51
|
Nour El Din S, El-Tayeb TA, Abou-Aisha K, El-Azizi M. In vitro and in vivo antimicrobial activity of combined therapy of silver nanoparticles and visible blue light against Pseudomonas aeruginosa. Int J Nanomedicine 2016; 11:1749-58. [PMID: 27175075 PMCID: PMC4854264 DOI: 10.2147/ijn.s102398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been used as potential antimicrobial agents against resistant pathogens. We investigated the possible therapeutic use of AgNPs in combination with visible blue light against a multidrug resistant clinical isolate of Pseudomonas aeruginosa in vitro and in vivo. The antibacterial activity of AgNPs against P. aeruginosa (1×10(5) colony forming unit/mL) was investigated at its minimal inhibitory concentration (MIC) and sub-MIC, alone and in combination with blue light at 460 nm and 250 mW for 2 hours. The effect of this combined therapy on the treated bacteria was then visualized using transmission electron microscope. The therapy was also assessed in the prevention of biofilm formation by P. aeruginosa on AgNP-impregnated gelatin biopolymer discs. Further, in vivo investigations were performed to evaluate the efficacy of the combined therapy to prevent burn-wound colonization and sepsis in mice and, finally, to treat a real infected horse with antibiotic-unresponsive chronic wound. The antimicrobial activity of AgNPs and visible blue light was significantly enhanced (P<0.001) when both agents were combined compared to each agent alone when AgNPs were tested at MIC, 1/2, or 1/4 MIC. Transmission electron microscope showed significant damage to the cells that were treated with the combined therapy compared to other cells that received either the AgNPs or blue light. In addition, the combined treatment significantly (P<0.001) inhibited biofilm formation by P. aeruginosa on gelatin discs compared to each agent individually. Finally, the combined therapy effectively treated a horse suffering from a chronic wound caused by mixed infection, where signs of improvement were observed after 1 week, and the wound completely healed after 4 weeks. To our knowledge, this combinatorial therapy has not been investigated before. It was proved efficient and promising in managing infections caused by multidrug resistant bacteria and could be used as an alternative to conventional antibiotic therapy.
Collapse
Affiliation(s)
- Suzanne Nour El Din
- Department of Microbiology, Immunology and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Tarek A El-Tayeb
- National Institute for Laser Enhanced Sciences, Cairo University, Cairo, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology, Immunology and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Mohamed El-Azizi
- Department of Microbiology, Immunology and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| |
Collapse
|
52
|
Otero LH, Klinke S, Rinaldi J, Velázquez-Escobar F, Mroginski MA, Fernández López M, Malamud F, Vojnov AA, Hildebrandt P, Goldbaum FA, Bonomi HR. Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism. J Mol Biol 2016; 428:3702-20. [PMID: 27107635 DOI: 10.1016/j.jmb.2016.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 11/25/2022]
Abstract
Phytochromes constitute a major superfamily of light-sensing proteins that are reversibly photoconverted between a red-absorbing (Pr) and a far-red-absorbing (Pfr) state. Bacteriophytochromes (BphPs) are found among photosynthetic and non-photosynthetic bacteria, including pathogens. To date, several BphPs have been biophysically characterized. However, it is still not fully understood how structural changes are propagated from the photosensory module to the output module during the signal transduction event. Most phytochromes share a common architecture consisting of an N-terminal photosensor that includes the PAS2-GAF-PHY domain triad and a C-terminal variable output module. Here we present the crystal structure of the full-length BphP from the plant pathogen Xanthomonas campestris pv. campestris (XccBphP) bearing its photosensor and its complete output module, a PAS9 domain. In the crystals, the protein was found to be in the Pr state, whereas diffraction data together with resonance Raman spectroscopic and theoretical results indicate a ZZZssa and a ZZEssa chromophore configuration corresponding to a mixture of Pr and Meta-R state, the precursor of Pfr. The XccBphP quaternary assembly reveals a head-to-head dimer in which the output module contributes to the helical dimer interface. The photosensor, which is shown to be a bathy-like BphP, is influenced in its dark reactions by the output module. Our structural analyses suggest that the photoconversion between the Pr and Pfr states in the full-length XccBphP may involve changes in the relative positioning of the output module. This work contributes to understand the light-induced structural changes propagated from the photosensor to the output modules in phytochrome signaling.
