B3 (CVB3) infection. However, the molecular mechanisms are not clear. Here, we examined the effect of Irgm3 expression on ER stress triggered by pharmacological agents or CVB3 infection. In Tet-On/Irgm3 HeLa cells, Irgm3 expression suppressed either chemical- or CVB3-induced upregulation of glucose-regulated protein 78. Further, Irgm3 strongly inhibited the activation of both the PERK and ATF6 pathways of ER stress responses, which further led to the diminished phosphorylation of eIF2α, reduced cleavage/activation of transcription factor SREBP1 and attenuated induction of proapoptotic genes CHOP and GADD34. These data were further supported by experiments using Irgm3 knockout mouse embryonic fibroblasts, in which the ER stress induced by CVB3 was not relieved due to the lack of Irgm3 expression. In addition, the tunicamycin-triggered ER stress promoted the subsequent CVB3 infection. The effect of Irgm3 on ER stress and CVB3 infection was diminished by the PI3K inhibitor, LY294002, while inhibitors of ERK, JNK and p38 had no effect. These data were further corroborated by transfection of cells with a dominant negative Akt. Taken together, these data suggest that Irgm3 relieves the ER stress response via a PI3K/Akt dependent mechanism, which contributes to host defence against CVB3 infection.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Pathology and Laboratory Medicine, University of British Columbia - The Heart + Lung Institute - St. Paul's Hospital, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
69
|
Caselli E, Benedetti S, Grigolato J, Caruso A, Di Luca D. Activating transcription factor 4 (ATF4) is upregulated by human herpesvirus 8 infection, increases virus replication and promotes proangiogenic properties. Arch Virol 2011; 157:63-74. [PMID: 22016052 DOI: 10.1007/s00705-011-1144-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/06/2011] [Indexed: 12/15/2022]
Abstract
Human herpesvirus 8 (HHV-8) triggers proangiogenic behaviour in endothelial cells by inducing monocyte chemoattractant protein 1 (MCP-1) through activation of Nuclear Factor κB (NF-κB). However, NF-κB inhibition still results in partial MCP-1 induction and consequent angiogenesis, suggesting the involvement of another transcriptional pathway. We analysed activating transcription factor 4 (ATF4), since it is central in the cellular response to stress and is involved in angiogenesis. The results show that HHV-8 upregulates ATF4 expression, which in turn promotes HHV-8 infection, and induces MCP-1 production and proangiogenic properties in endothelial cells. By contrast, ATF4 silencing decreases virus replication and inhibits virus-induced MCP-1 production and induction of tube-like structures. Therefore, ATF4 plays a role in HHV-8 replication and associated virus-induced angiogenesis. The elucidation of molecular pathways involved in this process will result in a better understanding of the virus-induced angiogenic process and might help in designing novel therapies to reduce tumour growth.
Collapse
Affiliation(s)
- Elisabetta Caselli
- Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, via L. Borsari 46, 44100 Ferrara, Italy.
| | | | | | | | | |
Collapse
|
70
|
Reovirus therapy stimulates endoplasmic reticular stress, NOXA induction, and augments bortezomib-mediated apoptosis in multiple myeloma. Oncogene 2011; 31:3023-38. [PMID: 22002308 DOI: 10.1038/onc.2011.478] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oncolytic virotherapy with reovirus has demonstrated anti-cancer activity and minimal toxicity in clinical trials, but the mechanisms underlying these effects have not been fully elucidated. Reolysin, a proprietary formulation of reovirus for cancer therapy, stimulated selective viral replication and apoptosis in multiple myeloma (MM) cells. Reolysin-mediated apoptosis was associated with an induction of endoplasmic reticular (ER) stress-related gene expression, swelling of the endoplasmic reticulum, increases in intracellular calcium levels and a strong induction of the Bcl-2 homology 3 (BH3)-only pro-apoptotic protein NOXA. Knockdown of NOXA expression by short hairpin RNA significantly reduced the pro-apoptotic effects of Reolysin. We next showed that co-administration of Reolysin and bortezomib resulted in the dual accumulation of viral and ubiquitinated proteins, which led to enhanced ER stress, NOXA induction and apoptosis. Importantly, the combination of reovirus infection and proteasomal inhibition significantly decreased tumor burden in a xenograft and syngeneic bone disease model of MM without exhibiting adverse side effects. Our study establishes ER stress stimulation and NOXA induction as novel mediators of reovirus-induced apoptosis. Furthermore, reovirus infection can be used as a promising approach to augment the anti-myeloma activity of bortezomib by promoting additional stress to the endoplasmic reticulum of MM cells.
Collapse
|
71
|
Abstract
Although viruses encode many of the functions that are required for viral replication, they are completely reliant on the protein synthesis machinery that is present in their host cells. Recruiting cellular ribosomes to translate viral mRNAs represents a crucial step in the replication of all viruses. To ensure translation of their mRNAs, viruses use a diverse collection of strategies (probably pirated from their cellular hosts) to commandeer key translation factors that are required for the initiation, elongation and termination steps of translation. Viruses also neutralize host defences that seek to incapacitate the translation machinery in infected cells.
Viruses rely on the translation machinery of the host cell to produce the proteins that are essential for their replication. Here, Walsh and Mohr discuss the diverse strategies by which viruses subvert the host protein synthesis machinery and regulate the translation of viral mRNAs. Viruses are fully reliant on the translation machinery of their host cells to produce the polypeptides that are essential for viral replication. Consequently, viruses recruit host ribosomes to translate viral mRNAs, typically using virally encoded functions to seize control of cellular translation factors and the host signalling pathways that regulate their activity. This not only ensures that viral proteins will be produced, but also stifles innate host defences that are aimed at inhibiting the capacity of infected cells for protein synthesis. Remarkably, nearly every step of the translation process can be targeted by virally encoded functions. This Review discusses the diverse strategies that viruses use to subvert host protein synthesis functions and regulate mRNA translation in infected cells.
