51
|
Madisch I, Hofmayer S, Moritz C, Grintzalis A, Hainmueller J, Pring-Akerblom P, Heim A. Phylogenetic analysis and structural predictions of human adenovirus penton proteins as a basis for tissue-specific adenovirus vector design. J Virol 2007; 81:8270-81. [PMID: 17522221 PMCID: PMC1951325 DOI: 10.1128/jvi.00048-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The penton base is a major capsid protein of human adenoviruses (HAdV) which forms the vertices of the capsid and interacts with hexon and fiber protein. Two hypervariable loops of the penton are exposed on the capsid surface. Sequences of these and 300 adjacent amino acid residues of all 51 HAdV and closely related simian adenoviruses were studied. Adjacent sequences and predicted overall secondary structure were conserved. Phylogenetic analysis revealed clustering corresponding to the HAdV species and recombination events in the origin of HAdV prototypes. All HAdV except serotypes 40 and 41 of species F exhibited an integrin binding RGD motif in the second loop. The lengths of the loops (HVR1 and RGD loops) varied significantly between HAdV species with the longest RGD loop observed in species C and the longest HVR1 in species B. Long loops may permit the insertion of motifs that modify tissue tropism. Genetic analysis of HAdV prime strain p17'H30, a neutralization variant of HAdV-D17, indicated the significance of nonhexon neutralization epitopes for HAdV immune escape. Fourteen highly conserved motifs of the penton base were analyzed by site-directed mutagenesis of HAdV-D8 and tested for sustained induction of early cytopathic effects. Thus, three new motifs essential for penton base function were identified additionally to the RGD site, which interacts with a secondary cellular receptor responsible for internalization. Therefore, our penton primary structure data and secondary structure modeling in combination with the recently published fiber knob sequences may permit the rational design of tissue-specific adenoviral vectors.
Collapse
Affiliation(s)
- Ijad Madisch
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
52
|
Myhre S, Henning P, Granio O, Tylö AS, Nygren PA, Olofsson S, Boulanger P, Lindholm L, Hong SS. Decreased immune reactivity towards a knobless, affibody-targeted adenovirus type 5 vector. Gene Ther 2006; 14:376-81. [PMID: 17036056 DOI: 10.1038/sj.gt.3302875] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, a prototype Adenovirus type 5 (Ad5) vector deleted of the fiber knob domain and carrying an Affibody molecule as the targeting ligand showed decreased susceptibility to human pre-existing antibodies. This vector, Ad5/R7-Z(taq)Z(taq), has short fibers carrying seven shaft repeats, a non-native trimerization signal and an affibody molecule (Z(taq)) reactive to Taq polymerase. Ad5/R7-Z(taq)Z(taq) could be specifically targeted to 293 cells stably expressing membrane-bound anti-Z(taq) idiotypic affibody called Z(ztaq) (293Z(ztaq)). Sera from 50 blood donors were analyzed for neutralization activity (NA) against the parental Ad5/Fiwt vector and knobless Ad5/R7-Z(taq)Z(taq) on 293Z(ztaq) cells. Twenty-three sera had NA titers (> or =1:64) against Ad5/Fiwt (46%) and only two against Ad5/R7-Z(taq)Z(taq) (4%). Characterization of sera with NA titers showed that the knob domain is one of the targets of the antibodies. Neutralization assays using sera pre-adsorbed on knob and hexon proteins showed that the NA of the sera was carried mainly by anti-knob and anti-hexon antibodies, but in certain sera the anti-hexon antibodies represent the major population of the neutralizing antibodies (NAbs). Our results suggested that a combination of knob deletion and hexon switching could be an effective strategy for Ad vectors to better evade the anti-Ad NAbs.