Collapse
Affiliation(s)
- Lisandro Horacio Otero
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Francisco Velázquez-Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - María Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - María Fernández López
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - Florencia Malamud
- UNSAM Campus Miguelete IIB-Instituto de Investigaciones Biotecnológicas, Av. 25 de Mayo y Francia (B1650KNA), Buenos Aires, Argentina
| | - Adrián Alberto Vojnov
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - Fernando Alberto Goldbaum
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Hernán Ruy Bonomi
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina.
| |
Collapse
|
53
|
Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction. J Bacteriol 2016; 198:1218-29. [PMID: 26833410 DOI: 10.1128/jb.00872-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacterium Ramlibacter tataouinensis RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, the R. tataouinensis bacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR from Agrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. IMPORTANCE BphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of these proteins, rather than on signal transduction or the resultant phenotypes. To begin to address this knowledge gap, we solved the crystal structures of two single-domain response regulators encoded by a region immediately downstream of that encoding BphPs. We observed a previously unknown arm-in-arm dimer linkage. Monomerization via deletion of the C-terminal dimerization motif had an inhibitory effect on net response regulator phosphorylation, underlining the importance of these unusual dimers for signal transduction.
Collapse
|
54
|
Cheng DD, Liu MJ, Sun XB, Zhao M, Chow WS, Sun GY, Zhang ZS, Hu YB. Light Suppresses Bacterial Population through the Accumulation of Hydrogen Peroxide in Tobacco Leaves Infected with Pseudomonas syringae pv. tabaci. FRONTIERS IN PLANT SCIENCE 2016; 7:512. [PMID: 27148334 PMCID: PMC4838606 DOI: 10.3389/fpls.2016.00512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/31/2016] [Indexed: 05/13/2023]
Abstract
Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant's tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood. This study aimed to elucidate the underlying mechanisms of the reduced photosystem damage in tobacco leaves due to Pst infection under light conditions. Compared to dark conditions, Pst infection under light conditions resulted in less chlorophyll degradation and a smaller decline in photosynthetic function. Although the maximal quantum yield of photosystem II (PSII) and the activity of the photosystem I (PSI) complex decreased as Pst infection progressed, damage to PSI and PSII after infection was reduced under light conditions compared to dark conditions. Pst was 17-fold more abundant in tobacco leaves under dark compared to light conditions at 3 days post inoculation (dpi). Additionally, H2O2 accumulated to a high level in tobacco leaves after Pst infection under light conditions; although to a lesser extent, H2O2 accumulation was also significant under dark conditions. Pretreatment with H2O2 alleviated chlorotic lesions and decreased Pst abundance in tobacco leaves at 3 dpi under dark conditions. MV pretreatment had the same effects under light conditions, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea pretreatment aggravated chlorotic lesions and increased the Pst population. These results indicate that chlorotic symptoms and the size of the bacterial population are each negatively correlated with H2O2 accumulation. In other words, light appears to suppress the Pst population in tobacco leaves through the accumulation of H2O2 during infection.