Collapse
|
72
|
Numajiri Haruki A, Naito T, Nishie T, Saito S, Nagata K. Interferon-inducible antiviral protein MxA enhances cell death triggered by endoplasmic reticulum stress. J Interferon Cytokine Res 2011; 31:847-56. [PMID: 21992152 DOI: 10.1089/jir.2010.0132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human myxovirus resistance gene A (MxA) is a type I interferon-inducible protein and exhibits the antiviral activity against a variety of RNA viruses, including influenza virus. Previously, we reported that MxA accelerates cell death of influenza virus-infected cells through caspase-dependent and -independent mechanisms. Similar to other viruses, influenza virus infection induces endoplasmic reticulum (ER) stress, which is one of cell death inducers. Here, we have demonstrated that MxA enhances ER stress signaling in cells infected with influenza virus. ER stress-induced events, such as expression of BiP mRNA and processing of XBP1 mRNA, were upregulated in cells expressing MxA by treatment with an ER stress inducer, tunicamycin (TM), as well as influenza virus infection. TM-induced cell death was also accelerated by MxA. Furthermore, we showed that MxA interacts with BiP and overexpression of BiP reduces MxA-promoted ER stress signaling. Because cell death in virus-infected cells is one of ultimate anti-virus mechanisms, we propose that MxA-enhanced ER stress signaling is a part of the antiviral activity of MxA by accelerating cell death.
Collapse
Affiliation(s)
- Akiko Numajiri Haruki
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | | | | | | | | |
Collapse
|
73
|
Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, Stiuso P, Abbruzzese A, Sperlongano R, Accardo M, Agresti M, Caraglia M, Sperlongano P. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med 2011; 9:171. [PMID: 21985599 PMCID: PMC3213217 DOI: 10.1186/1479-5876-9-171] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 10/10/2011] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex and heterogeneous tumor with multiple genetic aberrations. Several molecular pathways involved in the regulation of proliferation and cell death are implicated in the hepatocarcinogenesis. The major etiological factors for HCC are both hepatitis B virus (HBV) and hepatitis C virus infection (HCV). Continuous oxidative stress, which results from the generation of reactive oxygen species (ROS) by environmental factors or cellular mitochondrial dysfunction, has recently been associated with hepatocarcinogenesis. On the other hand, a distinctive pathological hallmark of HCC is a dramatic down-regulation of oxido-reductive enzymes that constitute the most important free radical scavenger systems represented by catalase, superoxide dismutase and glutathione peroxidase. The multikinase inhibitor sorafenib represents the most promising target agent that has undergone extensive investigation up to phase III clinical trials in patients with advanced HCC. The combination with other target-based agents could potentiate the clinical benefits obtained by sorafenib alone. In fact, a phase II multicenter study has demonstrated that the combination between sorafenib and octreotide LAR (So.LAR protocol) was active and well tolerated in advanced HCC patients. The detection of molecular factors predictive of response to anti-cancer agents such as sorafenib and the identification of mechanisms of resistance to anti-cancer agents may probably represent the direction to improve the treatment of HCC.
Collapse
Affiliation(s)
- Monica Marra
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Ignazio M Sordelli
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Angela Lombardi
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Monica Lamberti
- Departement of Experimental Medicine, Sezione di Medicina del lavoro, Igiene e Tossicologia Industriale, Second University of Naples, Naples, Italy
| | - Luciano Tarantino
- Interventional US Unit, Department of Medicine, S. Giovanni di Dio Hospital, 80059 Torre del Greco (Naples), Italy
| | - Aldo Giudice
- Animal Facility Unit, National Institute of Tumours "Fondazione G. Pascale" of Naples, Naples, Italy
| | - Paola Stiuso
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Alberto Abbruzzese
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Rossella Sperlongano
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Marina Accardo
- Department of Morphopathology, II University Naples, Napoli, Italy
| | - Massimo Agresti
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Pasquale Sperlongano
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| |
Collapse
|
74
|
Huang HL, Wu JL, Chen MHC, Hong JR. Aquatic birnavirus-induced ER stress-mediated death signaling contribute to downregulation of Bcl-2 family proteins in salmon embryo cells. PLoS One 2011; 6:e22935. [PMID: 21901118 PMCID: PMC3161983 DOI: 10.1371/journal.pone.0022935] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/06/2011] [Indexed: 12/17/2022] Open
Abstract
Aquatic birnavirus induces mitochondria-mediated cell death, but whether connects to endoplasmic reticulum (ER) stress is still unknown. In this present, we characterized that IPNV infection triggers ER stress-mediated cell death via PKR/eIF2α phosphorylation signaling for regulating the Bcl-2 family protein expression in fish cells. The IPNV infection can induce ER stress as follows: (1) ER stress sensor ATF6 cleavaged; (2) ER stress marker GRP78 upregulation, and (3) PERK/eIF2α phosphorylation. Then, the IPNV-induced ER stress signals can induce the CHOP expression at early (6 h p.i.) and middle replication (12 h p.i.) stages. Moreover, IPNV-induced CHOP upregulation dramatically correlates to apparently downregulate the Bcl-2 family proteins, Bcl-2, Mcl-1 and Bcl-xL at middle replication stage (12 h p.i.) and produces mitochondria membrane potential (MMP) loss and cell death. Furthermore, with GRP78 synthesis inhibitor momitoxin (VT) and PKR inhibitor 2-aminopurine (2-AP) treatment for blocking GRP78 expression and eIF2α phosphorylation, PKR/PERK may involve in eIF2α phosphorylation/CHOP upregulation pathway that enhances the downstream regulators Bcl-2 family proteins expression and increased cell survival. Taken together, our results suggest that IPNV infection activates PKR/PERK/eIF2α ER stress signals for regulating downstream molecules CHOP upregulation and Bcl-2 family downregulation that led to induce mitochondria-mediated cell death in fish cells, which may provide new insight into RNA virus pathogenesis and disease.