Collapse
Affiliation(s)
- S Myhre
- Got-A-Gene AB, Ostra Kyviksvägen 18, Kullavik, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Atencio IA, Grace M, Bordens R, Fritz M, Horowitz JA, Hutchins B, Indelicato S, Jacobs S, Kolz K, Maneval D, Musco ML, Shinoda J, Venook A, Wen S, Warren R. Biological activities of a recombinant adenovirus p53 (SCH 58500) administered by hepatic arterial infusion in a Phase 1 colorectal cancer trial. Cancer Gene Ther 2006; 13:169-81. [PMID: 16082381 DOI: 10.1038/sj.cgt.7700870] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The major focus of intrahepatic arterial (IHA) administration of adenoviruses (Ad) has been on safety. Currently, there is little published data on the biological responses to Ad when administered via this route. As part of a Phase I study, we evaluated biological responses to a replication-defective adenovirus encoding the p53 transgene (SCH 58500) when administered by hepatic arterial infusion to patients with primarily colorectal cancer metastatic to the liver. In analyzing biological responses to the Ad vector, we found that both total and neutralizing Ad antibodies increased weeks after SCH 58500 infusion. The fold increase in antibody titers was not dependent on SCH 58500 dosage. The proinflammatory cytokine interleukin-6 (IL-6) transiently peaked within 6 h of dosing. The cytokine sTNF-R2 showed elevation by 24 h post-treatment, and fold increases were directly related to SCH 58500 doses. Cytokines TNF-alpha, IL-1beta, and sTNF-R1 showed no increased levels over 24 h. Predose antibody levels did not appear to predict transduction, nor did serum Ad neutralizing factor (SNF). Delivery of SCH 58500 to tumor tissue occurred, though we found distribution more predominantly in liver tissues, as opposed to tumors. RT-PCR showed significantly higher expression levels (P<0.0001, ANOVA) for adenovirus type 2 and 5 receptor (CAR) in liver tissues, suggesting a correlation with transduction. Evidence of tumor-specific apoptotic activity was provided by laser scanning cytometry, which determined a coincidence of elevated nuclear p53 protein expression with apoptosis in patient tissue. IHA administration of a replication defective adenovirus is a feasible mode of delivery, allowing for exogenous transfer of the p53 gene into target tissues, with evidence of functional p53. Limited and transient inflammatory responses to the drug occurred, but pre-existing immunity to Ad did not preclude SCH 58500 delivery.
Collapse
|
54
|
Roberts DM, Nanda A, Havenga MJE, Abbink P, Lynch DM, Ewald BA, Liu J, Thorner AR, Swanson PE, Gorgone DA, Lifton MA, Lemckert AAC, Holterman L, Chen B, Dilraj A, Carville A, Mansfield KG, Goudsmit J, Barouch DH. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 2006; 441:239-43. [PMID: 16625206 DOI: 10.1038/nature04721] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/15/2006] [Indexed: 11/09/2022]
Abstract
A common viral immune evasion strategy involves mutating viral surface proteins in order to evade host neutralizing antibodies. Such immune evasion tactics have not previously been intentionally applied to the development of novel viral gene delivery vectors that overcome the critical problem of anti-vector immunity. Recombinant, replication-incompetent adenovirus serotype 5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens have proved highly immunogenic in preclinical studies but will probably be limited by the high prevalence of pre-existing anti-Ad5 immunity in human populations, particularly in the developing world. Here we show that rAd5 vectors can be engineered to circumvent anti-Ad5 immunity. We constructed novel chimaeric rAd5 vectors in which the seven short hypervariable regions (HVRs) on the surface of the Ad5 hexon protein were replaced with the corresponding HVRs from the rare adenovirus serotype Ad48. These HVR-chimaeric rAd5 vectors were produced at high titres and were stable through serial passages in vitro. HVR-chimaeric rAd5 vectors expressing simian immunodeficiency virus Gag proved comparably immunogenic to parental rAd5 vectors in naive mice and rhesus monkeys. In the presence of high levels of pre-existing anti-Ad5 immunity, the immunogenicity of HVR-chimaeric rAd5 vectors was not detectably suppressed, whereas the immunogenicity of parental rAd5 vectors was abrogated. These data demonstrate that functionally relevant Ad5-specific neutralizing antibodies are focused on epitopes located within the hexon HVRs. Moreover, these studies show that recombinant viral vectors can be engineered to circumvent pre-existing anti-vector immunity by removing key neutralizing epitopes on the surface of viral capsid proteins. Such chimaeric viral vectors may have important practical implications for vaccination and gene therapy.