Collapse
Affiliation(s)
- Dan-Dan Cheng
- College of Life Science, Northeast Forestry UniversityHarbin, China
| | - Mei-Jun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai’an, China
| | - Xing-Bin Sun
- College of Life Science, Northeast Forestry UniversityHarbin, China
| | - Min Zhao
- College of Life Science, Northeast Forestry UniversityHarbin, China
| | - Wah S. Chow
- College of Life Science, Northeast Forestry UniversityHarbin, China
- Division of Plant Science, Research School of Biology, The Australian National University, CanberraACT, Australia
| | - Guang-Yu Sun
- College of Life Science, Northeast Forestry UniversityHarbin, China
- *Correspondence: Guang-Yu Sun, ; Zi-Shan Zhang,
| | - Zi-Shan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai’an, China
- *Correspondence: Guang-Yu Sun, ; Zi-Shan Zhang,
| | - Yan-Bo Hu
- College of Life Science, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
55
|
Ricci A, Dramis L, Shah R, Gärtner W, Losi A. Visualizing the relevance of bacterial blue- and red-light receptors during plant-pathogen interaction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:795-802. [PMID: 26147514 DOI: 10.1111/1758-2229.12320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) leads to consistent losses in tomato crops, urging to multiply investigations on the physiological bases for its infectiveness. As other P. syringae pathovars, Pst is equipped with photoreceptors for blue and red light, mimicking the photosensing ability of host plants. In this work we have investigated Pst strains lacking the genes for a blue-light sensing protein (PstLOV), for a bacteriophytochrome (PstBph1) or for heme-oxygenase-1. When grown in culturing medium, all deletion mutants presented a larger growth than wild-type (WT) Pst under all other light conditions, with the exception of blue light which, under our experimental conditions (photon fluence rate = 40 μmol m(-2) s(-1)), completely suppressed the growth of the deletion mutants. Each of the knockout mutants shows stronger virulence towards Arabidopsis thaliana than PstWT, as evidenced by macroscopic damages in the host tissues of infected leaves. Mutated bacteria were also identified in districts distant from the infection site using scanning electron microscopy. These results underscore the importance of Pst photoreceptors in responding to environmental light inputs and the partial protective role that they exert towards host plants during infection, diminishing virulence and invasiveness.
Collapse
Affiliation(s)
- Ada Ricci
- Department of Life Sciences, University of Parma, 43124, Parma, Italy
| | - Lucia Dramis
- Department of Life Sciences, University of Parma, 43124, Parma, Italy
| | - Rashmi Shah
- Max-Planck-Institute for Chemical Energy Conversion, 45470, Mülheim, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, 45470, Mülheim, Germany
| | - Aba Losi
- Department of Physics and Earth Sciences, University of Parma, 43124, Parma, Italy
| |
Collapse
|
56
|
Losi A, Mandalari C, Gärtner W. The Evolution and Functional Role of Flavin-based Prokaryotic Photoreceptors. Photochem Photobiol 2015; 91:1021-31. [DOI: 10.1111/php.12489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Aba Losi
- Department of Physics and Earth Sciences; University of Parma; Parma Italy
| | - Carmen Mandalari
- Department of Physics and Earth Sciences; University of Parma; Parma Italy
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion; Mülheim Germany
| |
Collapse
|
57
|
Nudel CB, Hellingwerf KJ. Photoreceptors in Chemotrophic Prokaryotes: The Case of Acinetobacter spp. Revisited. Photochem Photobiol 2015; 91:1012-20. [PMID: 26147719 DOI: 10.1111/php.12491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 12/23/2022]
Abstract
A comprehensive description of blue light using flavin (BLUF) photosensory proteins, including preferred domain architectures and the molecular mechanism of their light activation and signal generation, among chemotrophic prokaryotes is presented. Light-regulated physiological responses in Acinetobacter spp. from environmental and clinically relevant strains are discussed. The twitching motility response in A. baylyi sp. ADP1 and the joint involvement of three of the four putative BLUF-domain-containing proteins in this response, in this species, is presented as an example of remarkable photoreceptor redundancy.