Collapse
Affiliation(s)
- Hui Ling Huang
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jen Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Mark Hung Chih Chen
- Bioluminescence in Life-image Laboratory, Institute of Biotechnology, Department of Biotechnology, Hungkuang University, Taichung, Taiwan
- * E-mail: (JRH); (MHCC)
| | - Jiann Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (JRH); (MHCC)
| |
Collapse
|
75
|
Zhong JL, Yang L, Lü F, Xiao H, Xu R, Wang L, Zhu F, Zhang Y. UVA, UVB and UVC induce differential response signaling pathways converged on the eIF2α phosphorylation. Photochem Photobiol 2011; 87:1092-104. [PMID: 21707633 DOI: 10.1111/j.1751-1097.2011.00963.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is clear that solar UV irradiation is a crucial environmental factor resulting in skin diseases partially through activation of cell signaling toward altered gene expression and reprogrammed protein translation. Such a key translational control mechanism is executed by the eukaryotic initiation factor 2α subunit (eIF2α) and the downstream events provoked by phosphorylation of eIF2α at Ser(51) are clearly understood, but the upstream signaling mechanisms on the eIF2α-Ser(51) phosphorylation responses to different types of UV irradiations, namely UVA, UVB and UVC, are still not well elucidated. Herein, our evidence reveals that UVA, UVB and UVC all induce a dose- and time-dependent phosphorylation of eIF2α-Ser(51) through distinct signaling mechanisms. UVA-induced eIF2α phosphorylation occurs through MAPKs, including ERKs, JNKs and p38 kinase, and phosphatidylinositol (PI)-3 kinase. By contrast, UVB-induced eIF2α phosphorylation is through JNKs and p38 kinase, but not ERKs or PI-3 kinase, whereas UVC-stimulated response to eIF2α phosphorylation is via JNKs alone. Furthermore, we have revealed that ATM is involved in induction of the intracellular responses to UVA and UVB, rather than UVC. These findings demonstrate that wavelength-specific UV irradiations activate differential response signaling pathways converged on the eIF2α phosphorylation. Importantly, we also show evidence that a direct eIF2α kinase PKR is activated though phosphorylation by either RSK1 or MSK1, two downstream kinases of MAPKs/PI-3 kinase-mediated signaling pathways.
Collapse
Affiliation(s)
- Julia Li Zhong
- The Base of 111 Project for Biomechanics & Tissue Repair Engineering, College of Medical Bioengineering, University of Chongqing, Shapingba District, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Unfolded protein response (UPR) gene expression during antibody-dependent enhanced infection of cultured monocytes correlates with dengue disease severity. Biosci Rep 2011; 31:221-30. [PMID: 20858223 DOI: 10.1042/bsr20100078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DENV (dengue virus) induces UPR (unfolded protein response) in the host cell, which strikes a balance between pro-survival and pro-apoptotic signals. We previously showed that Salubrinal, a drug that targets the UPR, inhibits DENV replication. Here, we examine the impact on UPR after direct or ADE (antibody-dependent enhanced) infection of cells with DENV clinical isolates. THP-1 cells in the presence of subneutralizing concentration of humanized antibody 4G2 (cross-reactive with flavivirus envelope protein) or HEK-293 cells (human embryonic kidney 293 cells) were infected with DENV-1-4 serotypes. UPR gene expression was monitored under these infection conditions using real-time RT-PCR (reverse transcription-PCR) and Western blots to analyse serotype-dependent variations. Subsequently, in a blinded study, strain-specific differences were compared between DENV-2 clinical isolates obtained from a single epidemic. Results showed that THP-1 cells were infected efficiently and equally by DENV-1-4 in the ADE mode. At 48 hpi (h post infection), DENV-1 and -3 showed a higher replication rate and induced higher expression of several UPR genes such as BiP (immunoglobulin heavy-chain-binding protein), GADD34 (growth arrest DNA damage-inducible protein 34) and CHOP [C/EBP (CCAAT/enhancer-binding protein)-homologous protein]. The ADE infection of THP-1 cells with epidemic DENV-2 high-UPR-gene-expressing strains appears to correlate with severe disease; however, no such correlation could be made when the same viruses were used to infect HEK-293 cells. Our finding that UPR gene expression in THP-1 cells during ADE infection correlates with dengue disease severity is consistent with a previous study [Morens, Marchette, Chu and Halstead (1991) Am. J. Trop. Med. Hyg. 45, 644-651] that showed that the growth of DENV 2 isolates in human peripheral blood leucocytes correlated with severe and mild dengue diseases.
Collapse
|
77
|
Wu YP, Chang CM, Hung CY, Tsai MC, Schuyler SC, Wang RYL. Japanese encephalitis virus co-opts the ER-stress response protein GRP78 for viral infectivity. Virol J 2011; 8:128. [PMID: 21418596 PMCID: PMC3071342 DOI: 10.1186/1743-422x-8-128] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 03/20/2011] [Indexed: 12/19/2022] Open
Abstract
The serum-free medium from Japanese encephalitis virus (JEV) infected Baby Hamster Kidney-21 (BHK-21) cell cultures was analyzed by liquid chromatography tandem mass spectrometry (LC-MS) to identify host proteins that were secreted upon viral infection. Five proteins were identified, including the molecular chaperones Hsp90, GRP78, and Hsp70. The functional role of GRP78 in the JEV life cycle was then investigated. Co-migration of GRP78 with JEV particles in sucrose density gradients was observed and co-localization of viral E protein with GRP78 was detected by immunofluorescence analysis in vivo. Knockdown of GRP78 expression by siRNA did not effect viral RNA replication, but did impair mature viral production. Mature viruses that do not co-fractionate with GPR78 displayed a significant decrease in viral infectivity. Our results support the hypothesis that JEV co-opts host cell GPR78 for use in viral maturation and in subsequent cellular infections.
Collapse
Affiliation(s)
- Yi-Ping Wu
- Department of Biomedical Sciences, Chang Gung University, TaoYuan, 33302, Taiwan
| | | | | | | | | | | |
Collapse
|
78
|
Peña J, Harris E. Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem 2011; 286:14226-36. [PMID: 21385877 DOI: 10.1074/jbc.m111.222703] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Flaviviruses, such as dengue virus (DENV), depend on the host endoplasmic reticulum for translation, replication, and packaging of their genomes. Here we report that DENV-2 infection modulates the unfolded protein response in a time-dependent manner. We show that early DENV-2 infection triggers and then suppresses PERK-mediated eIF2α phosphorylation and that in mid and late DENV-2 infection, the IRE1-XBP1 and ATF6 pathways are activated, respectively. Activation of IRE1-XBP1 correlated with induction of downstream targets GRP78, CHOP, and GADD34. Furthermore, induction of CHOP did not induce apoptotic markers, such as suppression of anti-apoptotic protein Bcl-2, activation of caspase-9 or caspase-3, and cleavage of poly(ADP-ribose) polymerase. Finally, we show that DENV-2 replication is affected in PERK(-/-) and IRE1(-/-) mouse embryo fibroblasts when compared with wild-type mouse embryo fibroblasts. These results demonstrate that time-dependent activation of the unfolded protein response by DENV-2 can override inhibition of translation, prevent apoptosis, and prolong the viral life cycle.