Collapse
Affiliation(s)
- Diane M Roberts
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Toh ML, Hong SS, van de Loo F, Franqueville L, Lindholm L, van den Berg W, Boulanger P, Miossec P. Enhancement of adenovirus-mediated gene delivery to rheumatoid arthritis synoviocytes and synovium by fiber modifications: role of arginine-glycine-aspartic acid (RGD)- and non-RGD-binding integrins. THE JOURNAL OF IMMUNOLOGY 2006; 175:7687-98. [PMID: 16301679 DOI: 10.4049/jimmunol.175.11.7687] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) do not express the coxsackie-adenovirus (Ad) receptor and are poorly permissive to Ad serotype 5 (Ad5). Genetically modified, coxsackie-Ad receptor-independent Ad5 vectors were studied for gene delivery in human RA FLS and synovium explants and murine collagen-induced arthritis. Short-fiber Ad5 vectors with seven fiber shaft repeats Ad5GFP-R7-knob, Ad5GFP-R7-arginine-glycine-aspartic acid (RGD) (RGD-liganded), and Ad5GFPDeltaknob (knob-deleted) were compared with Ad5GFP-FiWT, a conventional wild-type (WT) Ad5 vector. Gene transfer by Ad5GFP-R7-knob and Ad5GFP-R7-RGD was 40- to 50-fold and 25-fold higher, respectively, than Ad5GFP-FiWT in FLS. Ad5GFPDeltaknob was more efficacious than its knob-bearing version Ad5GFP-R7-knob in FLS transduction. Virus attachment and entry required RGD- and LDV-binding integrins including alpha(v), alpha(v)beta3, a(v)beta5, and beta1. Ad5GFP-R7-knob infection of FLS was partially neutralized by synovial fluid (SF), but remained 30- to 40-fold higher than Ad5GFP-FiWT in the presence of SF. Ad5GFPDeltaknob was partially neutralized by SF at low virus input, but escaped viral neutralization by SF at higher virus input. Gene transfer to human synovium ex vivo explants and murine collagen-induced arthritis in vivo was also more efficient with short fiber-modified vectors (with and without the knob domain) than Ad5GFPFiWT. Gene transfer by short fiber-modified vectors was enhanced by inflammatory cytokines in vitro and in the presence of inflammation in murine synovium in vivo. Our data indicated that the highly efficient gene delivery RA was mediated by RGD- and non-RGD-binding integrins and enhanced by inflammation. Short fiber modifications with knob ablation may be a strategy to enhance gene delivery, reducing vector dose and vector-induced inflammation and toxicity.
Collapse
Affiliation(s)
- Myew-Ling Toh
- Department of Immunology and Rheumatology, Mixed Unit Civil Hospital of Lyon-BioMérieux, Edouard Herriot Hospital, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Bauer U, Flunker G, Bruss K, Kallwellis K, Liebermann H, Luettich T, Motz M, Seidel W. Detection of antibodies against adenovirus protein IX, fiber, and hexon in human sera by immunoblot assay. J Clin Microbiol 2005; 43:4426-33. [PMID: 16145087 PMCID: PMC1234141 DOI: 10.1128/jcm.43.9.4426-4433.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 51 serotypes of human adenoviruses (HAdVs) of the genus Mastadenovirus are classified into the six species HAdV-A to HAdV-F. For the detection of genus- and species-specific antibodies in human sera an immunoblot assay was developed. The recombinant long fiber of HAdV-41[F] (Ad41Fi) and the native hexon of HAdV-5[C] were used as genus-specific antigens. The recombinant capsid protein IX (pIX) of HAdV-2 (Ad2pIX[C]) and HAdV-41 (Ad41pIX[F]), the C-terminal pIX part of HAdV-3 (Ad3pIXC[B]), and the fiber knob of HAdV-8 (Ad8FiKn[D]) were evaluated as representative species-specific antigens. Hence, the pIX amino acid sequences of numerous serotypes of all HAdV species were compared, and the cross-reactivities of pIX antigens with rabbit hyperimmune sera among HAdV-A to -F were analyzed. In an epidemiological study, 667 human patient sera, not selected for viral infection, were screened for adenovirus seroprevalence. The genus-specific antibody prevalences directed against the Ad41Fi and HAdV-5 hexon were 82.8 and 98.8%, respectively. The species-specific antibody prevalence of 44.7% against Ad2pIX[C], 36.6% against Ad41pIX[F], 26.4% against Ad8FiKn[D], and 18% against Ad3pIXC[B] showed an age-dependent distribution and correlated well with the frequency of isolated serotypes of the respective species in earlier studies (except HAdV-D). In conclusion, the immunoblot assay using pIX, fiber, and hexon antigens represents a valuable and new serological tool for refined adenovirus diagnosis as shown in an epidemiological study.