Collapse
Affiliation(s)
- Clara B Nudel
- Nanobiotec Institute, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
58
|
Endres S, Granzin J, Circolone F, Stadler A, Krauss U, Drepper T, Svensson V, Knieps-Grünhagen E, Wirtz A, Cousin A, Tielen P, Willbold D, Jaeger KE, Batra-Safferling R. Structure and function of a short LOV protein from the marine phototrophic bacterium Dinoroseobacter shibae. BMC Microbiol 2015; 15:30. [PMID: 25887755 PMCID: PMC4335406 DOI: 10.1186/s12866-015-0365-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Background Light, oxygen, voltage (LOV) domains are widely distributed in plants, algae, fungi, bacteria, and represent the photo-responsive domains of various blue-light photoreceptor proteins. Their photocycle involves the blue-light triggered adduct formation between the C(4a) atom of a non-covalently bound flavin chromophore and the sulfur atom of a conserved cysteine in the LOV sensor domain. LOV proteins show considerable variation in the structure of N- and C-terminal elements which flank the LOV core domain, as well as in the lifetime of the adduct state. Results Here, we report the photochemical, structural and functional characterization of DsLOV, a LOV protein from the photoheterotrophic marine α-proteobacterium Dinoroseobacter shibae which exhibits an average adduct state lifetime of 9.6 s at 20°C, and thus represents the fastest reverting bacterial LOV protein reported so far. Mutational analysis in D. shibae revealed a unique role of DsLOV in controlling the induction of photopigment synthesis in the absence of blue-light. The dark state crystal structure of DsLOV determined at 1.5 Å resolution reveals a conserved core domain with an extended N-terminal cap. The dimer interface in the crystal structure forms a unique network of hydrogen bonds involving residues of the N-terminus and the β-scaffold of the core domain. The structure of photoexcited DsLOV suggests increased flexibility in the N-cap region and a significant shift in the Cα backbone of β strands in the N- and C-terminal ends of the LOV core domain. Conclusions The results presented here cover the characterization of the unusual short LOV protein DsLOV from Dinoroseobacter shibae including its regulatory function, extremely fast dark recovery and an N-terminus mediated dimer interface. Due to its unique photophysical, structural and regulatory properties, DsLOV might thus serve as an alternative model system for studying light perception by LOV proteins and physiological responses in bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0365-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephan Endres
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Joachim Granzin
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Franco Circolone
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Andreas Stadler
- Juelich Centre for Neutron Science JCNS (JCNS-1) & Institute for Complex Systems (ICS-1), Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Vera Svensson
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Esther Knieps-Grünhagen
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Astrid Wirtz
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Anneliese Cousin
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Petra Tielen
- Institute for Microbiology, Technische Universität Braunschweig, D-38106, Braunschweig, Germany.
| | - Dieter Willbold
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany. .,Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany.
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany. .,Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Renu Batra-Safferling
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| |
Collapse
|
59
|
Bartoli C, Berge O, Monteil CL, Guilbaud C, Balestra GM, Varvaro L, Jones C, Dangl JL, Baltrus DA, Sands DC, Morris CE. ThePseudomonas viridiflavaphylogroups in theP. syringaespecies complex are characterized by genetic variability and phenotypic plasticity of pathogenicity-related traits. Environ Microbiol 2014; 16:2301-15. [DOI: 10.1111/1462-2920.12433] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/13/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Bartoli
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE); Tuscia University; Viterbo Italy
- UR0407 Pathologie Végétale; INRA; Montfavet France
| | - Odile Berge
- UR0407 Pathologie Végétale; INRA; Montfavet France
| | | | | | - Giorgio M. Balestra
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE); Tuscia University; Viterbo Italy
| | - Leonardo Varvaro
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE); Tuscia University; Viterbo Italy
| | - Corbin Jones
- Department of Biology; Carolina Center for Genome Sciences; Chapel Hill NC 29599 USA
| | - Jeffery L. Dangl
- Department of Biology; Howard Hughes Medical Institute; University of North Carolina; Chapel Hill NC 29599 USA