Collapse
Affiliation(s)
- José Peña
- Division of Infectious Diseases and Vaccinology, School of Public Health, and Graduate Group in Microbiology, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-7354, USA.
| | | |
Collapse
|
79
|
Li G, Scull C, Ozcan L, Tabas I. NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. Crit Rev Microbiol 2010; 41:150-64. [PMID: 25168431 PMCID: PMC7113905 DOI: 10.3109/1040841x.2013.813899] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The endoplasmic reticulum (ER) is a cellular membrane organelle that plays important roles in virus replication and maturation. Accumulating evidence indicates that virus infection often disturbs ER homeostasis and leads to ER stress, which is associated with a variety of prevalent diseases. To cope with the deleterious effects of virus-induced ER stress, cells activate critical signaling pathways including the unfolded protein response (UPR) and intrinsic mitochondrial apoptosis, which have complex effects on virus replication and pathogenesis. In this review, we present a comprehensive summary of recent research in this field, which revealed that about 36 viruses trigger ER stress and differentially activate ER stress-related signaling pathways. We also highlight the strategies evolved by viruses to modulate ER stress-related signaling networks including immune responses in order to ensure their survival and pathogenesis. Together, the knowledge gained from this field will shed light on unveiling the mechanisms of virus replication and pathogenesis and provide insight for future research as well as antiviral development.
Collapse
Affiliation(s)
- Gang Li
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
80
|
Klomporn P, Panyasrivanit M, Wikan N, Smith DR. Dengue infection of monocytic cells activates ER stress pathways, but apoptosis is induced through both extrinsic and intrinsic pathways. Virology 2010; 409:189-97. [PMID: 21047664 DOI: 10.1016/j.virol.2010.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 09/26/2010] [Accepted: 10/06/2010] [Indexed: 11/15/2022]
Abstract
Monocytic cells are believed to be an important mediator of the pathology of dengue disease in cases of secondary infection where pre-existing antibodies from a first infection facilitate virus entry to Fc receptor bearing cells. In this study we assessed the induction of the ER stress in response to infection of monocytic U937 cells with all four DENV serotypes as well as the induction of apoptosis. Clear evidence of ER stress and the production of pro-apoptotic signals were observed, together with activation of caspase 9. Surprisingly, caspase 8 was also activated, independently of caspase 9, and this was accompanied by an increase in the expression of TNF-α, suggesting the simultaneous but independent activation of both extrinsic and intrinsic apoptosis pathways. Both the induction of ER stress and apoptosis were shown to be serotype independent.
Collapse
Affiliation(s)
- Pathama Klomporn
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Thailand
| | | | | | | |
Collapse
|
81
|
Wang P, Arjona A, Zhang Y, Sultana H, Dai J, Yang L, LeBlanc PM, Doiron K, Saleh M, Fikrig E. Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I. Nat Immunol 2010; 11:912-9. [PMID: 20818395 DOI: 10.1038/ni.1933] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 08/11/2010] [Indexed: 12/19/2022]
Abstract
Caspase-12 has been shown to negatively modulate inflammasome signaling during bacterial infection. Its function in viral immunity, however, has not been characterized. We now report an important role for caspase-12 in controlling viral infection via the pattern-recognition receptor RIG-I. After challenge with West Nile virus (WNV), caspase-12-deficient mice had greater mortality, higher viral burden and defective type I interferon response compared with those of challenged wild-type mice. In vitro studies of primary neurons and mouse embryonic fibroblasts showed that caspase-12 positively modulated the production of type I interferon by regulating E3 ubiquitin ligase TRIM25-mediated ubiquitination of RIG-I, a critical signaling event for the type I interferon response to WNV and other important viral pathogens.
Collapse
Affiliation(s)
- Penghua Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Homology model and potential virus-capsid binding site of a putative HEV receptor Grp78. J Mol Model 2010; 17:987-95. [PMID: 20628775 DOI: 10.1007/s00894-010-0794-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/25/2010] [Indexed: 01/07/2023]
Abstract
P239, a truncated construct of the hepatitis E virus (HEV) ORF2 protein, has been proven able to bind with a chaperone, Grp78, in both an in vitro co-immune precipitation test and an in vivo cell model. We previously solved the crystal structure of E2s--the C-terminal domain of p239 involved in host interactions. In the present study, we built a 3D structure of Grp78 using homology modeling methods, and docked this molecule with E2s using the Zdockpro module of the InsightII software package. The modeled Grp78 structure was deemed feasible by profile 3D evaluation and molecular dynamic simulations. The docking result consists of six clusters of distinct complexes and C035 was selected as the most reasonable. The interacting interface of the predicted complex is comprised of the Grp78 linker region and nucleotide binding domain along with the E2s groove region and surrounding loops. Using energy, hydrogen bond and solvent accessible surface analyses, we identified a series of key residues that may be involved in the Grp78:E2s interaction. By comparing with the known structure of the Hsp70:J complex, we further concluded that the interaction of Grp78 and E2s could interrupt binding of Grp78 with the J domain, and in turn diminish or even eliminate the binding ability of the Grp78 substrate binding domain. The predicted series of key residues also provides clues for further research that should improve our understanding of the fundamental molecular mechanisms of HEV infection.