Collapse
Affiliation(s)
- Ulrike Bauer
- Friedrich Loeffler Institute of Medical Microbiology, University of Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Sumida SM, Truitt DM, Lemckert AAC, Vogels R, Custers JHHV, Addo MM, Lockman S, Peter T, Peyerl FW, Kishko MG, Jackson SS, Gorgone DA, Lifton MA, Essex M, Walker BD, Goudsmit J, Havenga MJE, Barouch DH. Neutralizing Antibodies to Adenovirus Serotype 5 Vaccine Vectors Are Directed Primarily against the Adenovirus Hexon Protein. THE JOURNAL OF IMMUNOLOGY 2005; 174:7179-85. [PMID: 15905562 DOI: 10.4049/jimmunol.174.11.7179] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The utility of recombinant adenovirus serotype 5 (rAd5) vector-based vaccines for HIV-1 and other pathogens will likely be limited by the high prevalence of pre-existing Ad5-specific neutralizing Abs (NAbs) in human populations. However, the immunodominant targets of Ad5-specific NAbs in humans remain poorly characterized. In this study, we assess the titers and primary determinants of Ad5-specific NAbs in individuals from both the United States and the developing world. Importantly, median Ad5-specific NAb titers were >10-fold higher in sub-Saharan Africa compared with the United States. Moreover, hexon-specific NAb titers were 4- to 10-fold higher than fiber-specific NAb titers in these cohorts by virus neutralization assays using capsid chimeric viruses. We next performed adoptive transfer studies in mice to evaluate the functional capacity of hexon- and fiber-specific NAbs to suppress the immunogenicity of a prototype rAd5-Env vaccine. Hexon-specific NAbs were remarkably efficient at suppressing Env-specific immune responses elicited by the rAd5 vaccine. In contrast, fiber-specific NAbs exerted only minimal suppressive effects on rAd5 vaccine immunogenicity. These data demonstrate that functionally significant Ad5-specific NAbs are directed primarily against the Ad5 hexon protein in both humans and mice. These studies suggest a potential strategy for engineering novel Ad5 vectors to evade dominant Ad5-specific NAbs.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Adult
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Antibodies, Viral/physiology
- Capsid Proteins/administration & dosage
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Dose-Response Relationship, Immunologic
- Genetic Vectors/administration & dosage
- Genetic Vectors/immunology
- Genetic Vectors/metabolism
- Humans
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Immunosuppressive Agents/metabolism
- Immunosuppressive Agents/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neutralization Tests
- Seroepidemiologic Studies
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Shawn M Sumida
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
Adenoviruses have transitioned from tools for gene replacement therapy to bona fide vaccine delivery vehicles. They are attractive vaccine vectors as they induce both innate and adaptive immune responses in mammalian hosts. Currently, adenovirus vectors are being tested as subunit vaccine systems for numerous infectious agents ranging from malaria to HIV-1. Additionally, they are being explored as vaccines against a multitude of tumor-associated antigens. In this review we describe the molecular biology of adenoviruses as well as ways the adenovirus vectors can be manipulated to enhance their efficacy as vaccine carriers. We describe methods of evaluating immune responses to transgene products expressed by adenoviral vectors and discuss data on adenoviral vaccines to a selected number of pathogens. Last, we comment on the limitations of using human adenoviral vectors and provide alternatives to circumvent these problems. This field is growing at an exciting and rapid pace, thus we have limited our scope to the use of adenoviral vectors as vaccines against viral pathogens.
Collapse
Affiliation(s)
| | - Hildegund C.J. Ertl
- To whom correspondence and reprint requests should be addressed. Fax: +1 (215) 898 3953
| |
Collapse
|
59
|
Varghese R, Mikyas Y, Stewart PL, Ralston R. Postentry neutralization of adenovirus type 5 by an antihexon antibody. J Virol 2004; 78:12320-32. [PMID: 15507619 PMCID: PMC525062 DOI: 10.1128/jvi.78.22.12320-12332.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibodies against hexon, the major coat protein of adenovirus (Ad), are an important component of the neutralizing activity in serum from naturally infected humans and experimentally infected animals. The mechanisms by which antihexon antibodies neutralize the virus have not been defined. As a model system, murine monoclonal antibodies raised against Ad type 5 (Ad5) were screened for antihexon binding and neutralization activity; one monoclonal antibody, designated 9C12, was selected for further characterization. The minimum ratio of 9C12 to Ad5 required for neutralization was 240 antibody molecules per virus particle, or 1 antibody per hexon trimer. Analysis of antibody-virus complexes by dynamic light scattering and negative-stain electron microscopy (EM) showed that the virus particles were coated with electron-dense material but not aggregated at neutralizing ratios. Cryo-EM image reconstruction of the antibody-virus complex showed that the surface of the virus particle was covered by a meshwork of 9C12 antibody density, consistent with bivalent binding at multiple sites. Confocal analysis revealed that viral attachment, cell entry, and intracellular transport to the nuclear periphery still occur in the presence of neutralizing levels of 9C12. A model is presented for neutralization of Ad by an antihexon antibody in which the hexon capsid is cross-linked by antibodies, thus preventing virus uncoating and nuclear entry of viral DNA.