| | - David A. Baltrus
- School of Plant Sciences; University of Arizona; Tucson AZ 85721 USA
| | - David C. Sands
- Department Plant Sciences and Plant Pathology; Montana State University; Bozeman MT 59717-3150 USA
| | - Cindy E. Morris
- UR0407 Pathologie Végétale; INRA; Montfavet France
- Department Plant Sciences and Plant Pathology; Montana State University; Bozeman MT 59717-3150 USA
| |
Collapse
|
60
|
From Plant Infectivity to Growth Patterns: The Role of Blue-Light Sensing in the Prokaryotic World. PLANTS 2014; 3:70-94. [PMID: 27135492 PMCID: PMC4844311 DOI: 10.3390/plants3010070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 01/15/2023]
Abstract
Flavin-based photoreceptor proteins of the LOV (Light, Oxygen, and Voltage) and BLUF (Blue Light sensing Using Flavins) superfamilies are ubiquitous among the three life domains and are essential blue-light sensing systems, not only in plants and algae, but also in prokaryotes. Here we review their biological roles in the prokaryotic world and their evolution pathways. An unexpected large number of bacterial species possess flavin-based photosensors, amongst which are important human and plant pathogens. Still, few cases are reported where the activity of blue-light sensors could be correlated to infectivity and/or has been shown to be involved in the activation of specific genes, resulting in selective growth patterns. Metagenomics and bio-informatic analysis have only recently been initiated, but signatures are beginning to emerge that allow definition of a bona fide LOV or BLUF domain, aiming at better selection criteria for novel blue-light sensors. We also present here, for the first time, the phylogenetic tree for archaeal LOV domains that have reached a statistically significant number but have not at all been investigated thus far.
Collapse
|
61
|
Abstract
After over a century of progress, phototropism research still presents some fascinating challenges.
Collapse
|
62
|
Josenhans C, Jung K, Rao CV, Wolfe AJ. A tale of two machines: a review of the BLAST meeting, Tucson, AZ, 20-24 January 2013. Mol Microbiol 2013; 91:6-25. [PMID: 24125587 DOI: 10.1111/mmi.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 01/06/2023]
Abstract
Since its inception, Bacterial Locomotion and Signal Transduction (BLAST) meetings have been the place to exchange and share the latest developments in the field of bacterial signal transduction and motility. At the 12th BLAST meeting, held last January in Tucson, AZ, researchers from all over the world met to report and discuss progress in diverse aspects of the field. The majority of these advances, however, came at the level of atomic level structures and their associated mechanisms. This was especially true of the biological machines that sense and respond to environmental changes.
Collapse
Affiliation(s)
- Christine Josenhans
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | | | | | | |
Collapse
|
63
|
Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. J Bacteriol 2013; 195:4742-52. [PMID: 23955010 DOI: 10.1128/jb.00787-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The foliar pathogen Pseudomonas syringae is a useful model for understanding the role of stress adaptation in leaf colonization. We investigated the mechanistic basis of differences in the osmotolerance of two P. syringae strains, B728a and DC3000. Consistent with its higher survival rates following inoculation onto leaves, B728a exhibited superior osmotolerance over DC3000 and higher rates of uptake of plant-derived osmoprotective compounds. A global transcriptome analysis of B728a and DC3000 following an osmotic upshift demonstrated markedly distinct responses between the strains; B728a showed primarily upregulation of genes, including components of the type VI secretion system (T6SS) and alginate biosynthetic pathways, whereas DC3000 showed no change or repression of orthologous genes, including downregulation of the T3SS. DC3000 uniquely exhibited improved growth upon deletion of the biosynthetic genes for the compatible solute N-acetylglutaminylglutamine amide (NAGGN) in a minimal medium, due possibly to NAGGN synthesis depleting the cellular glutamine pool. Both strains showed osmoreduction of glnA1 expression, suggesting that decreased glutamine synthetase activity contributes to glutamate accumulation as a compatible solute, and both strains showed osmoinduction of 5 of 12 predicted hydrophilins. Collectively, our results demonstrate that the superior epiphytic competence of B728a is consistent with its strong osmotolerance, a proactive response to an osmotic upshift, osmoinduction of alginate synthesis and the T6SS, and resiliency of the T3SS to water limitation, suggesting sustained T3SS expression under the water-limited conditions encountered during leaf colonization.
Collapse
|