Collapse
|
83
|
Mishima K, Sakamoto N, Sekine-Osajima Y, Nakagawa M, Itsui Y, Azuma S, Kakinuma S, Kiyohashi K, Kitazume A, Tsuchiya K, Imamura M, Hiraga N, Chayama K, Wakita T, Watanabe M. Cell culture and in vivo analyses of cytopathic hepatitis C virus mutants. Virology 2010; 405:361-9. [PMID: 20609455 DOI: 10.1016/j.virol.2010.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/07/2010] [Accepted: 06/07/2010] [Indexed: 01/27/2023]
Abstract
HCV-JFH1 yields subclones that develop cytopathic plaques (Sekine-Osajima Y, et al., Virology 2008; 371:71). Here, we investigated viral amino acid substitutions in cytopathic mutant HCV-JFH1 clones and their characteristics in vitro and in vivo. The mutant viruses with individual C2441S, P2938S or R2985P signature substitutions, and with all three substitutions, showed significantly higher intracellular replication efficiencies and greater cytopathic effects than the parental JFH1 in vitro. The mutant HCV-inoculated mice showed significantly higher serum HCV RNA and higher level of expression of ER stress-related proteins in early period of infection. At 8 weeks post inoculation, these signature mutations had reverted to the wild type sequences. HCV-induced cytopathogenicity is associated with the level of intracellular viral replication and is determined by certain amino acid substitutions in HCV-NS5A and NS5B regions. The cytopathic HCV clones exhibit high replication competence in vivo but may be eliminated during the early stages of infection.
Collapse
Affiliation(s)
- Kako Mishima
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Coxsackievirus B3 infection activates the unfolded protein response and induces apoptosis through downregulation of p58IPK and activation of CHOP and SREBP1. J Virol 2010; 84:8446-59. [PMID: 20554776 DOI: 10.1128/jvi.01416-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cardiomyocyte apoptosis is a hallmark of coxsackievirus B3 (CVB3)-induced myocarditis. We used cardiomyocytes and HeLa cells to explore the cellular response to CVB3 infection, with a focus on pathways leading to apoptosis. CVB3 infection triggered endoplasmic reticulum (ER) stress and differentially regulated the three arms of the unfolded protein response (UPR) initiated by the proximal ER stress sensors ATF6a (activating transcription factor 6a), IRE1-XBP1 (X box binding protein 1), and PERK (PKR-like ER protein kinase). Upon CVB3 infection, glucose-regulated protein 78 expression was upregulated, and in turn ATF6a and XBP1 were activated via protein cleavage and mRNA splicing, respectively. UPR activity was further confirmed by the enhanced expression of UPR target genes ERdj4 and EDEM1. Surprisingly, another UPR-associated gene, p58(IPK), which often is upregulated during infections with other types of viruses, was downregulated at both mRNA and protein levels after CVB3 infection. These findings were observed similarly for uninfected Tet-On HeLa cells induced to overexpress ATF6a or XBP1. In exploring potential connections between the three UPR pathways, we found that the ATF6a-induced downregulation of p58(IPK) was associated with the activation of PKR (PERK) and the phosphorylation of eIF2alpha, suggesting that p58(IPK), a negative regulator of PERK and PKR, mediates cross-talk between the ATF6a/IRE1-XBP1 and PERK arms. Finally, we found that CVB3 infection eventually produced the induction of the proapoptoic transcription factor CHOP and the activation of SREBP1 and caspase-12. Taken together, these data suggest that CVB3 infection activates UPR pathways and induces ER stress-mediated apoptosis through the suppression of P58(IPK) and induction/activation of CHOP, SREBP1, and caspase-12.
Collapse
|
85
|
McGuckin MA, Eri RD, Das I, Lourie R, Florin TH. ER stress and the unfolded protein response in intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2010; 298:G820-32. [PMID: 20338921 DOI: 10.1152/ajpgi.00063.2010] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endoplasmic reticulum (ER) stress is a phenomenon that occurs when excessive protein misfolding occurs during biosynthesis. ER stress triggers a series of signaling and transcriptional events known as the unfolded protein response (UPR). The UPR attempts to restore homeostasis in the ER but if unsuccessful can trigger apoptosis in the stressed cells and local inflammation. Intestinal secretory cells are susceptible to ER stress because they produce large amounts of complex proteins for secretion, most of which are involved in mucosal defense. This review focuses on ER stress in intestinal secretory cells and describes how increased protein misfolding could occur in these cells, the process of degradation of misfolded proteins, the major molecular elements of the UPR pathway, and links between the UPR and inflammation. Evidence is reviewed from mouse models and human inflammatory bowel diseases that ties ER stress and activation of the UPR with intestinal inflammation, and possible therapeutic approaches to ameliorate ER stress are discussed.
Collapse
Affiliation(s)
- Michael A McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Qld 4029, Australia.
| | | | | | | | | |
Collapse
|
86
|
Tsujii H, Eguchi Y, Chenchik A, Mizutani T, Yamada K, Tsujimoto Y. Screening of cell death genes with a mammalian genome-wide RNAi library. J Biochem 2010; 148:157-70. [PMID: 20421362 DOI: 10.1093/jb/mvq042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report the construction and application of a mammalian genome-wide RNAi library. The oligodeoxynucleotides encoding approximately 200,000 shRNA sequences that targeted 47,400 human transcripts were inserted into a lentivirus vector pFIV-H1-puro, and a pool of pseudovirus particles with a complexity of approximately 200,000 were used to infect target cells. From the cells surviving apoptogenic Fas stimulation, four candidate shRNA sequences were obtained that provided resistance to Fas-induced cell death, including two shRNAs for caspase-8, an shRNA for Bid, and an shRNA for Fas. The reconstructed shRNAs with these sequences were shown to reduce expression of the respective gene products and increase survival after Fas stimulation. When similar selection was performed for tunicamycin-induced apoptosis, no shRNA strongly inhibiting tunicamycin-induced cell death was isolated, although a few reconstructed shRNAs led to a slight increase of survival. Thus, this genome-wide shRNA library proved useful for selection of genes that are involved in cell death, but some limitation was also revealed.
Collapse
Affiliation(s)
- Hisayo Tsujii
- Department of Medical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
87
|
Wang G, Yang ZQ, Zhang K. Endoplasmic reticulum stress response in cancer: molecular mechanism and therapeutic potential. Am J Transl Res 2010; 2:65-74. [PMID: 20182583 PMCID: PMC2826823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/12/2009] [Indexed: 05/28/2023]
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is an organelle that is responsible for protein folding and assembly, lipid and sterol biosynthesis, and free calcium storage. In the past decade, intensive research effort has been focused on intracellular stress signaling pathways from the ER that lead to transcriptional and translational reprogramming of stressed cells. These signaling pathways, which are collectively termed Unfolded Protein Response (UPR), are critical for the cell to make survival or death decision under ER stress conditions. In recent years, research in the cancer field has revealed that ER stress and the UPR are highly induced in various tumors and are closely associated with cancer cell survival and resistance to anti-cancer treatments. Identifying the UPR components that are activated or suppressed in malignancy and exploring cancer therapeutic potentials by targeting the UPR are hot research spots. In this review, we summarize the recent progress in understating UPR signaling in cancer and its related therapeutic potential.