Collapse
Affiliation(s)
- Robin Varghese
- Canji, Inc., 3525 John Hopkins Ct., San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
60
|
Tsai V, Johnson DE, Rahman A, Wen SF, LaFace D, Philopena J, Nery J, Zepeda M, Maneval DC, Demers GW, Ralston R. Impact of Human Neutralizing Antibodies on Antitumor Efficacy of an Oncolytic Adenovirus in a Murine Model. Clin Cancer Res 2004; 10:7199-206. [PMID: 15534093 DOI: 10.1158/1078-0432.ccr-04-0765] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to assess the impact of anti-adenovirus neutralizing antibodies (AdNAbs) on the distribution, tolerability, and efficacy of intravenously administered oncolytic adenovirus. A translational model was developed to evaluate the impact of humoral immunity on intravenous administration of oncolytic adenovirus in humans. EXPERIMENTAL DESIGN Initially, severe combined immunodeficient (SCID)/beige mice were passively immunized with various amounts of human sera to establish a condition of preexisting humoral immunity similar to humans. A replication-deficient adenovirus encoding beta-galactosidase (rAd-betagal) was injected intravenously into these mice. An AdNAb titer that mitigated galactosidase transgene expression was determined. A xenograft tumor-bearing nude mouse model was developed to assess how a similar in vivo titer would impact the activity of 01/PEME, an oncolytic adenovirus, after intravenous administration. RESULTS In SCID/beige mice, there was a dose dependence between AdNAbs and galactosidase transgene expression; 90% of transgene expression was inhibited when the titer was 80. A similar titer reconstituted in the nude mice with human serum, as was done in the SCID/beige mice, did not abrogate the antitumor efficacy of the replicating adenovirus after intravenous administration. Viral DNA increased in tumors over time. CONCLUSIONS In intravenous administration, preexisting AdNAb titer of 80 significantly attenuated the activity of a 2.5 x 10(12) particles per kilogram dose of nonreplicating adenovirus; the same titer had no affect on the activity of an equivalent dose of replicating adenovirus. Our results suggest that a majority of patients with preexisting adenovirus immunity would be candidates for intravenous administration of oncolytic adenovirus.
Collapse
Affiliation(s)
- Van Tsai
- Canji, Inc., San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Basak SK, Kiertscher SM, Harui A, Roth MD. Modifying Adenoviral Vectors for Use as Gene-Based Cancer Vaccines. Viral Immunol 2004; 17:182-96. [PMID: 15279698 DOI: 10.1089/0882824041310603] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The past decade has produced significant advances in our understanding of antigen-presenting cells, tumor antigens, and other components of the immune response to cancer. Gene-based vaccination is emerging as one of the more promising approaches for loading dendritic cells (DC) with tumor-associated antigens. In this respect, it is proposed that adenoviral (AdV) vectors can deliver high antigen concentrations, promote effective processing and MHC expression, and stimulate potent cell-mediated immunity. While AdV vectors have performed well in pre-clinical vaccine models, their application to patient care has limitations. The in vivo administration of AdV vectors is associated with both innate and adaptive host responses that result in tissue inflammation and injury, viral neutralization, and premature clearance of AdV-transduced cells. A variety of strategies have been developed to address these limitations. The ideal vaccine would avoid vector-related immune responses, have relative specificity for transducing DC, and induce high levels of transgene expression. This review describes the range of host responses to AdV vaccines, identifies strategies to reduce viral recognition and enhance transgene antigen expression, and suggests future approaches to vector development and administration. There is every reason to believe that safer and more effective forms of AdV-based vaccines can be developed and applied to patient therapy.
Collapse
Affiliation(s)
- Saroj K Basak
- Pulmonary and Critical Care Medicine and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690, USA
| | | | | | | |
Collapse
|