Collapse
|
88
|
The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 2009; 4:e8342. [PMID: 20020050 PMCID: PMC2791231 DOI: 10.1371/journal.pone.0008342] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/20/2009] [Indexed: 01/12/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is reported to cause apoptosis of infected cells and several of its proteins including the 3a accessory protein, are pro-apoptotic. Since the 3a protein localizes to the endoplasmic reticulum (ER)-Golgi compartment, its role in causing ER stress was investigated in transiently transfected cells. Cells expressing the 3a proteins showed ER stress based on activation of genes for the ER chaperones GRP78 and GRP94. Since ER stress can cause differential modulation of the unfolded protein response (UPR), which includes the inositol-requiring enzyme 1 (IRE-1), activating transcription factor 6 (ATF6) and PKR-like ER kinase (PERK) pathways, these were individually tested in 3a-expressing cells. Only the PERK pathway was found to be activated in 3a-expressing cells based on (1) increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) and inhibitory effects of a dominant-negative form of eIF2α on GRP78 promoter activity, (2) increased translation of activating transcription factor 4 (ATF4) mRNA, and (3) ATF4-dependent activation of the C/EBP homologous protein (CHOP) gene promoter. Activation of PERK affects innate immunity by suppression of type 1 interferon (IFN) signaling. The 3a protein was found to induce serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1) degradation motif and to increase IFNAR1 ubiquitination. Confocal microscopic analysis showed increased translocation of IFNAR1 into the lysosomal compartment and flow cytometry showed reduced levels of IFNAR1 in 3a-expressing cells. These results provide further mechanistic details of the pro-apoptotic effects of the SARS-CoV 3a protein, and suggest a potential role for it in attenuating interferon responses and innate immunity.
Collapse
|
89
|
Zhu X, Cheng J, Zhao J, Chen L, Hou S, Zhao G, Lan F, Wang W, Kung H, He M. Genetic polymorphisms and haplotype structures ofHSPA5gene in the Han population of Southern China. ACTA ACUST UNITED AC 2009; 74:420-3. [DOI: 10.1111/j.1399-0039.2009.01333.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
90
|
Backes S, Sperling KM, Zwilling J, Gasteiger G, Ludwig H, Kremmer E, Schwantes A, Staib C, Sutter G. Viral host-range factor C7 or K1 is essential for modified vaccinia virus Ankara late gene expression in human and murine cells, irrespective of their capacity to inhibit protein kinase R-mediated phosphorylation of eukaryotic translation initiation factor 2alpha. J Gen Virol 2009; 91:470-82. [PMID: 19846675 DOI: 10.1099/vir.0.015347-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vaccinia virus (VACV) infection induces phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha), which inhibits cellular and viral protein synthesis. In turn, VACV has evolved the capacity to antagonize this antiviral response by expressing the viral host-range proteins K3 and E3. This study revealed that the host-range genes K1L and C7L also prevent eIF2alpha phosphorylation in modified VACV Ankara (MVA) infection of several human and murine cell lines. Moreover, C7L-deleted MVA (MVA-DeltaC7L) lacked late gene expression, which could be rescued by the function of host-range factor K1 or C7. It was demonstrated that viral gene expression was blocked after viral DNA replication and that it was independent of apoptosis induction. Furthermore, it was found that eIF2alpha phosphorylation in MVA-DeltaC7L-infected cells is mediated by protein kinase R (PKR) as shown in murine embryonic fibroblasts lacking PKR function, and it was shown that this was not due to reduced E3L gene expression. The block of eIF2alpha phosphorylation by C7 could be complemented by K1 in cells infected with MVA-DeltaC7L encoding a reinserted K1L gene (MVA-DeltaC7L-K1L). Importantly, these data illustrated that eIF2alpha phosphorylation by PKR is not responsible for the block of late viral gene expression. This suggests that other mechanisms targeted by C7 and K1 are essential for completing the MVA gene expression cycle and probably also for VACV replication in a diverse set of cell types.
Collapse
Affiliation(s)
- Simone Backes
- Institute of Virology, Technical University of Munich, and Helmholtz Center Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Dengue virus infection induces upregulation of GRP78, which acts to chaperone viral antigen production. J Virol 2009; 83:12871-80. [PMID: 19793816 DOI: 10.1128/jvi.01419-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dengue virus (DENV) pathogenesis is related to the host responses to viral infection within target cells, and therefore, this study assessed intracellular changes in host proteins following DENV infection. Two-dimensional gel electrophoresis and mass spectrometry identified upregulation of the host endoplasmic reticulum (ER) chaperone GRP78 in K562 cells following DENV infection, in the absence of virus-induced cell death. Upregulation of GRP78 in DENV-infected cells was confirmed by immunostaining and confocal microscopy and by Western blot analysis and was also observed in DENV-infected primary monocyte-derived macrophages, a natural target cell type for DENV infection. GRP78 was upregulated in both DENV antigen-positive and -negative cells in the DENV-infected culture, suggesting a bystander effect, with the highest GRP78 levels coincident with high-level DENV antigen production and infectious-virus release. Transfection of target cells to express GRP78 prior to DENV challenge did not affect subsequent DENV infection, but cleavage of GRP78 with the SubAB toxin, during an established DENV infection, yielded a 10- to 100-fold decrease in infectious-virus release, loss of intracellular DENV particles, and a dramatic decrease in intracellular DENV antigen. However, DENV RNA levels were unchanged, indicating normal DENV RNA replication but altered DENV antigen levels in the absence of GRP78. Thus, GRP78 is upregulated by DENV infection and is necessary for DENV antigen production and/or accumulation. This may be a common requirement for viruses such as flaviviruses that depend heavily on the ER for coordinated protein production and processing.
Collapse
|
92
|
Gamlen T, Richards KH, Mankouri J, Hudson L, McCauley J, Harris M, Macdonald A. Expression of the NS3 protease of cytopathogenic bovine viral diarrhea virus results in the induction of apoptosis but does not block activation of the beta interferon promoter. J Gen Virol 2009; 91:133-44. [PMID: 19793904 DOI: 10.1099/vir.0.016170-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV; genus Pestivirus) can exist as two biotypes, cytopathogenic (CP) and non-cytopathogenic (NCP). The CP form differs from NCP by the continual expression of free non-structural protein 3 (NS3). CP BVDV infection of cultured cells induces apoptosis, whereas NCP BVDV infection has been reported to block the induction of beta interferon (IFN-beta). To investigate the viral mechanisms underlying these effects, NS3 or NS2-3 proteins of NCP and CP BVDV biotypes, together with the cognate NS3 co-factor NS4A, were expressed in cells, and their effect on apoptosis and induction of IFN-beta was investigated. Expression of NS3/4A resulted in increased activity of caspase-9 and caspase-3, indicating induction of the intrinsic apoptosis pathway. Mutational analysis revealed that a protease-inactive NS3/4A was unable to induce apoptosis, suggesting that NS3 protease activity is required for initiation of apoptosis during CP BVDV infection. The ability of NS2-3 to modulate activation of the IFN-beta promoter was also investigated. These studies confirmed that, unlike the related hepatitis C virus and GB virus-B, BVDV proteases are unable to inhibit TLR3- and RIG-I-dependent activation of the IFN-beta promoter. These data suggest that BVDV NS3/4A is responsible for regulating the levels of cellular apoptosis and provide new insights regarding the viral elements associated with CP biotype pathogenesis.
Collapse
Affiliation(s)
- Toby Gamlen
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
93
|
Durand SVM, Hulst MM, de Wit AAC, Mastebroek L, Loeffen WLA. Activation and modulation of antiviral and apoptotic genes in pigs infected with classical swine fever viruses of high, moderate or low virulence. Arch Virol 2009; 154:1417-31. [PMID: 19649765 PMCID: PMC2744773 DOI: 10.1007/s00705-009-0460-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/08/2009] [Indexed: 12/16/2022]
Abstract
The immune response to CSFV and the strategies of this virus to evade and suppress the pigs’ immune system are still poorly understood. Therefore, we investigated the transcriptional response in the tonsils, median retropharyngeal lymph node (MRLN), and spleen of pigs infected with CSFV strains of similar origin with high, moderate, and low virulence. Using a porcine spleen/intestinal cDNA microarray, expression levels in RNA pools prepared from infected tissue at 3 dpi (three pigs per virus strain) were compared to levels in pools prepared from uninfected homologue tissues (nine pigs). A total of 44 genes were found to be differentially expressed. The genes were functionally clustered in six groups: innate and adaptive immune response, interferon-regulated genes, apoptosis, ubiquitin-mediated proteolysis, oxidative phosphorylation and cytoskeleton. Significant up-regulation of three IFN-γ-induced genes in the MRLNs of pigs infected with the low virulence strain was the only clear qualitative difference in gene expression observed between the strains with high, moderate and low virulence. Real-time PCR analysis of four response genes in all individual samples largely confirmed the microarray data at 3 dpi. Additional PCR analysis of infected tonsil, MRLN, and spleen samples collected at 7 and 10 dpi indicated that the strong induction of expression of the antiviral response genes chemokine CXCL10 and 2′–5′ oligoadenylate synthetase 2, and of the TNF-related apoptosis-inducing ligand (TRAIL) gene at 3 dpi, decreased to lower levels at 7 and 10 dpi. For the highly and moderately virulent strains, this decrease in antiviral and apoptotic gene expression coincided with higher levels of virus in these immune tissues.
Collapse
Affiliation(s)
- S V M Durand
- Central Veterinary Institute of Wageningen University and Research Centre, P.O. Box 65, 8200 AB, Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
94
|
Activation of extracellular signal-regulated kinase in MDBK cells infected with bovine viral diarrhea virus. Arch Virol 2009; 154:1499-503. [PMID: 19609634 DOI: 10.1007/s00705-009-0453-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
Our efforts to identify the cellular signaling cascades triggered by bovine viral diarrhea virus (BVDV) infection in MDBK cells revealed marked activation of extracellular signal-regulated kinase 1/2 (ERK). Enhanced phosphorylation of ERK was detected following infection with cytopathogenic (cp) BVDV, but not with noncytopathogenic BVDV. It appears that cp BVDV-induced ERK phosphorylation is caused by oxidative stress, because ERK phosphorylation was inducible by treatment with hydrogen peroxide or serum deprivation and was attenuated by addition of antioxidants. These results indicate that BVDV infection influences the ERK signaling pathway via oxidative stress, depending on the biotype.
Collapse
|
95
|
Yamane D, Zahoor MA, Mohamed YM, Azab W, Kato K, Tohya Y, Akashi H. Microarray analysis reveals distinct signaling pathways transcriptionally activated by infection with bovine viral diarrhea virus in different cell types. Virus Res 2009; 142:188-99. [PMID: 19428753 DOI: 10.1016/j.virusres.2009.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 12/01/2022]
Affiliation(s)
- Daisuke Yamane
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
96
|
Yamane D, Zahoor MA, Mohamed YM, Azab W, Kato K, Tohya Y, Akashi H. Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J Biol Chem 2009; 284:13648-13659. [PMID: 19293152 DOI: 10.1074/jbc.m807498200] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid implicated in diverse cellular functions including survival, proliferation, tumorigenesis, inflammation, and immunity. Sphingosine kinase (SphK) contributes to these functions by converting sphingosine to S1P. We report here that the nonstructural protein NS3 from bovine viral diarrhea virus (BVDV), a close relative of hepatitis C virus (HCV), binds to and inhibits the catalytic activity of SphK1 independently of its serine protease activity, whereas HCV NS3 does not affect SphK1 activity. Uncleaved NS2-3 from BVDV was also found to interact with and inhibit SphK1. We suspect that inhibition of SphK1 activity by BVDV NS3 and NS2-3 may benefit viral replication, because SphK1 inhibition by small interfering RNA, chemical inhibitor, or overexpression of catalytically inactive SphK1 results in enhanced viral replication, although the mechanisms by which SphK1 inhibition leads to enhanced viral replication remain unknown. A role of SphK1 inhibition in viral cytopathogenesis is also suggested as overexpression of SphK1 significantly attenuates the induction of apoptosis in cells infected with cytopathogenic BVDV. These findings suggest that SphK is targeted by this virus to regulate its catalytic activity.
Collapse
Affiliation(s)
- Daisuke Yamane
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Muhammad A Zahoor
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yassir M Mohamed
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Walid Azab
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukinobu Tohya
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
97
|
Human cytomegalovirus protein pUL38 induces ATF4 expression, inhibits persistent JNK phosphorylation, and suppresses endoplasmic reticulum stress-induced cell death. J Virol 2009; 83:3463-74. [PMID: 19193809 DOI: 10.1128/jvi.02307-08] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle involved in sensing and responding to stressful conditions, including those resulting from infection of viruses, such as human cytomegalovirus (HCMV). Three signaling pathways collectively termed the unfolded protein response (UPR) are activated to resolve ER stress, but they will also lead to cell death if the stress cannot be alleviated. HCMV is able to modulate the UPR to promote its infection. The specific viral factors involved in such HCMV-mediated modulation, however, were unknown. We previously showed that HCMV protein pUL38 was required to maintain the viability of infected cells, and it blocked cell death induced by thapsigargin. Here, we report that pUL38 is an HCMV-encoded regulator to modulate the UPR. In infection, pUL38 allowed HCMV to upregulate phosphorylation of PKR-like ER kinase (PERK) and the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha), as well as induce robust accumulation of activating transcriptional factor 4 (ATF4), key components of the PERK pathway. pUL38 also allowed the virus to suppress persistent phosphorylation of c-Jun N-terminal kinase (JNK), which was induced by the inositol-requiring enzyme 1 pathway. In isolation, pUL38 overexpression elevated eIF-2alpha phosphorylation, induced ATF4 accumulation, limited JNK phosphorylation, and suppressed cell death induced by both thapsigargin and tunicamycin, two drugs that induce ER stress by different mechanisms. Importantly, ATF4 overexpression and JNK inhibition significantly reduced cell death in pUL38-deficient virus infection. Thus, pUL38 targets ATF4 expression and JNK activation, and this activity appears to be critical for protecting cells from ER stress induced by HCMV infection.
Collapse
|
98
|
MAEDA K, FUJIHARA M, HARASAWA R. Bovine viral diarrhea virus 2 Infection Activates the Unfolded Protein Response in MDBK Cells, Leading to Apoptosis. J Vet Med Sci 2009; 71:801-5. [DOI: 10.1292/jvms.71.801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kouji MAEDA
- Department of Veterinary Microbiology, Faculty of Agriculture, Iwate University
| | - Masatoshi FUJIHARA
- Department of Veterinary Microbiology, Faculty of Agriculture, Iwate University
| | - Ryô HARASAWA
- Department of Veterinary Microbiology, Faculty of Agriculture, Iwate University
| |
Collapse
|
99
|
Specific inhibition of the PKR-mediated antiviral response by the murine cytomegalovirus proteins m142 and m143. J Virol 2008; 83:1260-70. [PMID: 19019949 DOI: 10.1128/jvi.01558-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Double-stranded RNA (dsRNA) produced during viral infection activates several cellular antiviral responses. Among the best characterized is the shutoff of protein synthesis mediated by the dsRNA-dependent protein kinase (PKR) and the oligoadenylate synthetase (OAS)/RNase L system. As viral replication depends on protein synthesis, many viruses have evolved mechanisms for counteracting the PKR and OAS/RNase L pathways. The murine cytomegalovirus (MCMV) proteins m142 and m143 have been characterized as dsRNA binding proteins that inhibit PKR activation, phosphorylation of the translation initiation factor eIF2alpha, and a subsequent protein synthesis shutoff. In the present study we analyzed the contribution of the PKR- and the OAS-dependent pathways to the control of MCMV replication in the absence or presence of m142 and m143. We show that the induction of eIF2alpha phosphorylation during infection with an m142- and m143-deficient MCMV is specifically mediated by PKR, not by the related eIF2alpha kinases PERK or GCN2. PKR antagonists of vaccinia virus (E3L) or herpes simplex virus (gamma34.5) rescued the replication defect of an MCMV strain with deletions of both m142 and m143. Moreover, m142 and m143 bound to each other and interacted with PKR. By contrast, an activation of the OAS/RNase L pathway by MCMV was not detected in the presence or absence of m142 and m143, suggesting that these viral proteins have little or no influence on this pathway. Consistently, an m142- and m143-deficient MCMV strain replicated to high titers in fibroblasts lacking PKR but did not replicate in cells lacking RNase L. Hence, the PKR-mediated antiviral response is responsible for the essentiality of m142 and m143.
Collapse
|
100
|
Gurtsevitch VE. Human oncogenic viruses: hepatitis B and hepatitis C viruses and their role in hepatocarcinogenesis. BIOCHEMISTRY (MOSCOW) 2008; 73:504-13. [PMID: 18605975 DOI: 10.1134/s0006297908050039] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic infections caused by hepatitis B virus (HBV) and/or hepatitis C virus (HCV) are the main risk factors for the development of hepatocellular carcinoma (HCC) in humans. Both viruses cause a wide spectrum of clinical manifestations ranging from healthy carrier state to acute and chronic hepatitis, liver cirrhosis, and HCC. HBV and HCV belong to different viral families (Hepadnoviridae and Flaviviridae, respectively); they are characterized by different genetic structures. Clinical manifestations of these viral infections result from the interaction between these viruses and host hepatocytes (i.e. between viral and cell genomes). Proteins encoded by both viruses play an important role in processes responsible for immortalization and transformation of these cells. Chronic inflammation determined by host immune response to the viral infection, hepatocyte death and their compensatory proliferation, as well as modulation of expression of some regulatory proteins of the cell (growth factors, cytokines, etc.) are the processes that play the major role in liver cancer induced by HBV and HCV.
Collapse
Affiliation(s)
- V E Gurtsevitch
- Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow 115478, Russia.
| |
Collapse
|